
A Programmable Multi-Blackboard Architecture for Dialogue
Processing Systems

M a t t h i a s D e n e c k e
In te rac t ive Sys tems Labora to r i e s

Carnegie Mellon Univers i ty
P i t t s b u r g h , PA 15217
denecke@cs.cmu.edu

A b s t r a c t

In current Natural Language Processing
Systems, different components for different
processing tasks and input] output modali-
ties have to be integrated. Once integrated,
the interactions between the components
have to be specified. Interactions in dia-
logue systems can be complex due in part
to the many states the system can be in.
When porting the system to another do-
main, parts of the integration process have
to be repeated. To overcome these difficul-
ties, we propose a multi-blackboard archi-
tecture that is controlled by a set of expert-
system like rules. These rules may contain
typed variables. Variables can be substi-
tuted by representations with an appropri-
ate type stored in the blackboards. Fur-
thermore, the representations in the black-
boards allow to represent partial informa-
tion and to leave disjunctions unresolved.
Moreover, the conditions of the rule may
depend on the specificity of the represen-
tations with which the variables are instan-
tiated. For this reason, the interaction is
information-driven. The described system
has been implemented and has been inte-
grated with the speech recognizer JANUS.

1 I n t r o d u c t i o n

When building an NLP application, several building
blocks have to be integrated to form a working inter-
active system. Since, in the most cases, the compo-
nents have been developed separately from one am
other, each of them has its own representations for
input and output data and are optimized to achieve
the task for which they have been designed, but "not
necessarily to optimize integrated behavior.

Partly for this reason, several blackboard and
multi-agent systems have been proposed for spoken
language processing in the past, one of the first be-
ing the HEARSAY system (Erman and Lesser1980).
In some of these architectures, fine grained agent in-
teraction may take place. Due to the inherent mod-
ularity, these architectures are easily extendible and

reconfigurable. However, to our knowledge, little
work has been focused on how the specification of
this interaction may easily be adapted and extended
to new tasks.

We adopt the hypothesis that a dialogue system
is supposed to perform a limited set of parametrized
actions and that the communicative goal of the user
is to make the system perform one of these actions.
Thus, we not only assume the dialogue to be task-
oriented, we also assume that the behavior of the sys-
tem is limited to determine which action, including
its parameters, is compatible with the information
conveyed by the users request and which is not. To
do so, we propose to use typed representations that
exclude the use of inappropriate information for an
unintended action. Together with a type inference
procedure, partially specified requests can be incre-
mentally made more specific by using clarification
dialogues.

Contrary to most multi-agent and blackboard sys-
tems in spoken language processing, we propose to
control the interaction of the modules by a set of
rules. The rules contain typed variables that can
be instantiated with the representations stored in
a discourse blackboard. The discourse blackboard
stores four different levels of linguistic represen-
tations. These are orthographic representations (n
best and word n best lists), syntactic/lexical seman-
tic representations (parse trees generated by a se-
mantic parser), the semantic representations of the
utterances, and representations of the objects refer-
ring expressions may refer to. The different modules
may make use of each level of representation to per-
form the action they implement. The advantage of
representing the interaction between the modules in
a set of rules are twofold. First, the rules are just
another parameter that may easily be changed or
adapted if the system is supposed to be ported to
another domain. Second, since the variables in the
rules are substituted with representations stored in
the discourse history, the approach is information-
driven and may take fully into account the specificity
of the information entered by the user.

The system has been implemented for a map-
based application in which it is possible to ask for
locations and path descriptions and to make ho-

9 8

tel and restaurant reservations. The system has
been integrated with the speech recognizer JANUS
(Waibel1996). To illustrate the portability, the sys-
tem has been ported to a new and independent do-
main, a system with which fast food can be ordered.

2 I n f o r m a t i o n - c e n t e r e d
R e p r e s e n t a t i o n s

2.1 T h e T y p e H i e r a r c h y

We use typed feature structures as defined in (Car-
penter1992) throughout the entire system as repre-
sentation formalism. The notion of a type in a fea-
ture structure refers to the fact that every feature
structure is assigned a type from a type hierarchy.
Moreover, for every type, a set of appropriate fea-
tures is specified so that type inference is possible.
In our applications, we primarily encode the domain
knowledge in the type hierarchy.

According to Carpenter (Carpenter1992), the
type hierarchy of the respective domain is given by a
set Type of types and the ordering relation between
types E, the subsumption relation. Additionally,
we describe which features from a set Feat a type
may consist of by so-called appropriateness condi-
tions (Carpenter1992). The type hierarchy allows us
to express the IS-A relations (in the following noted
in cursive letters) and IS-PART-OF relations (noted
in capital letters) that hold between objects. Figure
1 shows a part of the domain that we use in our map
application.

: : , . :~..~. N A T =na t i ona =ty .:~:~',,~,.~ .~.:.-,~.~;~ SRC~.;ob I .~concrete-:,~

Figure 1: A part of the type hierarchy and its appro-
priateness conditions used in the map application.
The least specific type is at the bot tom of the tree.

The information in the type hierarchy not only
provides the types for the feature structures and de-
fines the relations between them but serves also to
restrict variable Substitutions in the rules described
below.

2.2 T h e S e m a n t i c R e p r e s e n t a t i o n s

Oftentimes, requests formulated in natural language
encode only partial information or are ambiguous.
The representations of a natural language processing
system have to account for this fact. Naturally, fea-
ture structures are well-suited for representing pax-
tial information. However, they do not adequately
represent ambiguity. For this reason, underspecified

.feature structures have been developed. As feature
structures, underspecified feature structures can en-
code partial information. In addition to feature
structures, they are able to leave disjunctions unre-
solved. Figure 2 shows examples for a typed feature
structure and an underspecified feature structure.

obj_museum]
TOWN pittsburgh J

(a)

" obj { [obj (2)
HREF h t t p : / / ho|.org/warbol/warhol.htm|] }
{"c gi f natural history "(I) }

NAME str ing* andy warhol museum "(2)
fort pitt museum "(3)

ADDR

address
" forbes ave" (1,3) string* STREETNAME I sandusky st" (2) f

{4400(1)}
STREETNUMBER int* 117(2) z00(3)

TOWN pittsburgh

(b)

Figure 2: Examples of a typed feature structure
(a) representing the semantics of the noun phrase
museums in pittsburgh and an underspecified fea-
ture structure (b) representing objects that are com-
patible with (a).

In the attribute-value-matrix notation that we use
to display underspecified feature structures, the type
marked with an asterisk is the most specific lower
bound of the types in its scope. The scope is indi-
cated by curly brackets. The alternatives are rep-
resented inside curly brackets. Indices behind types
identify the typed feature structure to which this
information belongs. If there are no indices, the in-
formation belongs to all feature structures. Features
that are common to only a subset of all represented
feature structures are in the scope of the most spe-
cific type that is in common to that subset.

Underspecified feature structures represent sets of
feature structures efficiently in that they express
both the information that is common to and the
information that differs between the feature struc-
tures in question. The fact tha t underspecified fea-
ture structures represent informational differences is
used when generating clarification questions to ge-
nerate uniquely referring NPs.

2.3 G e n e r a t i n g N o u n P h r a s e s a n d
C la r i f i ca t i on Q u e s t i o n s

Noun phrases containing descriptions of objects are
generated by traversing the feature s t ructure repre-
senting the object in depth-first order and mapping
the features and types to strings. Since underspeci-
fled feature structures represent unresolved disjunc-
tions, they are an adequate point of departure for
generating clarification questions. Underspecified
feature structures exPlicitly represent the differences

99

between feature structures. To generate a clarifi-
cation question to disambiguate an underspecified
feature structure, a noun phrase for every disjunct
is generated. The information in the noun phrase
must be specific enough to reduce ambiguity in the
underspecified structure. The noun phrases are then
filled into a template of the form

0o you mean <npl) <nP~_1> or <~Pn>?

The following example shows the information used
for generating two clarification questions to disam-
biguate the structure shown in figure 2.

Example 1 Example 2
Disjunct 1 [NAME] I ADDR I STI:tEETNAME]

tADOR I STRZETNUM]
Disjunct 2 [NAMEJ IADDR [STREETNAME]
Disjunct 3 [NAME] ~ADDK I STREETNAME]

tADOR I STREETNUM]
(a)

(1) Do you mean carnegie museum of n a t u r a l
h i s t o r y , andy warhol museum or f o r t
p i t t museum?

(2) Do you mean the one at 4400 forbes ave,

the one at sandusky st or the one at 100
forbes ave?

(b)

Figure 3: Generating clarification questions. The
paths shown in (a) single out the information that
is sufficient to completely disambiguate the under-
specified feature structure shown in figure 2 for any
of the three disjuncts. The paths and their values
are mapped to strings that are filled into a template
to produce the questions shown in (b)

3 T h e B l a c k b o a r d S y s t e m

The dialogue system is implemented as a blackboard
system. The system consists of multiple blackboards
each of which stores a separate database. More-
over, a certain number of agents is linked to the
system. The agents implement operations on the re-
presentations stored in the discourse blackboard in
a modular way. The operations are used to formu-
late rules that control the interaction between black-
boards and agents. The rules are evaluated by a
central processing unit, the general manager, that
passes control to the agents to evaluate their local
operations.

3.1 T h e A g e n t s

The task of agents is to perform operations on repre-
sentations stored in blackboards. To this end, each
agent disposes of a set of procedures that execute the
actions. To specify the interface with the dialogue
system, each agent exports a set of signatures con-
taining information about the number and form of
the procedures' parameters to the general manager.
When the procedure assigned to a given signature
is evaluated, the general manager passes the param-
eters on to the agent. After having executed the

procedure, the agent returns status information and
possible return values, if any, to the general manager
which, in turn, uses this information to decide upon
the control strategy.

3.2 T h e B l a c k b o a r d s

Among the blackboards, there is one distinguished
blackboard, called the discourse blackboard that
stores different levels of representations of the dis-
course history. Database blackboards are hooked up
to the discourse blackboard to make the represen-
tations more specific.

3.2.1 T h e D a t a b a s e B l a c k b o a r d s
The database blackboards store a set of feature

structures. The functionality of a database black-
board is to provide procedures to insert, remove, and
lookup feature structures. Any database lookup will
return an underspecified feature s t ructure represen-
ting all feature structures that are compatible with
the feature structure passed to the lookup proce-
dure.

3.2.2 T h e R e p r e s e n t a t i o n o f D i s c o u r s e
Aside from the database blackboards, there is one

distinguished blackboard, the discourse blackboard
representing the discourse history. For the time be-
ing, the discourse structure is a list of the generated
representations. In order to access all levels of repre-
sentations, this list is maintained for orthographic,
syntactic and semantic representations as well as re-
presentations of referred objects which allow the dis-
course blackboard to be seen as four database black-
boards in parallel. Moreover, links exist between the
objects to access the different levels. This organiza-
tion is similar to the discourse pegs (LuperFoy1995),
with the main difference being that discourse pegs
compile the different representations in one discourse
unit while in our approach the different levels are
separated and only accessible via links.

Ortllographic Syn/Sem Semant ic Objec ts

J '~ Qu~T°~L

ATIONALITY
allchinese relllauran~ dot ad~, nal N obLrest

all N A M E " k iku e x ~ e u •

chin... L "p,,ki~ g~a..']

Figure 4: The four different levels of representation.
Links exist between the representations in order to
access the representation across the levels.

In the remainder of the paper, the level of re-
presentation may also be referred to by a number
ranging from 0 (object level) to three (orthographic
level). Typed feature structures in the semantic level
representing noun phrases can be seen as partial de-
scriptions of objects, each of which is compatible
with the description. This allows us to determine
the objects by compatibility check. In figure 2 (b),
the underspecified feature structure might be the re-
sult of a database request completing the description
shown in 2 (a). This is the reason why the database

100

blackboards are at tached to only one of the four lev-
els. Every time a feature structure is added to one
of the four levels, the appropriate database proce-
dures, if any, provided by the database blackboards
are executed to complete the feature structure. For
instance, the object level of the discourse blackboard
can be seen as database for anaphora resolution:
when the representation of an anaphor is added to
the semantic level of the discourse blackboard, the
object level of the discourse blackboard is consid-
ered to be a standard database blackboard, and the
antecedents are determined.

The natural language input is analyzed by the
PHOENIX parser developed by Ward (Ward1994).
The parser generates a set of parse trees each of
which covers a part of the input sentence. The roots
of the parse trees are specified by top-level frames.
Top-level frames can be changed during dialogue in-
teraction to check if the input is or is not conform to
what has been expected. Words not covered by the
parse trees rootes at the top-level slots are ignored.
The partial semantic parse trees are converted to a
semantic representation by traversing the parse tree
and applying construction rules to the nodes. The
construction rules operate mostly on the semantic
slots in the parse trees so that synonymy and para-
phrases of expressions can be handled. The seman-
tics of an utterance is given by a set of possibly par-
tially specified feature structures that are stored in
a discourse history. Each structure represents the
semantics of a phrase of one of the main syntactic
categories NP, VP, or PP. Examples of how the se-
mantic representations of a request might look like
are given in figure 6 and 7.

4 T h e F o r m of R u l e s

The interaction of the agents and the blackboards
is governed by a set of expert system style rules.
The rules are composed of constants, typed vari-
ables, functions and predicates. The predicates and
functions can tal~e variables over either possibly un-
derspecified feature structures over Type and Feat,
feature paths over Feat, or events that enable the
communication with the speech recognizer and other
external processing modules.

4.1 C o n s t a n t s

A constant is given by any type from the type hierar-
chy. Moreover, integers and strings are considered to
be subtypes of the types string and int respectively
and are also treated as constants. Constants stand
for atomic feature structures whose type is given by
the constant name.

4.2 V a r i a b l e s

Variables range over feature structures and under-
specified feature structures. Variables are typed in
the sense that they impose an informational lower
bound on the type of the feature structures with
which they will be substituted. Names of variables
ranging over feature structures have to start with the

name of their type, with a capital letter to distin-
guish variables from constants. Feature structures
substituting variables have to be stored in the dis-
course blackboard. Variables are indexed with the
level of representation, as in

Obj : O
Moreover, parts of the feature structures can be

accessed by specifying a feature path such as

Obj : 0Q[eOSITION I X]
The feature path has to obey the well-typed condi-
tions as imposed by the type hierarchy.

Variables ranging over underspecified feature
structures are indicated by curly brackets as in

{Obj_path} :0.

Here, too, feature path application

{Obj_path} : 0@[DST].

is possible, the path value of an underspecified fea-
ture structure being the underspecified structure of
all values of the path when applied to the feature
structures represented by the underspecified feature
structure.

The variables in the rules may be instantiated
with representations on each of the four levels. Con-
sequently, there is, contrary to systems that process
data sequentially, no restriction that predetermines
the point at which some future agent has to perform
an action simly because it relies on a specific level
of representation. This fact makes the architecture
well-suited for repair and rescore mechanisms that
integrate scores from the speech recognizer and se-
mantic domain knowledge.

4.3 F u n c t i o n s

Functions as well as predicates have to be introduced
by signatures that define informational lower bounds
on the arguments (if present) and the return 'value.
The signature for the function pkturename that re-
turns a string for any given type that is as least as
specific as obj_zoncrete is given by

picturename : obj_concrete+ ~ string

where a following '+ ' or '-' sign indicates whether or
not the argument has to be defined when evaluating
the function.

4.4 P r e d i c a t e s

As is the case with functions, predicates are intro-
duced by signatures. Examples are

un i f y : bot + xbot+
subsumes : bot + xbot+

for the unification operation and the subsumption
relation on feature structures. An example for an
application-specific predicate is

draw : string + xstr ing + x in t + x in t+

whose purpose it is to draw the icon given by the
second argument into the window given by the first
argument at the position that is identified by the
third and the fourth arguments.

101

4.5 R u l e s

Rules are formed using constants, variables, func-
tions and predicates together with conjunction and
implication connectors. They have the general form

pl (t1,1,... ,tl,n~) , . . . , pk (tk,1 , t~ ,~)
(t k + , . 1 , . . . , p , (t , . , , . . . , t , . , ,)

where the Pi are predicates, and the ti/ are terms
constructed over constants, variables and functions.
For example, the rule displaying every object is given
by

draw("map",
picturename(Obj_concrete : 0),
Obj_concrete : OR[POSITION] X],
Obj_concrete 0¢~[POSlTION I Y]).

5 I n t e r a c t i o n a n d C o n t r o l

The rules are the only means to specify the interac-
tion between agents and blackboards and between
blackboards and user. Consequently, only the rules
have to be modified if the system should behave dif-
ferently.

5.1 V a r i a b l e s u b s t i t u t i o n s

If a rule contains variables, variable substitutions
have to be calculated before evaluating the rule.
This is done in the following manner. Let v be a vari-
able of the form 0 : l@Tr. All possibly underspecified
feature structures of type 0' with 0 E O' tha t have
been added or non-monotonically modified since the
last stop of the inference procedure are looked up
in the discourse blackboard. If the signature of the
function or the predicate requires the argument to be
defined, all feature structures for which the pa th 7r
is not defined are removed. From the remaining fea-
ture structures, an underspecified feature s tructure
is generated. In the same way, the other variables
in the rule are looked up. All possible combinations
of instantiations form the set of substitutions. The
only way to look up the da ta stored in the discourse
blackboard is to generate variable substitutions.

5.2 E v a l u a t i n g a ru l e

For each rule to be evaluated, the set of variable
substi tutions is calculated. For each substitution,
the variables of the rules are instantiated and each
predicate of the condition is evaluated until either
one predicate fails or the condition yields true. Eval-
uation of a predicate or function means to pass the
variable values to the procedure implementing the
predicate or function and to leave control to the
agent associated with the procedure. If the predi-
cates tha t form the condition of the rule are verified,
the remaining predicates are evaluated. If the eval-
uation of one of these predicates fails, the name of
the failing predicate and the variable instantiations
can be passed on to an error handling procedure. :

IThe functionality is foreseen to allow interactive er-
ror recovery. If, for example, the answer to a clarification

5.3 E v a l u a t i n g a Se t o f R u l e s

The rules are evaluated using a forward chaining in-
ference procedure. The evaluation of the program
consists of the subsequent evaluation of the rules, in
the order in which they are specified. After termi-
nation, all feature s t ructures in the blackboard are
marked so as to prevent re-execution of an already
applied rule.

The forward-chaining inference procedure allows
the system to react information-driven which means
that , in essence, the information entered into the
system determines which rules are evaluated. Con-
sequently, there is no predetermined dialogue model
that predicts the type or the information of the next
utterance.

The set of rules forms the program tha t directs
the interaction of the different components given the
users ' input. Modifying the sys tem's behavior re-
quires modification of the p rogram ra ther than hard-
coding and recompiling. This allows for rapid pro-
totyping. To provide output functionality tha t can
easily be adapted to new domains, the predicates
also offer the possibility to call Tcl scripts.

5.4 E x a m p l e s

Our first example is taken from the map applica-
tion. The task of the rule shown in figure 5.4 is to
completely disambiguate the representat ion of the
destination of a path.

--).

DISAMBIGUATE :
isambiguous({Obj_path} : O@[DST])
settclvar("textl"," Do you mean")
settclvar("text2",

translatedifferences({Obj.path} : 0~[DST])),
tcleval(" DisplayQuestion $textl $text2"),
setnewtoplevelslots(gettranstoplevelslots0),
waitforevent (EVENT_TEXTIN PUT),
tcleval(" UndisplayQuestion"),
setoldtoplevelslots0,
add(3, %eti_tezt),
iscompatible({ Obj_path } : 0@[DST], parse(%eti_text)),
unify({ Obj_path } : 0~[DST], parse(%etiAext)),
reevaluate().

Figure 5: The rule serving to disambiguate com-
pletely an underspecified feature structure.

The condition of the rule yields true if the seman-
tic representat ion of the dest ination describes more
than one object. If so, the remaining predicates
are evaluated. In this par t icular case, a clarifica-
tion question is generated. The predicate translate-
differences() determines the relevant feature paths

question is incompatible with the expected value, an ap-
propriate message should be communicated to the user,
along with the possibility to provide complementary in-
formation as well as to cancel the dialogue. However,
in the current implementation, only the message is dis-
played on the screen.

102

and types for generating a clarification question and
maps them to strings as shown in section 2.3. 2 It
also determines the top level slots corresponding to
the expected answers which are accessed with the
predicate gettranstoplevelslots0. The question is dis-
played on the screen and the execution halts until
some text has been entered (either via keyboard or
via speech recognizer). The variable %eti_text is
assigned to the event EVENT_TEXTINPUT and con-
tains the entered text. The text is then added to
the orthographic level of the discourse blackboard.
If the semantic representation of the text is compat-

• ible with the underspecified feature structure, the
representations are unified to reduce ambiguity. If
the iscompatible0 predicate fails, the evaluation of
this rule is aborted, and other rules apply to pro-
cess the text entered on the orthographic level. This
allows the processing of answers that do not con-
vey the expected information. Finally, the predicate
reevaluate() forces the rule to be re-evaluated with
the same substitution until the destination is dis-
ambiguated completely or an incompatible answer
is given.

Note that the formulation of this rule does not
make any domain-specific assumptions except that
there is a type obj_path that carries a feature [DST].
In another application that provides functionality
to order items, the same rule may apply to disam-
biguate the items. In order to adapt the rule, one
would only have to replace {Obj_path} : 0@[DST]
with {Speechact.orderobject} : 0@[OBJECT] where
the request to order an item is represented in a fea-
ture structure subsumed by

speechacLorderobject]
OBJECT obj J

Our next example is also taken from the map ap-
plication. It demonstrates how database access and
rule application in terac t . Suppose the user utters
show me how I;o get to the museum. We assume
for the sake of example that zoom in was recognized
instead of the museum, and that the semantic parser
skips zoom in . The representations that are stored
on the semantic level after the input has been parsed
and processed are shown in figure 6.

We consider the rules shown in figure 5.4. In this
example, the second part of the first rule will be
evaluated in the case of a missing the destination of
the path. The rule is repeated until the feature [DST]
carries a value or the user enters information that
causes the unification to fail (well-typed unification).
After unification, another procedure ensures that the
new information is inserted correctly in the discourse
blackboard. If, e.g., the user entered t he museum,

2At this time, a very restricted language model is
generated on the fly. Basically, it consists of all expected
answers and some standard words that are always active.
The next speech input is rescored using this language
model. However, at the time being, there is no possibility
to determine if the input corresponds to the language
model or not.

speechact_showpath]
OBJECT []obj_pathJ

[] obj_path

Figure 6: The representation on the semantic level
after having processed the ut terance show me how
to g e t t o t h e museum with a misrecognition on
the museum.

[speeehact_showpath]
OBJECT E]obj_pathJ

obj_path]
DST []obj_muse~mJ

] obj_muse~m

Figure 7: The semantic representation of the request
after the first question has been answered

the semantic level looks like the one shown in figure
7.

Now, since a new object has been entered on
the semantic level and since there is a blackboard
that provides a database access procedure for all ob-
jects that are subsumed by obj_concrete (the object
database), a database lookup is executed. The noun
phrase t h e museum does not refer uniquely to one
object, as shown in figure 2, thus, an underspecified
feature structure is generated on the object level.
Now, the disambiguation rule explained above will
initiate a clarification dialogue to disambiguate the
object. Once this is achieved, the index of the inter-
section of the destination is stored in the path ob-
ject by the following rule. The following rule copies
the index of the intersection of the current position
into the path object, if the source of the path is
not specified. If the source of the path is specified,
the index of the source intersection is calculated us-
ing rules similar to those calculating the destination
index (not shown in this example for brevity). Fi-
nally, the shortest path is calculated and the result is
stored in the path object as a list of line segments.
Depending on the speech act type the path is an
object of, there may be subsequent rules that may
perform complementary operations on the data such
as calculating the path length or travel time, gener-
ating a path description, or highlighting the street
segments belonging to the path.

To illustrate the behavior of the rules, we show
the complete dialogue:

103

-+

ADD_PATH_DST :
isundefined(Obj_path : 0~[DST])
settclvar("textl","Where do you want to go today?"),
tcleval(" DisplayQuestionStextl" 1,
setnewtoplevelslots(obj_concrete),
waitforevent (EVENT_TEXTINP UT),
tcleval(" UndisplayQues t ion"),
setoldtoplevelslots0,
set({ Obj_path } : I~[DST], parse(%eti..text)),
reevaluate() .

D I S A M B I G U A T E : as above

ADD_PATH_SRC :
isundefined({Obj.path} : 0~[SRC])
set(Obj_path } : OH[SaC], Current..position~INDEX),

CALC_PATH :
isunique({Obj_path} : 0~[DST I ADDFt J STI~EETNAME]),
isunique({Obj_path} 0~[DST] ADDI:t I STREETNUMBER])
set(Obj_path : 0~[INDEX_DST],

gedntersection(

l Obj_path} : 0~[DST J ADDR I STREETNAME]
Obj_path} 0mIDST J ADDRI STREETNAME])),

calcpath(Obj_path : 0~[PATHLST], Obj_path : 0~[INDEX..SRC], Obj_path : 0~[INDEX_DST]).

Figure 8: The rules used to calculate the shortest pa th

U: Show me how to get to the museum
S: Where do you want to go?
U: To the museum.
S: Do you mean carnegie museum of natural

history, andy wartiol museum or fort
pitt museum?

U: the andy warhol museum.
S: displays path to and icon of the museum
In our next example, we consider an information

system in which the user can query prices and char-
acteristics of items, place orders, and obtain a bill
for the the ordered items. We suppose a price re-
quest to be represented by a feature structure more
specific than the following :

speechact_requestprice]
O B J E C T obj J

Now, the description of the objects may vary in
specificity which makes it refer to many different
objects. The desired behavior of the system is to
enumerate the prices if the description refers to few
(e.g., three) objects , or to display a price range if
the description refers to many objects. The rules
shown in figure 9 calculate the text containing the
price information.

Remember that the variable

Speechact_requestprice : IS[OBJECT]

is instantiated with the semantic representation of
the description as ut tered by the user, the variable

Speechact_requestprice : 0R[OBJECT]

104

is instantiated with one object tha t is adequately
described by the description and

{Speechact_requestprice} : 0R[OBJECT]

is instantiated with the underspecified represen-
tation of all objects fitting the description. The rules
are shown in figure 9.

The condition of the first rule yields true if the
description refers to more than three objects. For
this reason, the system paraphrased the noun phrase
conveyed by the user to refer to the objects and the
minimum and maximum prices are filled in a tem-
plate. If there are less than four objects, the second
rule will be evaluated. Since the rule will be instanti-
ated for each item represented in the underspecified
feature structure, the prices of all objects will be
appended to the text variable.

It is important to note that the system para-
phrases the noun phrase it understood, using the
translate predicate. In this manner, feedback can
be conveyed to the user without explicitly asking a
questions.

6 D i s c u s s i o n

We proposed a multi blackboard architecture com-
munication mechanism between different processing
modules in a dialogue system. The agents forming
part of the processing modules implement a set of
procedures. We proposed that a set of expert system
like rules can be used to mediate the communication
between different modules. The rules are formed us-
ing predicates and functions that are linked to pro-

.-+

PRICE_INFO_RANGE :
isgreaterthan(num({ Speechact_requestprice }@OBJECT), 3)
appendtclvar("text"," The prices of") ,
appendtclvar("text", translate(Speechact_requestprice : I@[OBJECT])),
appendtclvar("text"," vary f rom") ,
appendtclvar("text", min({ Speechact_requestprice}@[OBJECW [PRICE]),
appendtclvar("text"," to"),
appendtclvar("text", max({ Speechact_requestprice}@[OBJECW [PRICE]).

PRICE_INFO_DETAILED :
isgreaterthan(4, num({ Speechact_requestprice }@OBJECT))
appendtclvar("text", "The price of"),
appendtclvar("text", transIate(SPEECHACT_REQUESTPKICE:i ~[OBJECT])),
appendtclvar("text", "is"),
appendtclvar("text", Speechact_requestprice@[OBJECW [PRICE]),
a ppendtclvar ("text"," dollars").

Figure 9: Therules generat ingthetext to convey the prices ofitems. Possible values ofthe variable texta~er
having processed the rulesin the fast ~od application are The p r i ces of our p izzas range from 3.995
to 10.995 and The price of the large tomato salad is 4.505. The price of the small tomato
salad is 3.505.

cedures formulated in imperative programming lan-
guage. The purpose of the rules is twofold. One,
they provide a uniform access mechanism to pro-
cedures that are implemented in a traditional im-
perative programming language and that are linked
to the predicates. Two, they control the human-
computer interaction based on the specificity of the
available information in discourse and databases.
This causes the human-computer interaction to be
information driven rather than controlled by a dia-
logue model.

Our approach has several advantages. First, there
is a well-defined uniform access functionality be-
tween representations in the discourse and the pro-
cedures operating on the representations. The in-
formation flow from the linguistic representations to
the procedures is governed by the rules and is not
hard-coded. This allows future extension of func-
tionality. Moreover, the dialogue program can pro-
ceed dependent on the success of the operations
performed. Second, the dialogue is controlled by
(i) the data stored in the different levels of the
discourse blackboard (including resolved database
requests), (ii) the rules and (iii) the users input.
No interaction is hard coded. This makes the ap-
proach information-driven. Third, since the human-
computer interaction is controlled by rules, rapid
prototyping of different dialogue strategies is pos-
sible by providing a different set of rules. Since
agents can also function as "wrappers" around exist-
ing modules, providing uniform access to the func-
tionality of the modules, existing modules can easily
be integrated.

A c k n o w l e d g e m e n t s

I would like to thank Alex Waibel, Wayne Ward and
Bernhard Suhm for discussions, advice and sugges-

tions concerning the topics discussed in the paper.
Furthermore, I would like to thank Minh Tue Vo and
Markus Baur for help by the implementation. Also,
I would like to thank the three anonymous reviewers
for their helpful comments.

R e f e r e n c e s

Bob Carpenter. The Logic of Typed Feature Struc-
tures. Cambridge University Press, 1992.

L.D. Erman and V.R. Lesser. The Hearsay-II Speech
Understanding System: A Tutorial In: Trends
in Speech Recognition, A.Waibel, K.F.Lee, (eds),
pages 361-381, Prentice-Hall, 1980.

Susann LuperFoy. Implementing File Change Se-
mantics for Spoken Language Dialogue Managers
ESCA Workshop on Spoken Dialogue Systems,
pages 181 - 184, Vigso, Denmark, 1995.

Alex Waibel. Interactive Translation of Conversa-
tional Speech. Computer, 29(7), July 1996.

Wayne H. Ward. Extracting Information in Spon-
taneous Speech. Proceedings off the International
Conference on Speech and Language Processing,
1994, Yokohama, Japan.

105

