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Abstract 
We describe an experimental system im- 
plemented using the Java(TM) program- 
ming language which demonstrates a va- 
riety of application-level tradeoffs available 
to distributed natural  language processing 
(NLP) applications. In the context of the 
World Wide Web (WWW),  it is possible to 
provide value added functionality to legacy 
documents in a client side browser, a docu- 
ment server or an intermediary agent. Us- 
ing a well-known ngram-based algorithm 
for automatic  language identification, we 
have constructed a system to dynamically 
add language labels for whole documents 
and text fragments. We have experi- 
mented with several client/server configu- 
rations, and present the results of tradeoffs 
made between labelling accuracy and the 
size/completeness of the language models .  

1 Introduction 
In the 1.1 release of the Java Developers Kit(TM), a 
wide selection of text processing and international- 
ization interfaces have been added to the base Java 
package 1 making the package usable for multilingual 

1A few pointers to online Java resources. 
Java Developer Kit : 
< U RL:http://www.javasoft.com/products/ 
jdk/1.1/index.html> 
Java Server(TM) Product Family : 
< URL:http://jeeves.javasoft.com/products/ 
java-server/index.html> 
HotJava(TM) Browser : 
< U RL:http://www.javasoft.com/products/ 
HotJava/index.html> 
Java internationalization : 
< U RL:http://java.sun.com/products/ 
jdk/1.1/docs/guide/intl/index.html> 
Java Workshop : 
< U RL:http://www.sun.com/workshop/index.html> 
Java JIT : 
< U RL:http://www.sun.com/workshop/ 
java/jit/index.html> 

text processing. The Java programming language, 
the portable Java virtual machine and the basic web 
infrastructure of client web browsers and document 
resource protocols provide a widely deployed plat- 
form suitable for distributing NLP applications. Our 
research is targeted at shallow machine translation 
and summarization of multilingual web pages. 2 To 
properly bootstrap this technology we require ap- 
propriate language labels on documents. Language 
labels may be present at a whole document or collec- 
tion of documents level for large granularity appli- 
cations or at a structural component (SGML entity 
level) for fine grained uses. (Yergeau et al., 1997) 
Using an ngram language model (Dunning, 1994), 
we have explored a variety of mechanisms for adding 
language labels to legacy documents as part  of the 
normal end user experience of the World Wide Web. 
Three obvious places the language labels could be 
added to legacy documents are within an end user 
web browser, within a document repository server 
and within an intermediary proxy server. We have 
experimented with several client/server configura- 
tions, and present the results of tradeoffs made be- 
tween labelling accuracy and the size/completeness 
of the language models . 

2 Automatic  Language Identification 

Although the general framework will support  a va- 
riety of algorithms for automatic language identifi- 
cation, our implementation is based on Dunning's 
(1994) character ngram approach, which is concep- 
tually quite simple and achieves good performance 
even given relatively small training sets (50K of 
training text is more than enough, and one can 
make do with as little as 1-2K), and even when 
the strings to be classified are quite short (e.g., 50 
characters). Essentially, the method involves con- 
structing a probabilistic model (or "profile") based 
on character ngrams for each language in the classi- 
fication set, and then performing classification of an 

2Sun Microsystems Laboratories efforts in 
International Linguistic Applications: 
< URL:http: / /www.sunlabs.com/research /ila/ >. 
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unknown string by selecting the model most likely 
to have generated that string. 

Although the model itself is quite simple, some 
subtle and not-so-subtle issues do arise in putting 
the algorithm into practice. First among these is the 
problem of matching the character set of the input 
text to the character set assumed by the language 
profiles - -  for example, Shift-JIS and EUC-Japan 
are frequently used to encode Japanese documents 
in the PC and Unix worlds, respectively. Docu- 
ments currently found on the W W W  are often in- 
sufficiently labeled to indicate the language of text 
or the encoding of the characters within the docu- 
ment. We believe that use of Unicode will become 
increasingly widespread, obviating this problem, al- 
though for the time being we avail ourselves of the 
reasonable tools available 3 for identifying and con- 
verting among character sets. 

Second, sparse training data  is a significant fac- 
tor in ngram modeling, even at the level of charac- 
ter co-occurrences, since we consider character se- 
quences up to 5 characters in length. We have ex- 
perimented with simple add-k smoothing and, not- 
ing known problems with that  method (Gale and 
Church, 1990), we have also experimented with 
Good-Turing smoothing (Good, 1953) - finding, to 
our surprise, tha t  the simple "add ½" is only slightly 
less accurate. 

Table 2 shows the performance of the language 
identification algorithm when run on Dunning's 
(1994) English/Spanish test set, using language pro- 
files for English and Spanish constructed from train- 
ing sets of 50K characters each and varying the size 
of the ngrams and length of the test strings. This 
experiment used Good-Turing smoothing and also 
adopted a simplified approximation of conditional 
probabilities used by Dunning (personal communi- 
cation) in his experiments. Each row of the table 
shows the language and length of the test strings, 
the ngram size, the number of test strings classified 
correctly and incorrectly, and the percentage correct. 

Third,  in an environment where computation may 
more efficiently be done on the client side rather 
than the server side, the size of the language pro- 
files becomes relevant, since computation cost must 
be traded off against communication cost for the 
data  needed in order to perform the classification. 
Given that  probabilities for low frequency items can 
be poorly est imated anyway, we have experimented 
with eliminating low-frequency items from the pro- 
file - -  e.g., t reat ing singletons (ngrams appearing 
just  once in the training data) as if they never ap- 
peared at all and using the smoothed-zero value 
for them instead, thus trading model size against 
classification accuracy. Again to our surprise, we 

~Xemacs internationalization : 
< U RL:http://www.xemacs.org/ 
xemacs-faq.html~interna.tion Miza.tion > 

have found that quite reasonable classification per- 
formance is sustained even when filtering out not 
only singletons but even ngrams that  appear twice 
and even three times in the training s e t .  (see Ta- 
bles 3-5). 

Table 1 shows the dramatic size reduction that  
takes place as smaller window sizes are used in train- 
ing the language models. In the current implemen- 
tation plain text files are used for maximum porta- 
bility of the resources. An application that  uses a 
5-gram model without filtering any of the training 
data would use a 220K model containing 13K ob- 
served ngrams, with an average accuracy of 98.68% 
for 100-500 character length strings. If the same ap- 
plication can function effectively with a marginally 
lower accuracy rate of 98.32%, then the same train- 
ing data  can be used to produce a profile a full order 
of magnitude smaller (a 23K profile containing only 
1.6K ngrams), by using a tr igram model and filter- 
ing out those trigrams whose observed frequency is 
less than 4. This 10X reduction in size for this par- 
ticular resource could mean supporting 10 times as 
many languages with the same memory  footprint  or 
delivering the linguistic resource 10 times as fast for 
a client side computation.  

Finally, standardization of language labels must 
be addressed; this work follows the ISO standards 
for language and country codes for internationaliza- 
tion ([SO, 1988b; ISO, 1988a; Yergeau et al., 1997; 
Alvestrand, 1995). 

3 C l i e n t / S e r v e r  A r c h i t e c t u r e  

In designing a distributed application several deci- 
sions can be built into the architecture of the prod- 
uct or left as runtime decisions. By using a Java vir- 
tual machine as the target platform, the same code 
can run on a server machine or within the client 
graphical user interface. A sophisticated program 
can determine at s tartup whether the computat ion 
resources (memory and CPU) on the server machine 
or on the client workstation are bet ter  for the more 
complex algorithms.(In our testing we work with 
a SparcStat ion(TM) 10 file server, an Ul t ra l (TM) 
with 500M of memory as a high end client and a 
SparcStation 2 remote client over a 28.8 Kb modem 
connection as a low end client.) 

In addition to compute resources, it is also impor- 
tant to consider the network bandwidth resources. 
The local area network configuration can make some 
simplifying assumptions that  may not be appropri- 
ate for wide area network and remotely connected 
clients. We have explored the possibility of degraded 
application performance in exchange for reasonable 
response times for the remotely connected client, i.e., 
we have allowed a higher error rate on language la- 
bels of short text fragments in exchange for smaller 
language models which can easily be down-loaded 
over slower network connections by remote sites. In 

44 



this section, we discuss the incorporation of lan- 
guage identification at three possible locations: the 
client's Web browser, the document server, and be- 
tween them at a proxy Web server. 

3.1 C l i e n t  W e b  B r o w s e r  

We have experimented with two extreme client con- 
figurations. Our high end client has fast CPU and 
a large memory  pool. Our low end client has both 
a slow CPU and small memory  footprint. The high 
end client easily caches large language profiles and 
is capable of comput ing the best possible language 
labels. When the network resources are available to 
the high end client, it makes the most  sense to per- 
form the language labeling within the client browser. 

On the low end client, the available network 
bandwidth  was the driving architectural consider- 
ation. When high bandwidth was available, delegat- 
ing computa t ions  to the server system provides the 
best language labels and the best throughput  to end 
users. In disconnected or low bandwidth situations, 
the client must  perform its own labeling. In these 
situations, less accurate language labels with reason- 
able responsiveness is preferred over slow but more 
correct results. 

Three p r imary  techniques were used to improve 
the responsiveness of the client side language la- 
belling interfaces. Basically, they all a t t empt  to min- 
imize the work tha t  is performed and to overlap the 
work whenever possible with other end user interac- 
tions. 

• Asynchronous processing for perceived respon- 
siveness. End users perceive system responsive- 
ness in terms of its ability to react to their re- 
quests when they are presented to the system. 
Within our application there are clear points 
during system initialization and end user pa- 
rameter  selection when large amounts  of net- 
work bandwidth and computat ion resources are 
needed. Using the builtin threading capabilities 
of the Java  environment,  we s tar t  the resource 
intensive operations when they are indicated, 
but  allow the user to continue interacting with 
the user interface. If the user requests an op- 
erat ion tha t  requires an uninitialized resource a 
message is presented and the application blocks 
until the resource is available. 

• Degraded language profiles for smaller footprint. 
Our language identification profiles have been 
built  with 3, 4 and 5 character ngram windows. 
In addit ion to varying the ngram window size 
we have experimented with removal of singleton 
and doubleton observations in the training data.  
While this amplifies the sparse data  problem, it 
does not significantly impact  the end user per- 
ceived error rates for large granulari ty text  ob- 
jects, e.g., labeling a typical webpage with 1000 
characters of textual  information. 

• Subset of language profiles for specific user 
needs. We have been working with a mixture  of 
western European and Asian languages 4. For 
remote clients it is worth the extra  effort to 
preselect the languages that  will be most  bene- 
ficial to distinguish on the client machine. For 
demonstrat ion purposes we use a dozen western 
languages and preload a few profiles during the 
initialization of the sample configuration. 

3.2 D o c u m e n t  S e r v e r  

A typical document  server is designed to service a 
large number of end user requests. While they are 
usually configured with large amounts  of disk stor- 
age, they are not always the best computat ional  re-- 
sources available on the network. For static web- 
pages, it is easy to include a language labeling tool 
for off-line document  management .  The labeling 
tool would be used to convert text/htmlfile into mes- 
sage/http files. 5 

For real t ime information such as news wires or 
other database generated replies the same off line 
language labeling tools could be used with C o m m o n  
Gateway Interface (CGI)  6 scripts to automat ica l ly  
add language labels to dynamical ly generated web- 
pages. 

3.3 P r o x y  W e b  S e r v e r  

A proxy server is an intermediary program tha t  pro- 
vides value added functionality to documents  as part  
of the transmission process. A proxy server could be 
configured close to the end user or close to the da ta  
source depending on the network topology. Proxy 
servers may also be employed as a shared work- 
group or enterprise wide facility, e.g., depar tment  
level proxies can share cached webpages, or an en- 
terprise wide proxy could add an extra  level of ac- 
cess controls. By introducing language labeling at 
a proxy server it is possible to combine the benefits 
of webpage caching and transparent  content negoti- 
ation to reuse previously computed headers. 7 

4We selected 200K of sample text from the WWW 
for the following languages: Chinese, Czech, Danish, 
Dutch, English, Finnish, French, German, Greek, Hun- 
garian, Italian, Japanese, Korean, Norwegian, Polish, 
Portuguese, Spanish, Swedish, and Turkish. We use 50K 
of text for training the models, 50K for use in entropy 
calculations and 100K heldout for testing purposes. Pre- 
liminary experiments indicate that performance compa- 
rable to what we have seen with the English/Spanish 
test set will also be achieved with other language pairs. 

5Apache server documentation for variant files: 
< U RL:http://www.apache.org/docs/ 
mod/mod_a~is.html> 
< U RL:http://www.apache.org/docs/ 
mod/mod_negotiation.html> 

8Common Gateway Interface 1.1 : 
< U RL:http://hoohoo.ncsa.uiuc.edu/cgi/> 

rTarnsparent content negotiation in HTTP : 
< U RL:http://gewis.win.tue.nl/ 
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4 J a v a  C l a s s e s  

The pr imary reusable Java module written for lan- 
guage labeling in our system is called a frequency 
table class. A main() routine is provided in the class 
to provide a stand-alone interface for generating new 
language profiles from training data. The generated 
language profiles are self documenting text files indi- 
cating the parameters used in creating the language 
model and the algorithms used for smoothing and 
filtering the training data. Methods are provided 
in the frequency table class for saving and loading 
the profiles to disk and for scoring individual strings 
from a loaded profile. 

Specialized classes were also written to provide 
connections within a client environment (in Java 
lingo an "applet") and within a proxy H T T P  server 
(again in Java lingo a "servlet"). In both the servlet 
and applet applications of the language labeling class 
the Java  platform provided the basic class loading 
infrastructure to allow a common shared module 
and the distributed platform for running those al- 
gorithms transparently on a client or server system. 

5 Discussion 

In this paper, we have described a Java s implemen- 
tation of a character ngram language labeling algo- 
rithm. This NLP module was successfully reused 
in a client side Java application, in an offiine docu- 
ment management  system and embedded within an 
H T T P  proxy server. With the rapid deployment of 
the globally available Java infrastructure, a tremen- 
dous oppor tuni ty  exists for resusable NLP compo- 
nents. 

The distributed nature of our particular applica- 
tion, led us to explore possible tradeoffs between the 
accuracy needed for client side language labeling and 
the size of the language models. By selecting smaller 
ngram windows sizes and by disgarding infrequently 
observed ngrams from our language profiles we can 
reduce the size of the models by an order of mag- 
nitude with an insignificant loss of precision for our 
target application. 

The tradeoffs we have explored in the context of 
automat ic  language identification are relevant more 
generally to natural  language processing in the dis- 
tr ibuted setting made possible by the Java infras- 
tructure. At a minimum, our observations with re- 
spect to character-based language models are likely 
to be applicable to the word-based language mod- 
els used in other statistically-driven NLP applica- 

koen/conneg/> 
IETF - HTTP Working Group : 
< U RL:http://www.ics.uci.edu/ 
pub/ietf /ht tp/> 

aSun, Java, Java Developers Kit, Hot Java, and Ul- 
tral are trademarks or registered trademarks of Sun 
Microsystems, [nc. in the United States and other 
countries. 

N Filter Lines 

5 0 13423 
4 0 8196 
3 0 3557 
5 1 6003 
4 1 4607 
3 1 2393 
5 2 3899 
4 2 3377 
3 2 1952 
5 3 2863 
4 3 2685 
3 3 1693 

Bytes 1 % C o r r e c t  

221996 98.68 
127917 98.66 
52144 98.38 
95858 98.64 
70496 98.54 
34688 98.36 
62704 98.58 
50973 98.52 
27646 98.32 
45782 97.84 
39464 98.50 
23527 98.32 

Table 1: Language profile sizes 

tions. Beyond that ,  similar client/server tradeoffs 
are likely to be important  even in strictly knowledge 
based systems. Part-of-speech tagging and phrase 
identification, foreign word translation, and topic la- 
beling are among the operations that  promise to en- 
hance intelligent search and browsing on the Web, 
and the present paper represents a beginning step to- 
ward making decisions about where to locate these 
operations'  computations and data. 
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Lang I 

En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 
En 
Sp 

Length I N Correct Wrong 

t00 3 983 
100 3 973 
200 3 984 
200 3 981 
500 3 498 
5OO 3 5OO 
100 4 988 
100 4 976 
200 4 986 
200 4 983 
500 4 500 
500 4 500 
100 5 991 
100 5 973 
200 5 986 
200 5 984 
5OO 5 50O 
500 5 500 

% Correct 

17 98.3 
7 99.3 

16 98.4 
19 98.1 
2 99.6 
0 t00.0 

12 98.8 
4 99.6 

14 98.6 
17 98.3 
0 100.0 
0 100.0 
9 99.1 
7 99.3 

14 98.6 
16 98.4 
0 100.0 
0 100.0 

Table 2: Language identification performance using 
full profiles 

Lang Length N Correct 

En 100 3 986 
Sp 100 3 972 
En 200 3 979 
Sp 20O 3 981 
En 500 3 498 
Sp 5O0 3 5OO 
En 100 4 989 
Sp 100 4 973 
En 200 4 983 
Sp 200 4 982 
En 500 4 499 
Sp 500 4 500 
En 100 5 989 
Sp 100 5 973 
En 200 5 982 
Sp 2OO 5 985 
En 500 5 500 
Sp 50O 5 500 

Wrong % Correct 

14 98.60 
8 99.18 

21  97.90 
19 98.10 
2 99.60 
0 100.00 

11 98.90 
7 99.29 

17 98.30 
18 98.20 

1 99.80 
0 100.00 

11 98:90 
7 99.29 

18 98.20 
15 98.5O 
0 100.00 
0 100.00 

Table 4: Language identification performance using 
reduced profiles (filtered doubletons) 

Lang Length N Correct 

En 100 3 986 
Sp 100 3 973 
En 200 3 980 
Sp 200 ,3  981 
En 500 3 498 
Sp 500 i3  500 
En 100 ~4 989 
Sp 100 4 973 
En 200 4 982 
Sp 200 4 983 
En 500 4 500 
Sp 500 4 500 
En 100 5 990 
Sp 100 5 974 
En 200 5 984 
Sp 2O0 5 984 
En 500 5 500 
Sp 5OO 5 5OO 

Wrong % Correct 

14 
7 

20 
19 
2 
0 

11 
7 

18 
17 
0 
0 

10 
6 

16 
16 
0 
0 

98.60 
99.29 
98.00 
98.10 
99.60 

100.00 
98.90 
99.29 
98.20 
98.30 

100.00 
100.00 

99.00 
99.39 
98.40 
98.40 

100.00 
100.00 

Table 3: Language identification performance using 
reduced profiles (filtered singletons) 

Lang Length N Correct 

En 100 3 984 
Sp 100 3 973 
En 200 3 979 
Sp 200 3 981 
En 500 3 499 
Sp 5OO 3 5OO 
En 100 4 990 
Sp 100 4 972 
En 200 4 983 
Sp 200 4 981 
En 500 4 499 
Sp 5OO 4 50O 
En 100 5 979 
Sp 100 5 961 
En 200 5 974 
Sp 2OO 5 985 
En 500 5 497 
Sp 500 5 496 

Table 5: 
reduced 

Wrong % Correct 

16 98.40 
7 99.29 

21 97.90 
19 98.10 
1 99.80 
0 100.00 

10 99.00 
8 99.18 

17 98.30 
19 98.10 

1 99.80 
0 100.00 

21 97.90 
19 98.06 
26 97.40 
15 98.50 
3 99.40 
4 99.20 

Language identification performance using 
profiles (filtered tripletons) 
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