
Towards a P U R E Spoken D i a l o g u e S y s t e m for In format ion Access

Rajeev Agarwal
Media Technologies Laboratory

Texas I n s t r u m e n t s Inc.

P O Box 655303, MS 8374 Dallas , T X 75265

USA
rajeev@csc.ti.com

A b s t r a c t

With the rapid explosion of the World
Wide Web, it is becoming increasingly pos-
sible to easily acquire a wide variety of
information such as flight schedules, yel-
low pages, used car prices, current stock
prices, entertainment event schedules, ac-
count balances, etc. It would be very
useful to have spoken dialogue interfaces
for such information access tasks. We
identify portability, usability, robustness,
and extensibility as the four primary de-
sign objectives for such systems. In other
words, the objective is to develop a PURE
(Portable, Usable, Robust, Extensible) sys-
tem. A two-layered dialogue architec-
ture for spoken dialogue systems is pre-
sented where the upper layer is domain-
independent and the lower layer is domain-
specific. We are implementing this archi-
tecture in a mixed-initiative system that
accesses flight arrival/departure informa-
tion from the World Wide Web.

1 Introduction
With the rapid rate at which the availability of infor-
mation is increasing, it is important to make access
to this information easier. One may wish to get the
arrival/departure information for a given flight, ver-
ify if a particular book is available at a library, find
the stock price for any fund, access yellow page infor-
mation on-line, check/maintain voice mail remotely,
get schedules for entertainment events, perform re-
mote banking transactions, get used car prices, and
the list goes on and on. Such tasks can be clas-
sifted as information access (IA) tasks, where the
primary objective is to get some piece of informa-
tion from a certain place by providing constraints
for the search. Some of these tasks may also involve

an "action" that may change the state of the un-
derlying database, e.g., making a reservation for an
event, making transactions on an account, etc. It
would be very helpful to develop Spoken Dialogue
(SD) interfaces for such IA applications, and several
such attempts are already being made (Seneff et al.,
1996; Sadek et al., 1996; Abella et al., 1996; Fraser
and Dalsgaard, 1996; Lamel et al., 1996; Kellner
et al., 1996; Niedermair, 1996; Barnett and Singh,
1996; Gorin et ell., 1996).

In this paper, we differentiate between such IA
tasks and the more complicated problem solving
tasks where multiple sub-problems are concurrently
active, each with different constraints on them and
the final solution consists of identifying and meeting
the user's goals while satisfying these multiple con-
straints. Examples of such applications include a
system that offers investment advice to a user based
on personal preferences and the existing market con-
ditions, or an ATIS-like application that assists the
user in travel planning including flight reservations,
car rental, hotel accommodations, etc.

In addition to the general requirement .of accuracy,
there are four other important design objectives for
SD systems:

• Portability of an SD system refers to the ability
of the system to be moved from one applica-
tion/domain to another.

• Usability of an SD system refers to the ease with
which a user can use the system and the natu-
ralness that it provides.

• Robustness of an SD system refers to the abil-
ity of the system to help the user acquire the
desired information even in the presence of user
and system errors.

• Extensibility of an SD system implies that ad-
ditional queries within a given application can
be added to the system without much trouble.

90

I npu t _ [
Speech - [

S peeclvTexfflmage

F~db~k

s.o I,co,- I I
Recognizer UU~rance ~ Pro-processor Utterance

I Updated Grarmnar
g

(Based On the Dialogue State) [
l

Complete
Query
Information

i ° - ° [Generator

[Pragmatics]
Parsed ~'- Component - [Parser Utterance

Query-Relau~d
Information

Query
Response

SQI..JCGI Query _] Dau
[Rerr
k Wet

0to

Figure I: Outline of the Components of the Spoken Dialogue System

The purpose of this paper is to describe an SD
system, in particular the dialogue manager, that is
being developed with these objectives in mind. Since
these design objectives are often conflicting in na-
ture, one has to strike a balance between them. In
a manner of speaking, one could say that the objec-
tive is to create a PURE (Portable, Usable, Robust,
Extensible) system. It is our belief that it is possible
to develop an "almost" PURE system for IA tasks.

2 Overall System Description

The overall SD system is responsible for taking user
utterances as input, processing them in a given con-
text in an attempt to understand the user's query,
and satisfying his/her request. The user does not
need to know anything about the structure of the
database or the architecture of the system. In case
the user 's ut terance has missing, ambiguous, incon-
sistent, or erroneous information, the system en-
gages the user in a dialogue to resolve these. The
system is designed to be mixed-initiative, i.e., either
the user or the system can initiate a dialogue or sub-
dialogue at any time. The dialogue ends when the
user decides to quit the system. The system can be
used for querying a relational database using SQL or
invoking a CGI 1 script on the web. A brief overview
of the different components is presented in Figure 1.

* Speech Recognizer: I t is responsible for rec-
ognizing the user ut terance and producing a

1CGI stands for Common Gateway Interface. It is a
tool that assists web programmers in creating interac-
tive, user-driven applications. Several web sites permit
database queries where the user types in the search con-
straints on an HTML FORM and the server submits this
form to the CGI script which generates a response after
searching a local database. Note that here we refer to
such database searches and not to the string searches as
offered by Lycos, WebCrawler, Excite, etc.

recognition string. We currently write sepa-
rate context-free grammars for each state of
the dialogue and use these to recognize the
utterances with the DAGGER speech recogni-
tion system described in (Hemphill and Thrift,
1995). An important feature of this recognizer
is that based on the dialogue state, certain
grammars may be switched into or out of the
dynamic vocabulary 2, thereby leading to better
speech recognition accuracy.

Preprocessor: This component is responsible
for identifying domain-independent (e.g., time,
place name, date) and domain-specific semantic
pa t terns (e.g., a i rport name, book title) in the
input utterance.

Parser: Since user utterances could be ungram-
matical in nature, a partial parser has been im-
plemented to parse the input utterance into its
component phrases. This provides added ro-
bustness, although lack of a deep structure in
the parse sometimes causes the pragmatics com-
ponent to miss useful information.

Pragrnatics Component: This component is re-
sponsible for identifying the values of relevant
fields that are specified in the utterance, based
on the partial parse of the utterance. It uses an
application specific input file called the appli-
cation schema, which describes all the relevant
fields in that application and lexico-semantic
patterns that indicate their presence. It also de-
scribes the possible queries that may be made
in that application.

2Vq'e only use the grammar switching feature of DAG-
GER, but it offers the ability to load completely new
grammars dynamically if such a need arises.

91

• Dialogue Manager: It evaluates the knowledge
extracted by the pragmatics component to de-
termine the current state of the dialogue. It
processes this new dialogue state and constructs
an "interaction template" that determines what
feedback should be provided to the user.

• Query Generator: This component is respon-
sible for generating a database query. It can
generate either a SQL query for a relational
database or a CGI script query for querying a
web site.

• • Interactor: It is responsible for converting the
interaction template generated by the dialogue
manager into English sentences that can be
printed and/or spoken (using a text-to-speech
system) to the user to provide feedback. It uses
a template-to-string rules file that contains rules
for all possible types of interactions. In some
cases, it may also provide feedback by updating
a displayed image.

This gives a brief overview of our SD system.
The system is still under development, and is be-
ing tested on the flight arrival/departure informa-
tion application for which we query the American
Airlines web site (American Airlines, 1997). Sys-
tem development is expected to be completed soon.
We have also used this system to begin developing
a "Map Finder" demo that queries the MapQuest
web site (MapQuest, 1997) to display maps of any
street address or intersection in the United States.
We intend to port this system to the yellow pages
information access application in the near future.

3 D i a l o g u e M a n a g e r D e s i g n

3.1 Background

Existing approaches to designing dialogue managers
can be broadly classified into three types: graph-
based, frame-based, and plan-based. This section
gives a brief overview of these approaches and argues
that for IA tasks, the frame-based approaches are
the most suitable.

Graph-based approaches require the entire dia-
logue state transition graph for an application to
be pre-specified. Several dialogue design toolkits are
available to assist developers in this task, such as the
SLUrp toolkit (Sutton et al., 1996), SpeechWorks
toolkit (Applied Language Technologies, 1997), or
DDL-tool (Baekgaard, 1996). It is often cumber-
some and sometimes impossible to pre-specify such
a dialogue graph. Further, such approaches are not
robust as they cannot appropriately handle any un-
foreseen circumstances.

92

Plan-based approaches attempt to recognize the
intentions of the entities involved in the discourse
and interpret future utterances in this light. They
are usually based on some underlying discourse
model, several of which have been developed over the
years (Cohen and Perranlt, 1979; Mann and Thomp-
son, 1983; Grosz and Sidner, 1986; Carberry, 1990).
We argue here that although plan-based systems are
very useful for problem-solving tasks like the ones
described earlier, that degree of sophistication is not
needed for IA tasks. For example, of the five types
of intentions outlined by Grosz and Sidner (1986),
only "intent that some agent believe some fact" and
"intent that some agent know some property of an
object" are encountered in IA tasks, and they can be
easily conflated for such tasks, without any loss of
information. Further, although modeling a speaker's
intentions and the relations between them is infor-
mative about the structure of the discourse, their
recognition in an actual system may be non-trivial
and prone to errors. Most IA tasks have only one
discourse purpose, and that is to get some informa-
tion from the system. The various discourse seg-
ments are all directed at providing the system with
relevant constraints for the database query. There-
fore, explicit modeling of the discourse purpose or
discourse segment purpose is unnecessary.

Frame-based systems typically have a do-
main/application model to which they map user ut-
terances in an attempt to recognize the nature of the
user's query. The constraints of the application drive
the analysis of utterances. Such systems usually ig-
nore phenomena like diectic references, expressions
of surprise, discourse segment shifts, etc.

3.2 Two-Layered Arch i t ec tu re

It is our contention that for IA tasks, the dialogue
between the user and the system proceeds in a
domain-independent manner at a higher level and
can be described by a set of domain-independent
states. Some domain-specific interactions are re-
quired once the dialogue is in one of these higher
level states and these can be described by a dif-
ferent set of states. This view of the structure
of the dialogue led us to a two-layered architec-
ture for the DM. The upper layer is completely
domain-independent, while the lower layer has di-
alogue states that constitute domain-specific sub-
dialogues. Further, although the different states
of the dialogue are pre-specified, the system auto-
matically identifies what state it is in based on the
user's utterance, the result of the database query,
and knowledge of the previous dialogue state. This
is what Fraser and Dalsgaard (1996) refer to as a

Upper Layer Dialogue States Before a Database Query Upper Layer Dialogue States After a Database Query
. I ~ . !

]
.

Lower Layer Dialogue States (Examples)

Figure 2: States in the Two-Layered Dialogue Management Architecture

self-organizing system. Most plan-based and frame-
based systems are self-organizing. The states in the
DM are shown in Figure 2 and are described in detail
in this section.

3.2.1 Dialogue States

All fourteen states presented here at the top level
belong to the upper layer of the dialogue. For some
of these upper layer states, references are made to
the lower layer states that they may spawn to ac-
complish domain-specific sub-dialogues. After every
user utterance, the DM checks to see if the dialogue
is in one of the upper layer dialogue states. Lower
layer states are checked only if the system is already
in a sub-dialogue. The upper layer states are tried
in the order in which they are described below since
if the dialogue is in any of the earlier states, there is
no point in trying later ones. The existence of one of
the first nine states listed below may be determined
without a database query. If the dialogue is not in
any one of these nine states, then there is enough in-
formation to issue a query, and the dialogue may be
in one of the last five states based on the results of
the query. The dialogue ends when the QUIT state
is reached.

1. INITIAL: This is the state in which each dia-
logue starts and reverts to after a query made
by the user has been completely processed.

. QUIT: If the system detects that the user wants
to terminate the current dialogue, then the di-
alogne enters this state.

3. META_QUERY: The dialogue reaches this
state when the user either explicitly asks for
help (e.g., "Please help me," "what can I say,"
etc.) or asks for some meta-level informa-
tion about the system's capabilities (e.g., "what

cities do you know about?") . The help mes-
sages in the system are context-sensitive and
are based on the current dialogue state.

4. OUT_OF_BOUNDS: This state is reached
when the system realizes that the user either
wants to access information that the system is
not equipped to handle or access "legitimate"
information in ways the system is not designed
to handle. For example, if a system is de-
signed to access American Airlines flight infor-
mation and the user says "what time does Delta
flight 472 reach Dallas?," the system enters the
OUT_OF_BOUNDS state. An example of an
improper legitimate query could be "what time
does my plane leave?," if the system expects
the word 'flight' but not 'plane'. The objective
is not just to quit gracefully, but to allow the
user to re-enter the dialogue at some place. In
the first case, the system informs the user of the
limitations of the system, switches the dialogue
to the INITIAL state, and permits the user to
revert to some query within the bounds of the
system. In the second case, it informs the user
that the word 'plane' is unknown to the system,
and requests h im/her to rephrase the query.

5. STATUS_ Q UO: This state is reached if the sys-
tem determines that the most recent utterance
by the user provided no additional query-related
information to the system. This is an indica-
tion that the user was either completely silent,
did not know the answer to the system's pre-
vious question (may have responded by saying
"I don' t know" to something the system had
asked), explicitly asked the system to repeat the
last feedback (may have said "Can you repeat
that") , the speech recognizer misrecognized the
part of the utterance that was meant to be in-
formational, or the ut terance really h ad no new

93

information. Based on what the user said, an
appropriate response is generated.

6. AMBIGUOUS: This state is reached when one
of three types of ambiguities exists in the sys-
tem. Lexical ambiguity arises if some user te rm
matches two entities within the same semantic
class. For example, in a l ibrary application, if
the user asks for "Dickens" and the database
contains two or more authors with tha t last
name, this te rm is lexically ambiguous. Class
ambiguity arises if a te rm may belong to two
or more semantic classes. In the above exam-
ple, if there is also a book entitled "Dickens" in
the database, then class ambiguity exists since
it is unknown whether the user meant the 'au-
thor ' or the ' t itle ' . This can often be resolved
based on the surrounding context. Field ambi-
guity arises when the system has found a te rm
tha t could refer to more than one database field.
For example, in a flight ar r iva l /depar ture appli-
cation, if the system prompts the user for either
the arrival city or departure city, and the user
just says "Newark," the field to which the t e rm
belongs is ambiguous.

7. INCONSISTENT: User or system errors may
sometimes lead the DM to this s tate where the
system's knowledge of the various fields violates
some consistency rule. The consistency rules
specific to an application are provided in an in-
put file. For example, an error may cause the
system to believe tha t the departure city and
the arrival city in a flights a r r iva l /depar ture ap-
plication are the same. If tha t happens, the user
is notified of the inconsistency so tha t the error
may be rectified.

8. CORRECTION: This state is reached when the
system realizes tha t the user is a t t empt ing to
correct either an error the user may have made
or an error made by the recognizer. As a re-
sult, the system accepts the corrected value
provided by the user (assuming tha t this new
value is correctly recognized) and provides ap-
propriate feedback. For example, in a flight ar-
r ivai /depar ture application, the user might say
"I said Dallas, not Dulles" to correct a misrecog-
nition by the speech recognizer.

9. MANDATORY_FIELDS: This s tate is needed
only for applications in which values for certain
fields must be known before a query can be is-
sued. This is often true of applications tha t in-
voke CGI scripts on the web. For example, the
American Airlines web site only permits a query

94

10.

11.

if the user specifies either the flight number, or
the arrival and depar ture city and approximate
arrival time, or the arrival and depar ture city
and approximate depar ture time. This state
ensures tha t values for these manda to ry fields
are obtained from the user before issuing a CGI
query.

SUCCESS: If none of the previous states were
found, a query is issued to the system. If this
query results in a successful match, then the
dialogue is in this state. After providing appro-
priate feedback to the user, the system performs
a further check to see if any "action" needs to
be carried out on the accessed item(s) of infor-
mation. For example, in a banking application,
having checked the balance in a savings account,
the user may now wish to transfer money from
checking to savings. This s tate usually spawns a
sub-dialogue which may or may not be domain-
specific. The lower level dialogue states in this
sub-dialogue could be -

• VERIFY_ USER: which asks for the user 's
account ID and password,

• SIDE_EFFECTS: which informs the user
of some side effects of the imposed con-
straints, e.g. "This t ransact ion will lead
to a negative balance in the checking ac-
count," or

• some other domain-specific state depend-
ing upon the nature of the action involved.

Once in this state, the user may s tar t a new
query, ask for more information about the
matched item, or quit the system.

DATABASE_CONFLICT: A database conflict
arises when the constraints specified by the user
do not match any i tem in the database. This
could be because of conflicting information from
the user or speech recognition errors. Such con-
flicts must be resolved before proceeding in the
dialogue. Conflict resolution may be accom-
plished by a sub-dialogue in the lower layer.
Some of the possible states in the lower layer
a r e :

• RELAX_ CONSTRAINT: asks the user to
relax a certain constraint, e.g., "No Thai
res taurant found on Legacy, but there is
one on Spring Creek - is tha t OK?" (the
system needs domain-specific information
tha t Legacy and Spring Creek are close to
each other). In some cases, the system also

needs to know which constraints axe "ne-
• gotiable".

• CONFIRM_ VALUE: asks the user to con-
firm some field values provided by the user.
The confirmation is needed to ensure that
it was not a system or user error that
caused a conflict.

12. UNKNOWN_QUERY: In most applications,
the user may query for different types of in-
formation. In a yellow pages application, for
example, the user may ask about a phone num-
ber, an email address, or a postal address. The
DM may need to know what item of informa-
tion the user is interested in, as this determines
the feedback provided to the user. This is es-
pecially useful in applications without a display
(queries made over the telephone) since it takes
time to give more information than is necessary.
Note that it is often possible to issue a database
query even if this information is not known, and
that is why this state belongs to the set of pos-
sible states after a query has been made.

13. FEW_MATCHES: If the database query results
in a "few" matches, then the dialogue enters this
state. Whenever few matches are found, the
most efficient way to consummate the query is
to enumerate these matches so the user can the
select the one of interest.

14. MANY_MATCHES: If none of the previous
states are reached, the database query must
have resulted in too many matches, i.e., not
enough information was supplied by the user
to match only a single or a few database items.
This state may spawn a domain-specific sub-
dialogue in the lower layer, one of whose states
could be:

GET_CONSTRAINT: The objective is to
ask the user to specify the least number
of constraints that lead to the SUCCESS
state. So, whenever possible, this dialogue
state identifies what piece of information
would be "most informative" at that point
in time, and asks the user to specify its
value.

This concludes the description of the various di-
alogue states. While we have a t tempted to provide
an upper layer that covers most IA tasks, the lower
layer states given here axe just examples of some pos-
sible states. Depending upon the application, more
lower layer states can be added to improve the us-
ability/robustness of the system.

4 C o m p a r i s o n t o O t h e r A p p r o a c h e s

Several other mixed-initiative spoken dialogue sys-
tems have been developed for information access
tasks (Abella et al., 1996; Bennacef et al., 1996;
Kellner et al., 1996; Seneff et al., 1996; Fraser and
Dalsgaard, 1996; S~:lek et al., 1996; Barnet t and
Singh, 1996) and they provide varying degrees of di-
alogue management capability. Our dialogue man-
agement approach is possibly most similar to that
proposed by Abella et al. (1996), with some im-
po~an t differences. We have a t tempted to clearly
define a comprehensive set of states to handle var-
ious contingencies including out-of-bounds queries,
meta-queries, ambiguities, and inconsistencies due
to user/system errors. We feel that our two-layered
architecture should make the system more portable.
We further contend that if one encounters a dialogue
state that is not covered by our state set, it can be
abstracted to an upper level state which may later
be useful in other applications. Abella et al. (1996)
do present a nice question selection methodology
that we lack 3. We currently resort to a domain-
dependent G ET_ CO N S TRA IN T state but hope to
improve on that in the future.

The pr imary bottleneck in our system at this time
is the parser which only identifies partial parses and
does not perform appropriate PP-at tachment , con-
junct identification, or do anaphora resolution or el-
lipsis handling. We need to replace the existing par-
tial parser with a bet ter parser to improve the overall
system accuracy.

5 How P U R E is i t?

We started out by saying that the objective is to
develop a P U RE spoken dialogue system for infor-
mation access tasks. We want to ensure that our
system aims to be as P U R E as it can be. In this
section, we list those features of our system that are
intended to make it PURE.

• Portability:

- I n order to move the SD system to a
new domain, the following files must be
specified: an application schema that was
briefly described in Section 2; a schema-
to-database mapping file that maps items
in the application schema to the fields
in the relational database or in the CGI
script (e.g., the flight_number schema

3It may be noted that such a methodology is possible
only with local relational databases. It cannot be imple-
mented when querying CGI scripts on the web since we
do not have access to the underlying database.

95

field maps to the f l tNumber field in the
CGI script); a user-to-database mapping
file that consists of the various ways a user
may refer to a value of a database field
(e.g., "Big Apple" maps to "New York");
and a consistency-rules file.

- The two-layered architecture ensures that
the overall dialogue progresses at a domain-
independent level, and keeps the domain-
independent and domain-specific states
separate.

- Self-organizing dialogue structure makes it
more portable.

- Partial parser can be directly ported to a
new domain.

• Usability:

- Mixed-initiative approach helps to promote
usability.

- Feedback provided by the interactor can
be made more domain-friendly by specify-
ing some extra domain-specific rules at the
top of the template-to-string rules file, since
these rules are executed in the order spec-
ified.

- User may say "I don' t know," "Please help
me, What can I say," etc. at any time to
get some guidance. The help messages are
context-sensitive.

- We intend to add prompt randomization,
as suggested by Kellner et al. (1996) to
make the interactions "less boring."

- T h e OUT_OF_BOUNDS state and the
META_QUERY state improve usability by
informing the user of why a certain utter-
ance was inappropriate and allowing the
user to ask about the system's abilities re-
spectively.

• Robustness:

- Partial parser can handle ungrammatical
input.

- Lexico-semantic pat tern matching for field
values ensures that misrecognition of a part
of the ut terance will still extract useful
information from the correctly recognized
part.

- The CORRECTION and INCONSIS-
T E N T states increase the robustness of the
system by making it possible to continue
even in the presence of errors.

• Extensibility:

- Additional queries can be added to any ap-
plication by specifying the query seman-
tics in the application schema and any new
fields tha t they may need.

6 Final C o m m e n t s

We have presented a dialogue management architec-
ture that is mixed-initiative, self-organizing, and has
a two-layered state set whose upper layer is portable
to other applications. The system is designed to
generate either SQL queries or CGI script queries,
which makes it capable of querying the vast amount
of information available on the World Wide Web.

Although the generation of CGI queries is driven
by the schema-to-database and user-to-database
mappings files, some degree of application specific
work still needs to be performed. One has to exper-
iment with the web site and s tudy the source pages
for the HTML FORMS screens in order to create
these mappings files and possibly write additional
code to generate the appropriate query. For exam-
ple, the American Airlines web site provides three
different web pages to support queries about flight
arr ival /departure information. An examination of
all three source pages revealed that a hidden field
f l t A n s gets one of three values based on which page
invokes the script. A special hack had to be built
into the query generator to assign an appropriate
value to this field. Generation of proper user feed-
back requires us to also examine the source page
of the result of the query. The main limitation of
querying CGI scripts is tha t if the web site being
queried is modified by its creators, slight modifica-
tions will have to be made to the query generator to
accommodate those changes.

Our initial experience with this system, especially
porting it from the flights arr ival /depar ture applica-
tion to the Map Finder application, has been very
encouraging. Map Finder is a simpler task and some
of the upper layer states (UNKNOWN_QUERY,
F E W M A T C H E S , and MANY_MATCHES) never
occur in this application. An additional lower layer
state called MAP_COMMANDS had to be imple-
mented under the SUCCESS state to allow the user
to scroll t h e displayed map in any direction using
spoken commands. This required understanding the
way the MapQuest web site handles these map nav-
igation commands. The rest of the DM was easily
ported to this new application.

This system is still work-in-progress and more
work remains. We intend to continue improving the
existing components while also port ing the system
to other applications so that we can learn from our
porting experiences.

96

A c k n o w l e d g e m e n t s

The author wishes to thank Jack Godfrey for several
useful discussions and his comments on an earlier
draft of this paper; Charles HemphiU for his com-
ments and for developing and providing the DAG-
GER speech recognizer; and the anonymous review-
ers for their valuable suggestions that helped im-
prove the final version of this paper.

R e f e r e n c e s

Alicia Abella, Michael K. Brown, and Bruce
Buntschuh. 1996. Development principles for
dialog-based interfaces. In Dialogue Processing in
Spoken Language Systems Workshop Notes, pages
1-7, Budapest, Hungary, August.

American Airlines. 1997. Gates and times informa-
tion request: http://www.amrcorp.com.

Applied Language Technologies. 1997.
http://www.altech.com/products.htm.

Anders Baekgaard. 1996. Dialogue management in
a generic dialogue system. In Proceedings of the
Eleventh Workshop on Language Technology: Di-
alogue Management in Natural Language Systems,
pages 123-132, Enschede. University of Twente.

Jim Barnett and Mona Singh. 1996. Architectural
issues in spoken natural language dialogue sys-
tems. In Dialogue Processing in Spoken Language
Systems Workshop Notes, pages 13-20, Budapest,
Hungary, August.

S. K. Bennacef, L. Devillers, S. Rosset, and L. F.
Lamel. 1996. Dialog in the RAILTEL telephone-
based system. In Proceedings o/ the Fourth Inter-
national Conference on Spoken Language Process-
ing, volume 1, pages 550--553, October.

Sandra Carberry. 1990. Plan Recognition in Natural
Language Dialogue. MIT Press, Cambridge, MA.

Philip R. Cohen and Raymond C. Perrault. 1979.
Elements of a plan-based theory of speech acts.
Cognitive Science, 3:177-212.

Norman M. Fraser and Paul Dalsgaard. 1996. Spo-
ken dialogue systems: A European perspective.
In Hiroya Fujisaki, editor, Proceedings of Interna-
tional Symposium on Spoken Dialogue, pages 25-
36, Philadelphia, PA, October. Acoustical Society
of Japan.

A. L. Gorin, B. A. Parker, R. M. Sachs, and J. G.
Wilpon. 1996. How may I help you? In Proceed-
ings of the IEEE Third Workshop.on Interactive
Voice Technology for Telecommunications Appli-
cations, pages 57-60. IEEE Communications So-
ciety.

Barbara Grosz and Candace Sidner. 1986. Atten-
tion, intentions, and structure of discourse. Com-
putational Linguistics, 12(3):175-204.

Charles Hemphill and Philip Thrift. 1995. Surfing
the web by voice. In Proceedings of ACM Multi-
media, pages 215-222, San Francisco, CA, Novem-
ber 7-9.

A. Kellner, B. Rueber, and F. Seide. 1996. A voice-
controlled automatic telephone switchboard and
directory information system. In Proceedings of
the IEEE Third Workshop on Interactive Voice
Technology]or Telecommunications Applications,
pages 117-120. IEEE Communication Society.

L. F. Lamel, J. L. Gauvain, S. K. Bennacef, L. Dev-
illers, S. Foukia, J. J. Gangolf, and S. Rosset.
1996. Field trials of a telephone service for rail
travel information. In Proceedings o] the IEEE
Third Workshop on Interactive Voice Technology
for Telecommunications Applications, pages 111-
116. IEEE Communication Society.

W. C. Mann and S. A. Thompson. 1983. Relational
propositions in discourse. Technical Report RR-
83-115, Information Sciences Institute, Marina del
Rey, CA.

MapQuest. 1997 . Interactive atlas:
http://www.mapquest.com.

Gerhard T. Niedermair. 1996. A flexible call-
server architecture for multi-media and speech di-
alog systems. In Proceedings of the IEEE Third
Workshop on Interactive Voice Technology for
Telecommunications Applications, pages 29-32.
IEEE Communication Society.

M. D. Sadek, A. Ferrieux, A. Cazannet, P. Bretier,
F. Panaget, and J. Simonin. 1996. Effective
human-computer cooperative spoken dialogue:
The AGS demonstrator. In Hiroya Fujisaki, ed-
itor, Proceedings of International Symposium on
Spoken Dialogue, pages 169-172, Philadelphia,
PA, October. Acoustical Society of Japan.

Stephanie Seneff, David Goddeau, Christine Pao,
and Joe Polifroni. 1996. Multimodal discourse
modelling in a multi-user multi-domain environ-
ment. In Hiroya Fujisaki, editor, Proceedings
of International Symposium on Spoken Dialogue,
pages 105-108, Philadelphia, PA, October. Acous-
tical Society of Japan.

Stephen Sutton, David Novick, Ronald Cole, Pieter
Vermeulen, Jacques deVilliers, Johan Schalkwyk,
and Mark Fanty. 1996. Building 10,000 spoken
dialogue systems. In Proceedings of the Fourth In-
ternational Conference on Spoken Language Pro-
cessing, volume 2, pages 709-712, October.

9?

