
Speech-Graphics Dialogue Systems

Alan W. Biermann, Michael S. Fulkerson, Greg A. Keim
Duke University

{awb, msf, ke J.m)@cs. duke. edu

1 A Theory of Dialogue

The central mechanism of a dialogue system must
be a planner (Allen et al., 1994; Smith et al., 1995;
Young et al., 1989) that seeks the dialogue goal and
organizes all behaviors for that purpose. Our project
uses a hybrid Prolog-like planner (Smith and Hipp,
1994) which first attempts to prove the top-most
goal and then initiates interactions with the user
when the proof cannot easily be achieved. Specif-
ically, it attempts to discover key missing axioms in
the proof that prevent its completion and that may
be attainable with the help of the user. The pur-
poses of the interaction are to gather the missing
information and to eventually achieve the top-most
goal.

Once the structure of the system is settled, a va-
riety of desirable behaviors for realistic dialogue can
be programmed. These include subdialogue behav-
iors, variable initiative, the ability to account for a
user model, the use of expectation for error correc-
tion purposes, and the ability to handle multimedia
input and output. Each of these is described in the
following paragraphs.

1.1 Subdialogue behaviors

Traditional analyses of human-human dialogue de-
compose sequences into segments which are locally
coherent and which individually address their own
subgoals in the overall dialogue structure. (Hobbs,
1979; Reichman, 1985; Grosz and Sidner, 1986;
Lochbaurn, 1991). Such a segment is opened for a
specific purpose, may involve a series of interactions
between participants, and may be closed having suc-
cessfuUy achieved the target subgoal. Such a seg-
ment may be interrupted for the purpose of achiev-
ing a new, locally discovered, subgoal or for ap-
proaching a different goal. It may also fail to achieve
success and be abandoned. Typical dialogues involve
repeatedly opening such segments, pursuing one sub-
goal, jumping to another, returning to a previous

subgoal and so forth until the highest level goal is
achieved or abandoned.

The Prolog-like proof tree enables this kind of be-
havior because the dialogue segments can be built
around the explicit subgoals of the proof tree. Con-
trol for the search can be governed by the domain
dependent characteristics of the subproofs. The or-
dinary Prolog depth first search is not used and,
instead, control can pass from subgoal to subgoal
to match the segmental behavior that is normal for
such dialogues.

1.2 Variable initiative

The primary facility needed for variable initiative is
the ability either to control the movements between
subgoals (dialogue segments) or to release control
and to follow the user's movements (Guinn, 1995;
Kitano and Ess-Dykema, 1991; Novick, 1988; Walker
and Whittaker, 1990). Controlling the movement
requires that the system have domain information
available to guide decisions concerning which direc-
tions may be good to take. Having made these deci-
sions, the system then jumps to the associated subdi-
alogs and follows its plan to completion. Releasing
control to the other participant involves matcbing
incoming utterances to expected interactions for the
various available subgoals and following the user to
subgoals where matches are found. This is called
plan recognition in the literature and has been the
object of much study (Allen and Perrault, 1980; Lit-
man and Allen, 1987; Pollack, 1986; Carberry, 1988;
Carberry, 1990). Mechanisms for both managing
movement between subgoals and deciding when to
release control to the other participant, including
extensive analyses of their effectiveness, are given in
(Smith and Hipp, 1994; Guinn, 1995; Guinn, 1996).

1.3 Accounting for the user model

Efficient dialogue requires that the knowledge and
abilities of the other participant be accounted for
(Kobsa and Wahlster, 1989). When the system pro-

121

rides information to the user, it is important that '
it present the new information at the appropriate
level. If the system describes details that are al-
ready known to the user, he or she will become de-
moralized. If the system fails to give needed infor-
mation, the user will cease to function effectively.
The Prolog theorem proving system provides a nat-
ural means for encoding and using the user model
without major additional mechanisms. The missing
axiom discovery mechanism simply selects subdia-
logues for interaction at the levels in the proof tree
where the user has knowledge and these levels are
where the interaction occurs (Smith et al., 1995).

1.4 E x p e c t a t i o n for the purposes of er ror
co r rec t ion

Because all interactions in a given subdiaiogue are
occurring in the context of the associated subgoal,
the actual vocabulary and syntax that are locally ap-
propriate may be anticipated (Young et al., 1989).
Thus, for example, if the system has asked the user
to measure a certain voltage, the Prolog theorem
proving tree will include locally the possibilities that
the user has responded successfully (as "I read six
volts"), that the user has asked for clarification ("at
which terminal?"), that the user needs instruction
("how do I measure that?"), or that the user has
failed to satisfy the request ("no"). The error cor-
rection mechanism looks for an expected input that
has a low Hamming distance (weighted) from the ac-
tual recognized input and chooses the best match to
the input that it will respond to. If the match does
not exceed a specified threshold, the system could
look for matches on other recent subdialogues to de-
termine whether the user is attempting to move to
another subject. If no match is found, the system
could also ask for a repeat of the spoken input. In
tests of the Circuit Fixit Shoppe, the Hamming dis-
tance algorithm alone corrected an utterance level
error rate from 50 percent down to 18.5 percent in a
series of 141 dialogues (Hipp, 1992; Smith and Gor-
don, 1996).

1.5 M u l t i m e d i a input and ou tpu t
capabi l i t ies

The original version of this architecture envisioned
only speech in and speech out as the communication
media. Speech input (such as "The voltage is six
volts") was translated to predicated form (such as
answer(measure(1;17,t202,6))) and turned over
to the theorem proving mechanism. Similarly, out-
puts from Prolog were converted to strings of text
that were enunciated by a speech synthesizer. In
recent years, however, our project (Biermann and

Long, 1996) has experimented with multimedia
grammars that convert full multimedia communica-
tion to and from the internal predicate form. The
following sections describe our method.

2 M u l t i m e d i a G r a m m a r s

We designed a multimedia grammar made up of a
series of operators that relate media syntax and se-
mantics. Each operator accounts specifically for a
syntactic item and simultaneously executes code in
the semantic world which is appropriate for that
syntax. For example, in a programming domain
where one might refer to the lines of code on the
screen, a useful operator is llne which finds the set
of all lines on the screen within the current region
of focus. Other operators find other sets (associated
with nouns), find subsets of sets (as with the adjec-
tive "capitalized"), select out individuals (as with
an ordinal), specify relationships (as with contain-
ment), and call for changes on the screen (as with
"delete"). An important characteristic of such op-
erators is that their syntactic and semantic portions
are specified by a general purpose language (C++)
so that they can manipulate any media or semantic
objects that the designer may address. 'While our
prototype system has used only spoken and text En-
glish and graphical pointing (highlighting or arrows),
the approach could conceivably involve full graphi-
cal capabilities, mechanical devices, or other input-
output media. Our approach is in contrast with the
methods of (Feiner and McKeown, 1993; Wahlster et
al., 1993) where communications are split into sev-
eral media and then those media are coordinated for
presentation to the user. Other work on multimedia
communication is surveyed in (Maybury, 1993).

The multimedia grammar is demonstrated in the
generation of the phrase "the fifth character in this
line" with highlighting of a specified line as given
in Figure 2. The domain is Pascal tutoring and the
phrase specifies a particular character that the sys-
tem wishes to comment on. An example of this type
of reference from the actual system is shown in Fig-
ure 1.

Such a grammar can be used either for genera-
tion or input. In the generation mode, the target
meaning is known (it is a particular character "1"
in the example) and a sequence of operators is to be
found that can achieve the target meaning. The as-
sociated syntax becomes the output to be presented
to the user ("the fifth character in this line" (with
pointer) in the example). In the parsing mode, the
target syntax is known and a sequence of operators
is desired that can account for the syntax. These
operators will then compute th e meaning for the ut-

122

Operator

llne
Syntax

line
Semantics
[begin]
[writln('Hello') ;]
[end.]

Complexity

this this line [writln (' Hello') ;] Ct~i,_poi,ter * log(n)
(with pointer) (with pointer)
in in this line writln('Hello ') ; Cm

(with pointer)
character character in this line [w] Jr] [i] [1;] [1] In] . . . Cchar

(with pointer)
ordinal fifth character in this line [i] Cora * 5

(with pointer)
the the fifth character in this line 1 Cart

(with pointer)

Figure 2: The operator grammar generating syntax to select an item on the screen.

Figure I: A screen from the Duke Programming Tu-
tor: "There is an error at the fifth character in this
line."

terance. Our project uses this grammar for output
only because we have separately invested major ef-
forts in the error correction system that has not been
merged with the multimedia grammar.

This grammar, of course, has the ability to gen-
erate a variety of outputs: "this character" (with
pointer), "the tenth character", "the fifth character
in the second line", "this character in the second
line" (with pointer), etc. A mechanism needs to be
devised that will select among these choices and that
will also prune the search to avoid unnecessary com-
putation. Our system uses complexity numbers as
shown in Figure 2 and seeks a minimum complexity
utterance. The methodology is experimental and as-
signs a complexity constant to each operator. The
pointer complexity is also multiplied by log(n) where

n is the number of items that are being distinguished
from. The intuition here is that a geometrical mech-
anism centers on the highlighted item. The ordinal
is multiplied by v, the value of the ordinal, on the
intuition that the user may actually count out the
number specified by the ordinal. The actual values
of the constants are obtained by training continu-
ously as the user operates the system. This is ex-
plained in the next section.

3 Learning User Preferences

The complexity constants (Cline, OG,, etc.) for gen-
eration are learned and continuously updated dur-
ing normal operation. The system gathers feedback
from the user via any means the designer may choose
and seeks a set of generation constants that optimize
user satisfaction. In a test of the system (Biermann
and Long, 1996), the feedback mechanism was sim-
ply the time required for the user to respond. A
quick response was thus recorded as encouragement
to continue the current type of generation and a long
response acted to encourage the system to experi-
ment with other values for the constants and seek
a new optimum. The specifics of the learning algo-
rithm employed are explained in (Long, 1996).

The graph in Figure 3 illustrates this process by
tracking two of these constants through a sample
run of the system. The system begins with a bias
towards highlighting, evidenced by its lower relative
value as compared to that of using ordinals. How-
ever,in the middle of the run, the user begins taking
a long time to respond to the use of highlighting.
Eventually, this drives the system to try ordinals, to
which the user responds more quickly. This has the
effect of lowering the constant for ordinals, thereby

123

Ordinals

Highlighting

00:45

E
I = " o o : 3 o

O 00:'15
D .
(/)

CI~ 00:00

Learning: Adapting to the User's Preferences

t n AAA|
1 2 3 , S 8 7 12 ,5

Utterance Number

t 2

¢J

0

Figure 3: Adapting to the user's preferences.

making it the prefered output mode. Note that the
algorithm also has an exploration parameter, which
is the probability that it will choose a mode other
than what is currently prefered. This allows the
algorithm to periodically test modes that it might
otherwise avoid, and explains why the system used
ordinals for the seventh response, despite the higher
constant.

4 Building Dialogue Systems

Our most recent voice dialogue system incorporates
many of the ideas outlined above. The Duke Pro-
gramming Tutor allows students in the introductory
Computer Science course to write and debug sim-
ple programs, communicating with the system using
voice, text and selection with the mouse. The sys-
tem can respond with debugging or tutorial informa-
tion, presented as a combination of speech, text and
graphics. In the fall of 1996, 15 Duke undergradu-
ates used the Duke Programming Tutor in place of
their regular weekly lab. These sessions lasted about
half an hour, and students received less than 3 min-
utes of instruction about how to use the system. For
most students, this was only the second or third time
they had debugged a program.

While constructing this system, we often wanted
to add modules to explore new ideas: an animated
face, the machine learning of the output mode pref-
erences, a novel dialogue control algorithm, etc. As

we struggled through integrating each of these new
modules and discovering their dependencies on other
parts of the existing system, we found ourselves
wishing for a standardized framework--a communi-
cation and architectural infrastructure for voice dia-
logue systems. And while the CSLU Toolkit (Sutton
et al., 1996) already promises rapid development of
voice system applications, it and other commercial
systems rely primarily on finite state models of dia-
logne, which may be insufficient for modeling com-
plex domains or posing some research questions. A
complete set of dialogue application programmer in-
teffaces (APIs) would reduce system development
time, lead to increased resource sharing and allow
more accurate system and component evaluation
(Fulkerson and Kehn, 1997).

The high level architecture we envision uses mes-
sages to communicate content, and events to de-
scribe meta and control information. For example,
SPEECHIN, a speech recognition module, might gen-
erate events such as SpeechStart or SpeechStop, and
also produce a message containing a recognized ut-
terance. This research effort will focus on under-
standing and formalizing these communication lan-
guages, so that they are not only powerful enough
to capture the dialogue information we can obtain
today, but also extensible enough to convey novel
pieces of the human/machine interaction allowed by
future developments. In order to test these ideas,

124

we are currently converting modules in our existing
system to allow experimentation with various com-
munication languages and architectures.

Olalogu4l $yltam

Ss'ttctl I~

\ A,,~la ~~Tl~t I. ~ N ~ \ DIALOGUE

Figure 4: A multimodal dialogue system using mes-
sages and events.

~ ~ ~ T l t X T I N N N\ \ DIALOGUE

Figure 5: Adding learning module to an existing
system.

Consider a hypothetical multimodal dialogue sys-
tem that was constructed according to the above
guidelines, as illustrated in Figure 4. The message
output from dialogue processing contains a predi-
cate form of some content to be communicated, and
a set of modes in which this can be presented. The
output generation module takes this message as in-
put, and generates a response based on this infor-
mation, choosing the mode randomly from what is
allowed in the message. In many systems, adding a
mechanism for learning the user's preferences might
involve adding code to a number of modules. In the
system we've just described however, the process is
much easier. In Figure 5, we see that the learning
algorithm can be inserted between the dialogue pro-
cessing and output generation modules. It receives
events generated by other modules, and uses tim-
ings between output and input events to calculate
the user's response time. It then modifies the mes-

125

sage from dialogue to allow only user's current preb
ered modes, and passes it on to output generation.
Note that the API would not only make develop-
ment faster and easier, it would also allow multiple
learning algorithms to be tested in a particular do-
main. This type of component evaluation within the
context of a system is currently much harder to ac-
complish.

5 Summary

We have discussed a mechanism for building dia-
logue systems, and how one might achieve useful
behaviors, such as handling subdialogues, allowing
variable initiative, accounting for user differences,
correcting for errors, and' communicating in a vari-
ety of modes. We discussed the Duke Programming
Tutor, a system that demonstrates the integration
of many of these ideas, which has been used by a
number of students. Finally, we presented our on-
going project to make designing, constructing and
evaluating new dialogue systems faster and easier.

6 Acknowledgements

This research is supported by the Office of Naval Re-
search grant N00014-94-1-0938, the National Science
Foundation grant IRI-92-21842 and a grant from the
Research Triangle Institute, which is funded in part
by the Army Research Office. Other individuals who
have contributed to the Duke Programming Tutor
include Curry Guinn, Zheng Liang, Phil Long, Dou-
glas Melamed and Krislman Rajagopalan.

R e f e r e n c e s

J. F. Allen and C. R. Perrault. 1980. Analyz-
ing intention in dialogues. Artificial Intelligence,
15(3):143-178.

James F. Allen, Lenhart K. Schubert, George Fergu-
son, Peter Heeman, Chung Hee Hwang, Tsuneaki
Kato, Marc Light, Nathaniel G. Martin, Brad-
ford W. Miller, Massimo Poesio, and David R.
Traum. 1994. The TRAINS project: A case study
in building a conversational planning agent. Tech-
nical Report TRAINS Technical Note 94-3, The
University of Rochester, September.

A. W. Biermann and P. M. Long. 1996. The com-
position of messages in speech-graphics interac-
tive systems. In Proceedings of the 1996 Interna-
tional Symposium on Spoken Dialogue, pages 97-
100, October.

Sandra Carberry. 1988. Modeling the user's plans
and goals. Computational Linguistics, 14(3):23-
37.

Sandra Carberry. 1990. Plan recognition in natural
language dialogue. ACL-MIT Press series in nat-
ural language processing. MIT Press, Cambridge,
Massachusetts.

S.K. Feiner and K.R. McKeown. 1993. Au-
tomating the generation of coordinated multime-
dia explanations. In M.T. Maybury, editor, In-
telligent Multimedia Interfaces, pages 113-134.
AAAI/MIT Press.

Michael F. Fulkerson and Greg A. Keim. 1997. De-
velopment of a component level API for voice di-
alogue systems. In submission.

Barbara J. Grosz and Candace L. Sidner. 1986. At-
tention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175-204, Sep.

Curry I. Guinn. 1995. Meta-Dialogue Behav-
iors: Improving the Efficiency of Human-Machine
Dialogue-A Computational Model of Variable Ini-
titive and Negotiation in Collaborative Problem-
Solving. Ph.D. thesis, Duke University.

C. I. Guinn. 1996. Mechanisms for mixed-initiative
human-computer collaborative discource. In Pro-
ceedings of the 34th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 278-
285.

D. R. Hipp. 1992. A New Technique for Parsing
ill-formed Spoken Natural-language Dilaog. Ph.D.
thesis, Duke University.

J. R. Hobbs. 1979. Coherence and coreference. Cog-
nitive Science, 3:67-90.

H. Kitano and C. Van Ess-Dykema. 1991. Toward
a plan-based understanding model for mixed-
initiative dialogues. In Proceedings of the 29th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 25-32.

Alfred Kobsa and Wolfgang Wahlster, editors. 1989.
User Models in Dialog Systems. Springer-Verlag,
Berlin.

D. J. Litman and J. F. Allen. 1987. A plan recogni-
tion model for subdialogues in conversations. Cog-
nitive Science, 11(2):163-200.

K.E. Lochbaum. 1991. An algorithm for plan recog-
nition in collaborative discource. In Proceedings
of the 29th Annual Meeting of the Association for
Computational Linguistics, pages 33-38.

P. M. Long. 1996. Improved bounds about on-line
learning of smooth functions of a single variable.
In Proceedings of the 1996 Workshop on Algorith-
mic Learning Theory.

M.T. Maybury, editor. 1993. Intelligent Multimedia
Interfaces. AAAI/MIT Press.

D. G. Novick. 1988. Control of Mixed-Initiative Dis-
course Through Meta-Locutionary Acts: A Com-
putational Model Ph.D. thesis, University of Ore-
gon.

M. E. Pollack. 1986. A model of plan inference that
distinguishes between the beliefs of factors and ob-
servers. In Proceedings of the 2~th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 207-214.

R. Reichman. 1985. Getting computers to talk like
you and me. The MIT Press, Cambridge, Mass.

Ronnie W. Smith and Steven A. Gordon. 1996.
Pragmatic issues in handling miscommunication:
Observations of a spoken natural language dialog
system. In AAAI Workshop on Detecting, Repair-
ing, and Preventing Human-Machine Miscommu-
nication in Portland, Oregan.

Ronnie W. Smith and D. Richard Hipp. 1994. Spo-
ken Natural Language Dialog Systems: A Practi-
cal Approach. Oxford University Press.

Ronnie W. Smith, D. Richard Hipp, and Alan W.
Biermann. 1995. An arctitecture for voice dia-
log systems based on prolog-style theorem prov-
ing. Computational Linguistics, 21(3):281-320,
September.

Stephen Sutton, David G. Novick, Ronald Cole,
Pieter Vermeulen, Jacques de Villiers, Johan
Schalkwyk, and Mark Fanty. 1996. Building
10,000 spoken dialogue systems. In Proceedings
of the Fourth International Conference on Spoken
Language Processing, pages 709-712, October.

Wolfgang Wahlster, Elisabeeth Andrfi, Wolfgang
Finkler, Hans-Jiirgen Profitlich, and Thomas Rist.
1993. Plan-based integration of natural language
and graphics generation. Artificial Intelligence,
63:387---427.

Marilyn Walker and Steve Whittaker. 1990. Mixed
initiative in dialogue: An investigation into dis-
course segmentation. In Proceedings, 28th An-
nual Meeting of the Association for Computa-
tional Linguistics, pages 70.--78.

S. R. Young, A. G. Hauptmann, W. H. Ward, E. T.
Smith, and P. Werner. 1989. High level knowl-
edge sources in usable speech recognition systems.
Communications of the ACM, pages 183-194, Au-
gust.

126

