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A b s t r a c t  1 I n t r o d u c t i o n  

A practical goal for natural language text 
generation research is to converge on a sep- 
aration of functions into modules that can 
be independently re-used. This paper ad- 
dresses issues related to software re-use and 
evolution in text generation systems. We 
describe the benefits we obtained by adapt- 
ing and generalizing the generation mod- 
ules and techniques we used for the succes- 
sive development of three distinct text gen- 
eration applications, PLANDoc,  FLOW- 
Doc, and ZEDDoc.  We suggest that de- 
sign principles such as the use of a com- 
mon, modular pipeline architecture, a con- 
sistent and general data representation for- 
*nat, and domain-independent algorithms 
for generation subtasks, together with com- 
ponent re-use and adaptation, facilitate 
both application development and research 
in the field. In our experience, these princi- 
ples led to significant reductions in develop- 
ment time for successive applications, from 
three years to one year to six months, re- 
spectively. They also enabled us to isolate 
domain-specific knowledge and devise re- 
usable, domain-independent algorithms for 
generation tasks such as ontological gener- 
alization and discourse structuring. 

tThe authors wish to acknowledge Jacques Ftobin, 
James Shaw, Jong Lira, and Larry Lefkowitz, who also 
played essential roles in the design and development of 
PLANDoc and FLOWDOC. 

Recent technological advances, such as the wide- 
spread use of the World Wide Web and ready access 
to a multitude of extensive large-scale databases, 
have created novel opportunities for practical text 
generation applications. At the same time, to take 
full advantage of these opportunities, text genera- 
tion systems must be easily adaptable to new do- 
mains, changing data formats, and distinct underly- 
ing ontologies. 

One crucial factor contributing to the generaliza- 
tion and subsequent practical and commercial via- 
bility of text generation systems is the adaptation 
and re-use of text generation modules and the de- 
velopment of re-usable tools and techniques. In 
this paper, we focus on the lessons learned dur- 
ing the successive development of three text gen- 
eration systems at Bellcore: PLANDoc (McKeown 
et al., 1994) summarizes execution traces of an ex- 
pert system for telephone network capacity expan- 
sion analysis; FLOwDoc (Passonneau et al., 1996) 
provides summaries of the most important events 
in flow diagrams constructed during business re- 
engineering; and ZEDDoc (Passonnean et al., 1997) 
produces summaries of activity for a user-specified 
set of advertisements within a user-specified time pe- 
riod from logs of WWW page hits. 

We built FLowDoc and ZEDDoc by adapting 
components of the PLANDoc  system. The trans- 
fer of the original PLANDoc  modules to new do- 
mains led to the replacement of some hard-coded 
rules and ontological knowledge with more general, 
domain-independent components. This encapsula- 
tion, or "plug-and-play" feature, enabled the trans- 
fer of many of FLowDoc's  modules to ZEDDoc 
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with minimal alterations. As a result, development 
time was significantly reduced - -  from three years 
for PLANDoc  to one year for FLOwDoc to six 
months for ZEDDoc. 

In the remainder of the paper, we provide back- 
ground information on the three systems and then 
present and discuss four design principles that facili- 
tate the development of text generation systems and 
their portability to new domains and applications: 

• A common, stable pipeline architecture that 
subdivides generation tasks (e.g., sentence plan- 
ning or lexical choice) into separate modules. 

• A consistent and general data representation 
that allows easy interfacing between generation 
modules and between the text generator and 
external sources (e.g., relational databases). 

* Domain-independent methods for performing 
each generation subtask, that avoid hard-coded 
knowledge and rely instead on external, plug- 
and-play knowledge bases. 

• Component re-use and adaptability from each 
application to the next, with the aim of improv- 
ing generality and achieving the data indepen- 
dence goal described previously. 

2 B a c k g r o u n d  

PLANDoc  (McKeown et al., 1994), the first ma- 
jor text generation system developed at Bellcore, is 
an enhancement to Bellcore's LEIS-PLAN T M  net- 
work planning product. Human engineers use LEIS- 
PLAN to do network capacity expansion studies, 
during which they explore alternative scenarios to 
arrive at an optimal configuration of equipment that 
meets demands for new services while minimizing 
costs. P L A N D o c  produces textual summaries of 
the scenarios explored by engineers. It transforms 
lengthy execution traces into human-readable sum- 
maries by making heavy use of conjunction, ellip- 
sis, and paraphrasing. It also allows engineers to 
intersperse their own comments and justifications 
while using the tool. PLA NDoc  is currently in 
widespread use throughout the Southwestern Bell 
Corporation and has been requested by at least two 
other regional Bell companies. As an example, Fig- 
ure 1 shows a fragment of the input to PLANDoc  
for a particular study, PLANDoc ' s  representation 
of the same information in canonical form, and the 
resulting generated sentence. 

FLowDoc (Passonneau et al., 1996) takes as in- 
put flow diagrams representing the structure and op- 
erations of a business unit, either as it is currently 

RUNID fiberall FIBER 
6119/93 act yes 
BFA 1301 2 1995 
FA 1201 2 1995 
FA 1401 2 1995 
FA 1501 2 1995 
ANF C0 1103 2 1995 48 
ANF 1201 1301 2 1995 24 
ANF 1401 1501 2 1995 24 
END 856.0 670.2 

(a) Fragment of LEIS-PLAN's execution 
trace~br a particular plan. 

( (cat domain_message) 
(admin ((msg-num 19) 

(runid FIBERALL) 
(prev-runid ALLDLC) 
(status act) 
(saved yes) ) ) 

(class refinement) 
(ref-type FIBER) 
(action ACTIVATION) 
(csa-site 1301) 
(date ((year 1995) (quarter 2)))) 

(b) PLANDoc's representation of (a) in 
canonical form. 

RUN-ID FIBERALL demanded that PLAN 
activate fiber for CSAs 1201, 1301, 
1401 and 1501 in 1998 Q2. 

(c) Sentence generated by PLANDoc 
from the data in (b) and three other 
similar messages. 

Figure h Sample Input, Canonical Representation, 
and Output of PLANDoc.  

operating or after a proposed re-organization. Like 
PLANDoc,  it interfaces with another tool devel- 
oped at Bellcore, SHowBIz, which maintains the 
graphical representation and allows the exploration 
of possible alternatives by the re-engineering con- 
sultant. The diagrams resulting from re-engineering 
analysis are quite complex, with numerous nodes an- 
notated with a large number of attributes. FLOW- 
DOC identifies the core components, participants, 
and actions of each flow diagram and produces a 
short textual summary. Figure 2 shows an example 
input flow diagram, the representation of a sample 
node in that diagram as presented to FLowDoc by 
SHOwBIz, FLOWDOC's description of the same in- 
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AM~OdI~ Cora I~ l l r l lnce Ml~ l l l ld  

lo~eotAmt 

(a) Input flow diagram. 

(make-flownode 26 'thought-task 

: node-position 32899435 

: who ' SME 

: does_what "review" 

: to_whom_or_what 

' dr aft _do cument _in_MS_Wor d_f ormat ) 

(b) Input representation of a sample node. 

( (cat domain_msg) 

(msg_id 14) 

(msg-class salient-task) 

(workf low_id 000931) 

(activity-class thought_activity) 

(does_what review) 

(to_whom_or_what ms_word_doc) 

(count 3) ) 

(c) FLowDoc ' s  canonical representation of 
the information in (b), aggregated with 
information from two other similar nodes. 

The most frequent tasks in this workflow are those of creating, 

reviewing aIld saving documents. 

(d) Generated sentence from the canonical message in (c) and from similar 
messages corresponding to other frequent tasks in the input diagram. 

Figure 2: Sample Input Flow Diagram, Input Description of a Single Node, Canonical Representation of a 
Set of Nodes after Aggregation, and Corresponding Generated Sentence for FLowDoc.  
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select host, count(host) 

from zeddoc_view 

where (date_time between '01-JAN-95 ' and '31-DEC-96') 

(a) Fragment of SQL query automatically generated by ZEDDoc's 

database query subsystem. 

HOST COUNT(HOST) 

santos.doc.ic.ac.uk 12 

896ed78a.extern.ucsd.edu 7 

thor.dai.ed.ac.uk 7 

hvlassar.port.net 6 
vip-b.enel.ucalgary.ca 4 

baugi.ifi.uio.no 3 

pm2-O5.sundial.net 3 

194.80.129.254 2 

abest206.abest.com 2 
... 

(b) Par t  of the database output  for the 
query in (a). 

((msg-class user-domain) 

(santos.doc.ic.ac.uk 12.0) 

(896edZ8a.extern.ucsd.edu 7.0) 
(thor.dai.ed.ac.uk 7.0) 

(hvlassar.port.net 6.0) 

(vip-b.enel.ucalgary.ca 4.0) 

(baugi.ifi.uio.no 3.0) 

(pm2-05.stmdial.net 3.0) 

(other 2.0) 

(abest206.abest.com 2.0) 
...) 

(c) ZEDDoc's canonical representation 

of the information in (b). 

For the ads of interest, the most frequent Internet user domains were European 

Internet domains at 28 percent and U.8. network domains at 23 percent. 

(d) One of the sentences generated by Z E D D o c  from the full information 
about  network hosts, which is partially shown in (c). 

Figure 3: Automatically Generated SQL Query, Partial Database Output ,  Corresponding Canonical Repre- 
sentation, and one of the Corresponding Sentences Produced by Z E D D o c .  

formation aggregated over several similar nodes in 
the diagram, and the sentence generated to express 
this information. 

Z E D D o c  summarizes the underlying ZED appli- 
cation's W W W  activity. ZED manages a database 
of advertisement images to satisfy Web advertising 
contracts.  1 It selects ads to display in predefined 
slots in a manner  tha t  optimizes the satisfaction of 
the advertising contracts.  Whenever ZED displays 
a Web page, it determines what ads to display and 
creates database entries for each displayed ad. ZED- 
D o c  integrates a browser, the summary generator, 
and ZED's Oracle T M  database of W W W  transac- 
tions in a client-server architecture. By accessing the 
transaction database, Z E D D o c  can produce short 
summaries of ad activity within a user-specified time 
frame for a user-specified set of ads. Summaries con- 
tain, for example, demographic generalizations per- 

l Zed has evolved into a product, the Adapt/X 
Advertiser T M  . 

raining to potentially large numbers of hits. An ex- 
ample of Z E D D o c ' s  input, internal representation, 
and output  is shown in Figure 3. 

3 A C o m m o n  A r c h i t e c t u r e  

While P L A N D o c ,  FLOwDoc ,  and Z E D D o C  all 
share a common foundation, they embody distinctly 
different text generation applications. However, we 
aimed during the design of both  FLOWDOC and 
Z E D D o c  to utilize as much of P L A N D o c ' s  archi- 
tecture as possible, often adapting and generalizing 
modules that  were originally writ ten with only the 
P L A N D o c  system in mind. 

All three systems employ a modular  pipeline ar- 
chitecture. A pipeline architecture is one that  sepa- 
rates the functions involved in text  generation, such 
as content planning, discourse organization, lexical- 
ization, and syntactic realization, into distinct mod- 
ules that  operate in sequence. Modular pipeline ar- 
chitectures have a long history of use in text  gen- 
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eration systems (Kukich, 1983a; McKeown, 1985; 
McDonald and Pustejovsky, 1986; Reiter, 1994), al- 
though recent work argues for the need for interac- 
tion between modules (Danlos, 1987; Rubinoff, 1992; 
McKeown et al., 1993). The most powerful argu- 
ment for using pipeline architectures is the poten- 
tial benefit of re-using individual modules for subse- 
quent applications. However, with the exception of 
surface realization modules such as F U F / S U R G E  
(Elhadad, 1992; Robin, 1994), actual code re-use has 
been minimal due to the lack of agreement about the 
order and grouping of subprocesses into modules. 

In PLANDoc,  FLowDoc, and ZEDDoc, we 
utilize the following main modules, in the order 
listed below: 

• Message  Genera tor :  The message generator 
transcribes the raw data from LEIS-PLAN ex- 
ecution traces, SHowBIz, or ZED transaction 
logs into instances of message classes. We re- 
fer to simple collections of (possibly nested) 
attribute-value pairs pertaining to a single event 
as messages. Message classes are domain- 
specific (e.g., there are 30 of them in PLAN- 
Doc, 13 in FLowDoc,  and 6 in ZEDDoc),  
but they all share the same representation as 
the basic content unit. In all three systems, gen- 
eralization must occur at this level in order to 
create semantically concise messages from rela- 
tively large amounts of input data. 

• Ontologizer:  In PLANDoc,  a pipelined onto- 
iogizer enriches messages with domain-specific 
knowledge that is not explicitly present in the 
input. [n FLOWDoC and ZEDDoc, semantic 
enrichment is done at various stages by consult- 
ing external ontologies. 

• Discourse  Organizer:  The discourse orga- 
nizer performs all the remaining functions prior 
to lexicalization and surface generation 2. Three 
sub-modules apply general discourse coherence 
constraints at the levels of discourse, sentence, 
and sentence constituent. The first module per- 
forms aggregation and text linearization opera- 
tions using an ontology of rhetorical predicates 
derived from Hobbs (1985) and Polanyi (1988). 
Linear order and prominence of the subcon- 
stituents are then determined, followed by con- 
straints on subconstituents that affect lexical 
choice (e.g., centering and informational con- 
straints, as in (Passonneau, 1996)). 

2|n previous work we referred to this module as the 
Sentence Planner (Passonneau et al., 1996). 

Lexicalizer: The lexicalizer maps message at- 
tributes into thematic/case roles, and chooses 
appropriate content (open-class) words for tile 
values of these attributes. 

Surface Genera tor :  This module maps the- 
matic roles into syntactic roles and builds syn- 
tactic constituents, chooses function (closed- 
class) words, ensures grammatical agreement, 
and linearizes to produce the final surface sen- 
tence. 

Our message generator modules are largely 
domain-specific, and we have made major changes to 
them while porting them to new applications. Even 
so, their ontological generalization technique, which 
produces semantically concise descriptions from fre- 
quency data, is domain-independent. Our final 
surface generation module is completely domain- 
independent; it employs the F U F / S U R G E  (E1- 
hadad, 1991; Robin, 1994) text generation tools, 
and was re-used in all three systems with virtually 
no modifications. Modules near the middle of the 
pipeline provide the most interesting examples of 
code that can be re-used if it is general enough and 
relies on plug-and-play knowledge bases rather than 
hard-coded data. We return to this issue of code 
re-use and of the evolution of our modules to ac- 
commodate it in Section 5. 

4 A C o m m o n  R e p r e s e n t a t i o n  

All three systems employ a consistent, standardized 
attribute-value data format that persists from each 
module to the next. Examples of this internal data 
format were shown in Figures 1-3. This fbrmat 
is used for representing and processing conceptual- 
semantic, lexical-semantic, syntactic, and other lin- 
guistic information. Its persistent use facilitates 
inter-module communication and module indepen- 
dence, hence re-usability. Furthermore, it does not 
restrict the kinds of information that can be repre- 
sented, and it is common to many non-NLP com- 
putational systems and languages (e.g., relational 
databases), thus making it easier for text generation 
systems to interface with existing applications. 

The input to each of our three systems came from 
very different sources, some closer than others to 
attribute-value message format. PLANDoc ' s  input 
came from n-tuple records representing program ex- 
ecution traces, so it required a filter to transform it 
into messages. FLOwDOC'S input came from ASCII 
representations of nodes and links in work flow di- 
agrams which were already essentially in attribute- 
value format. ZEDDoc's  input, representing Web 
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activity data, had been stored in an Oracle T M  rela- 
tional database by its application, so it too required 
little transformation. 

5 A r c h i t e c t u r a l  E v o l u t i o n  

As discussed earlier, a practical goal for text gen- 
eration research is to converge on a separation of 
functions into modules that  can be independently 
re-used. Towards this goal, we have generalized and 
refined our architecture with each successive appli- 
cation. In fact, we significantly adapted our PLAN-  
DOC architecture for use in FLOwDOC, but  we were 
able to re-use the F L o w D o c  architecture and much 
of its code in Z E D D o c .  Figure 4 contrasts the ar- 
chitecture of P L A N D o c  with those of FLOwDoc  
and Z E D D o c .  

(a) Overall architecture for P L A N D o c .  

(b) Overall architecture for FLOwDoc  and Z E D D o c .  

Figure 4: Contrasting the Architecture of the Three 
Text  Generat ion Systems. 

The obvious architectural change from P LA N -  
D o c  to F L o w D o c  (and Z E D D o c )  is the extrac- 
tion of ontological knowledge from the process- 
ing pipeline. Ontological knowledge is necessarily 
domain-specific, so this modification allowed us to 
implement significantly more general Message Gen- 
eration and Discourse Organization modules and 
a somewhat more general Lexicalizati6n module. 
These more general modules rely on external knowl- 
edge bases to supply the domain-specific information 
that  was previously embedded in the code. Thus, we 
can replace the external knowledge base when mov- 
ing to a new domain or application without having 
to modify the module itself. One of our future re- 
search goals is to further extract  domain-specific lex- 
ical knowledge and further generalize the lexicalizer 
module (.ling et al., 1997). 

What  is not so obvious from Figure 4 are the con- 
sistencies and shifts in function among the modules. 

In fact, the functions of the Lexicalization and Sur- 
face Generation modules remained constant across 
all three systems. But the functions of the first 
three modules shifted significantly from P L A N D o c  
to FLOwDOC. In particular, the function of message 
aggregation lay exclusively in the Discourse Organi- 
zation module in P L A N D o c  (Shaw, 1995), whereas 
aggregation functions are executed in both the Mes- 
sage Generation and Discourse Organization mod- 
ules in FLOWDOC. 

Because the development of domain-independent,  
plug-and-play ontology modules is one of the major  
features that  affected these shifts in function, and 
because such modules greatly increase the portabil- 
ity of the system, we devote the next  section to a 
more detailed description of the function of ontolog- 
ical generalization. 

6 Ontological Generalization 

Ontological generalization refers to the problem of 
composing, with the help of an ontology, a concise 
description for a multi-set of concepts. For example, 
FLOWDOC's output  sentence shown in Figure 2 

The most frequent tasks in this 
workflow are those of creating, 
reviewing and saving documents. 

concisely describes a multi-set of ten specific task 
nodes in the flow diagram by locating superclass 
concepts in the ontology that encompass the specific 
predicates and objects of the task nodes. Our aim 
is to compose a description that is concise without 
sacrificing much in accuracy. 

While P L A N D o c  made extensive use of conjunc- 
tion, ellipsis, and paraphrasing to produce a con- 
cise summary, ontological relations were not heavily 
used. For F L o w D o c  we implemented a more gen- 
eral, domain-independent solution. We were able 
to re-use this module with minor modifications in 
Z E D D o c ,  after replacing the ontological knowledge 
base. 

Our ontological generalization algorithm works as 
follows. Given a set Co = {01,02,... ,ON} of ob- 
jects of a given predicate-class and an associated 
list ( c l , c2 , . . . ,CN)  of their occurrence counts, we 
compute an optimal set of concept generalizations 
{G1, G2,... ,GM} such that  each generalization re- 
places a subset of Co while maintaining a reasonable 
trade-off between the accuracy, specificity, and ver- 
bosity of the resulting description. 

We consider as candidate concept generalizations 
the actual members of Co and all the concepts in 
the domain ontology that  subsume one or more of 
them. Each such candidate concept generalization 
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is evaluated on its suitability to replace a given sub- 
set of C o  using a weighted sum formula, trading-off 
along two antagonistic dimensions: 

• C o v e r a g e ,  measuring how many of the objects 
in the subset (proportionally weighted accord- 
ing to their occurrence counts ci) are actually 
subsumed by the candidate generalization. 

• Spec i f i c i ty ,  defined as the average semantic 
distance between each element of the subset and 
the candidate generalization. 

The semantic distance currently used is simply the 
number of levels between each object and the gen- 
eralization in the domain ontology. It could be eas- 
ily changed to an information-based distance, e.g., 
along the lines of the metrics proposed in (Resnik, 
1995), who measures semantic distance between two 
concepts as a function of the lexical probabilities of 
their c.ommon superclasses. 

To compute the optimal set of generalizations, the 
algorithm starts  by generating all possible partitions 
of the given set of objects 3, then locates the best 
single-term description for each subset in the par- 
tition by applying the procedure outlined above to 
each candidate generalization, and finally combines 
the single-term description scores in one number. 
The final score is adjusted by two additional penal- 
ties: 

• A verbosity penalty, penalizing descriptions 
with more than one generalization (exponen- 
tially more as the number of terms in the de- 
scription increases). 

• A heterogeneity penalty, for descriptions that  
are locally optimal but  significantly lower in the 
ontology (more specific) than the global speci- 
ficity level. 

The global specificity level indicates the appropri- 
ate overall level of detail. It is computed  by ap- 
plying the above ontological generalization proce- 
dure to the collection of all the objects appearing 
in the input graph, across all actions. It implements 
the idea of "basic level" descriptions from (Rosch, 
1978) for the application domain modeled by the 
work flow. For example, while processing a flow di- 
agram which covers documents of many types, our 
algorithm will have a bias in favor of the generic term 
"Document" ra ther  the too-specific term "Draft doc- 
ument in SGML format"; a trade-off between the 

~With some performance-imposed constraints, since 
the number of possible partitions grows exponentially 
with the number of objects and the number of subsets 
in the partition. 

heterogeneity penalty and other components of the 
description score occurs if the latter term looks lo- 
cally optimal. 

The same generalization method for sets of 
(concept, occurrence count) pairs was applied in 
Z E D D o c ,  but instead of actions or graph compo- 
nents, the concepts were Internet addresses or ZED 
page types. ZED requires semantic types to be as- 
signed to WWW pages and ads to help determine 
which ads from its database can be inserted in pre- 
defined ad slots. When a ZED D O c  user requests a 
summary of activity pertaining to a particular set 
of ads for a given time period, the raw da ta  con- 
sists in par t  of frequency lists indicating how many 
users from a given Internet node saw the relevant 
ads and how many of the displayed pages corre- 
sponded to particular semantic types. One minor 
change for Z E D D o c  was the replacement of prede- 
fined absolute frequency thresholds for determining 
the salience of items with relative ones. 

To summarize the Internet domain or page type 
data, Z E D D o c  relies on plug-and-play ontologies. 
Specialization subtrees rooted at certain concepts, 
e.g., the Internet domain, can be replaced so long 
as at least one lexicalization is provided for every 
concept. Our ontology for the Internet domain com- 
bined world knowledge with the implicit hierarchical 
structure of domain names. For example, through 
hand analysis of W W W  logs we created a geograph- 
ical categorization of university nodes, on the as- 
sumption that  such demographic information is im- 
portant  to advertisers. 

7 Component Re-Use Revisited 

The major  theme throughout  this paper has been 
how we re-used components from our original Plan- 
Doc system to implement the subsequent FLOwDOc 
and Z E D D o c  systems, significantly cutting devel- 
opment time. In this section, we summarize our ex- 
periences regarding code re-use. 

• The message generator offers limited possibil- 
ities for reuse becanse it directly interfaces to 
an application-specific external source. Limited 
code sharing w ~  possible however, because of 
our choice of a common representation format 
for all three systems. 

• As noted briefly in Section 3, the F L o w D o c  
architecture had distinct modules pertaining to 
the three levels of discourse, sentence, and sen- 
tence constituent. Retaining this more general 
architecture in Z E D D o c  proved useful with 
respect to one additional required functional- 
ity, namely the ability to produce plain text or 
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HTML output. The three levels of discourse or- 
ganization were exploited in Z E D D o c  primar- 
ily to distinguish between HTML commands 
that pertain to the overall layout (e.g., para- 
graph divisions) versus those that pertain to 
sentence-internal features (e.g., fonts). 

• At the lexicalization level, we achieved only 
partial generalization of the lexicalizer's code. 
Given the state of the art in natural lan- 
glmge generation, the lexicon remains neces- 
sarily domain-specific. However, we are ex- 
ploring ways to remove domain-specific lexical 
knowledge from the system pipeline, as we did 
with domain-specific ontological and discourse 
knowledge. 

We are building a large-scale general lexicon for 
generation, which provides syntactic arid partial 
semantic knowledge and can be used to select 
the generated sentence structure and possible 
paraphrases (Jing et al., 1997). By using this 
general lexicon together with a smaller domain- 
specific lexicon or with information extracted 
from a corpus from the application domain, we 
expect to significantly simplify the development 
of the lexicalization module, improving its reli- 
ability and portability. 

• At the final surface generation level, we took 
advantage of prior progress in component stan- 
dardization and used FUF (Functional Unifica- 
tion Formalism) and its corresponding extensive 
English surface grammar SURGE. As a result, 
the surface generation module was ported un- 
changed to the other systems. 

8 C o n c l u s i o n  

By teasing apart some of P L A N D o c ' s  modules 
and partially re-configuring others, we were able to 
port our text generation system to two completely 
new domains, those of flow chart and WWW ac- 
tivity summarization. In the process, ~ve devised 
domain-independent message aggregation and dis- 
course restructuring modules for FLowDoc  that 
we re-used intact for ZEDDoc .  Indeed, we be- 
lieve that our ontological generalization algorithm 
(i.e., message aggregation guided by quantitative 
formulas over plug-and-play ontologies) is generally 
domain-independent. We are exploring ways to in- 
troduce probability estimates in our weighting func- 
tions for message aggregation, linking the static on- 
tology with corpus-observable variations in concept 
use and coverage. 

Re-usable tools and techniques can provide lever- 
age for building practical text generation applica- 
tions. They can also facilitate research leading to in- 
creasingly more general and more useful tools. This 
has been our experience in implementing tile three 
text generation systems covered in this paper which 
are all based on a common architecture, a com- 
mon representation format, and a common, evolving 
foundation of text generation tools. 

At least three other factors that are critical to 
practical and commercial success should be men- 
tioned though we cannot discuss them here. Two 
of them, i) extensive user-needs analysis and feed- 
back and ii) target corpus compilation and analy- 
sis, are highly correlated with the relative success 
of each of our systems. These two factors are dis- 
cussed in more detail in previous papers (Kukich et 
al., 1994; Kukich, 1983b). A third, undocumented 
factor, the rigorous pre-release testing of the system 
under conditions similar to its deployment environ- 
ment, played a critical role in P L A N D o c ' s  success. 
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