
How to obey the 7 commandments for spoken dialogue?

E m i e l K r a h m e r , J a n L a n d s b e r g e n , X a v i e r P o u t e a u

I P O , C e n t e r fo r R e s e a r c h o n U s e r - S y s t e m I n t e r a c t i o n

P . O . B o x 513

N L - 5 6 0 0 M B , E i n d h o v e n , T h e N e t h e r l a n d s

{krahmer/landsbrn/pout eau}©ipo, tue, nl

A b s t r a c t

We describe the design and implementation of
the dialogue management module in a voice
operated car-driver information system. The
literature on designing 'good' user interfaces
involving natural language dialogue in general
and speech in particular is abundant with use-
ful guidelines for actual development. We have
tried to summarize these guidelines in 7 'meta-
guidelines', or commandments. Even though
state-of-the-art Speech Recognition modules
perform well, speech recognition errors can-
not be precluded. For'the current application,
the fact that the car is an acoustically hostile
environment is an extra complication. This
means that special attention should be paid
to effective methods to compensate for speech
recognition errors. Moreover, this should be
done in a way which is not disturbing for the
driver. In this paper, we show how these con-
straints influence the design and subsequent
implementation of the Dialogue Manager mod-
ule, and how the additional requirements fit in
with the 7 commandments.

k e y w o r d s : spoken dialogue management , error-
prevention, error-recovery, design issues

1 I n t r o d u c t i o n

There are many good reasons why spoken language
might be a main in- and output device for a user-
interface. One of them is that in certain situ-
ations it is difficult for a user to operate a sys-
tem in another way, because (s)he is involved in
a task with heavy manual requirements. Con-
sider the case of a car-driver: the current genera-
tion of driver information Systems (usually involving
HiFi equipment, but also route-guidance computers,

traffic-messaging (R D S / T M C) and mobile telephone
(GSM)) is gett ing more and more complex, and op-
erat ing these devices is becoming a significant task
as well. Since the driver 's visual and gestural chan-
nels are heavily involved in the main, driving task,
it seems worthwhile to s tudy the possibilities of a
spoken interface for such driver information systems,
and this is the main objective of VODIS, a European
project dedicated to the design and implementat ion
of a vocal interface to an existing driver information
system.

Even though the s ta te of the ar t Speech Recog-
nition (SR) modules perform well (see e.g., Cole et
al. 1996), speech recognition errors cannot be pre-
cluded. For the current application, the fact tha t
the car is a notorious acoustically hostile environ-
ment is an additional complication. This means that
special a t tent ion should be paid to effective meth-
ods to compensate for SR errors. Moreover, this
should be done in a way which is not disturbing
for the driver. This is one of the central tasks of
a Dialogue Manager module. In general, the Dia-
logue Manager module can be seen as an intermedi-
ate agent between user and application, helping the
former in maintaining a good representat ion of the
latter. Relevant l i terature points out tha t there is
no general theory for the development of a Dialogue
Manager (henceforth DM). On the other hand, a lot
of guidelines for the development of 'good ' vocal in-
terfaces exist.

In this paper, we describe some of the meth-
ods used for the DM module in the VODIS pro-
ject, with the focus on error-prevention and error-
handling. A recurrent theme in our description of
the DM module is the relation between the design
and the many guidelines found in the literature. To
facilitate the discussion, we have tried to summar-
ize these guidelines into a limited number of 'meta-
guidelines': the 7 commandments for spoken lan-
guage dialogues (section 2). Most of these corn-

82

mandments can be related to general recommend-
ations about user-interfaces (as found in e.g., Shnei-
derman 1992:72-73 and Karis & Debroth 1991:578),
but here the emphasis is on spoken user-interfaces.
The 7 commandments may sound obvious and gen-
eral, although hard to obey in real life. We con-
tend that this is a basic property of commandments.
Be that as it may, we feel that it is worthwhile to
present these 7 commandments, if only to give the
reader an impression of the kind of things that have
to be kept in mind when designing and implement-
ing a DM module. The 7 commandments are given
in section 2.1 In section 3 we describe the main gen-
eric methods used within the DM to compensate for
speech errors in VODIS and in section 4 we briefly
describe how they are implemented. Finally, in sec-
tion 5 there is some discussion on the applicability
of the commandments and the generalizability of the
DM in VODIS.

2 T h e 7 c o m m a n d m e n t s f o r s p o k e n

l a n g u a g e d i a l o g u e s

I. T H Y SYSTEM SHALL MAINTAIN C O N S I S T E N C Y

A system should assign the same response to the
same input (Lea 1994: 26). However, one should
balance consistency with commandment v (adaptab-
ility): be consistent but not rigid (cf. Grudin 1989),
e.g., enable reduced dialogues (Leiser 1993:287).

IT. T H O U SHALT BE AWARE OF T H E P R O F O U N D

INFLUENCE OF B OT H C O N T E N T AND FORM OF

P R O M P T S

This commandment essentially says that the system
should be a good dialogue partner. To achieve this,
the system should first of all pay attention to the
way prompts are formulated. They should be as
brief as possible without being compendious; wordy
prompts (system: "I heard you say . . . ") lead to
confusion (Fraser 1994:137,Lea 1994:15). Consist-
ency is also relevant here: use a consistent linguistic
style (Fraser 1994:137).

Second, prompts should fit in with the ongoing
dialogue. Thus, the system should ensure that,
where possible, each prompt finishes with an expli-
cit question or command; proceed with the discourse
rather than looking back to verify the past (Fraser
1994:137, Lea 1994: 15).

1This list of 7 commandments is primarily based on
the guidelines found in Fraser (1994), Lea (1994), and
Leiser (1993), the two first mentioned references sum up
a lot o f t h e r e l e v a n t l i t e r a t u r e . L e a c o m e s t o a l i s t o f
s e v e n ' c a r d i n a l r u l e s ' t h a t p a r t i a l l y o v e r l a p s o u r 7 c o m -
m a n d m e n t s . Le i se r is spec i f i ca l ly c o n c e r n e d w i t h s p e e c h
i n t e r f a c e s in t h e car .

Third, different kinds of prompts can be used to
mark different contexts. E.g., different voices can be
used as the auditive counterparts of different 'act-
ive windows' in a windows-based operating system.
However, one should use such distinctions carefully
and ensure that each voice serves an intuitively dif-
ferent purpose (Fraser 1994: 137, Lea 1994: 31,
Leiser 1993: 287).

Fourth, when a speech-recognition-error occurs,
re-prompt in such a way that the user receives ex-
t ra guidance on how to behave in the desired way
(Fraser 1994:137). E.g, repeat the a t tempt contain-
ing an error once, so that the user can recognize the
error, and at the same time error-loops are avoided
(Lea 1994:32).

III. WHY SYSTEM SHALL BE EASY T O C O M P R E H E N D

Put differently: the system should have a low
threshold for actualusage. Use progressive disclos-
ure of information. Structure tasks into small pieces,
so that the user does not have to remember too many
things at a given point (Lea 1994:28). Keep the user
informed about the currently available options (Lea
1994: 28, Leiser 1993:287).

IV. T H O U SHALT M A K E T H Y SYSTEM ' G O O F -

P R O O F ' , FOR TO E R R IS H U M A N , BUT T O FORGIVE

DESIGN

This commandment, based on an old adage (cf. Lea
1994: 18, Hix & Hartson 1993), subsumes error-
prevention (Iv.a) and error-handling (iv.b).

Ad Iv.a: keep the user informed about the current
situation (Leiser 1993: 287). One way to achieve this
is by providing a clear response after every spoken
input from the user, so the user knows that the sys-
tem received input and can determine which inter-
pretation is assigned to the input (Lea 1994: 31).
In general: use visual and /o r auditory cues to in-
dicate the current interaction context, and emphas-
ize switches from one application to another (Leiser
1993: 287). Another means to avoid errors is to
define phonetically distinct words or phrases for al-
lowed inputs, and make 'erroneous' choices unavail-
able (compare the different shading of unavailable
menu options or icons in a windows-based operating
system) (Lea 1994:31). For potentially 'dangerous'
or 'expensive' actions (i.e., undoing them is relat-
ively costly/time-consuming), include a validation
s t ep . Such a validation strategy should not be used
for 'harmless' actions; that would slow down the in-
teraction unnecessarily.

Ad Iv.b: If an error does occur, let the system
take the blame (e.g., system: "I didn't understand
your utterance."). Do not blame the user (thus not
system: "What you did was illegal!"). Focus on re-

83

covering the error. One important element is the
presence of a vocal 'undo' command. If possible, al-
low correction of local errors: avoid the necessity to
re-enter the entire command (Lea 1994: 32).

V. T H Y SYSTEM SHALL BE ADAPTABLE

Do not force interaction, rather make the user aware
of currently available options on a take-it-or-leave-it
basis (Leiser 1993: 286). Only interrupt the ongo-
ing dialogue in 'urgent ' situations, and justify the
interruption. Distinguish novice and expert users,
and adapt to their levels.Where possible guide the
naive user, but also allow the expert user to initiate
actions and use short-cuts. (Lea 1994:30). Support
interruption and recovery: use the 'normal manners '
for interrupting the user in his current activities, i.e.,
only interrupt in 'critical' or 'urgent ' situations, and
provide the user with a justification for the inter-
ruption. Also, reassure the user that the system is
robust against sudden interruptions (e.g., by using
synthesized speech; the user will feel less social ur-
gency to respond when .he or she is aware of the
fact that the dialogue partner is a computer (Leiser
1993); contrast this with commandment vI).

VI. WHY INTERFACE SHALL BE TRANSLUCENT

Allow inputs which perform several steps, or which
allow jumping from one point to another (Lea
1994:30). Use natural speech output (as opposed
to synthesized speech) for prompts, to avoid focus
on the quality of the machine voice (Lea 1994: 25).

VII. T H O U SHALT COGITATE BEFORE THOU COM-

MENCETH

Last but not least, the necessity of a design phase
should not be underestimated, and this is where
commandments I to vI are useful. Also, always keep
the added value of speech in mind (Lea 1994:15).

3 O n t h e d e s i g n o f t h e D M m o d u l e

How to obey these 7 commandments when designing
a DM module? As usual with commandments, some
are conceptually clearer and easier to obey than oth-
ers. The best way to follow commandments is to
take them as a source of inspiration and not follow
them to the letter. In fact, obeying all guidelines
subsumed by the 7 commandments is effectively im-
possible, since - - a s the reader will have not iced--
they contain some inconsistencies.

While living by all these commandments when
designing a system to be used in 'normal situations'
is effectively impossible, to obey them when design-
ing for in-car systems might appear to be even more
difficult. One reason for this is that the interaction
with the system must never interfere with the user's

primary task (the actual driving). Moreover, since
the car is an acoustically hostile environment, the
limits of speech recognition have to be taken special
care of. In this section, we look in more detail at
the design of the DM module within VODIS, with
special attention to the specific conditions posed by
the vehicle-context and the relation with the 7 com-
mandments. In the section hereafter we discuss the
actual implementation in more detail.

3.1 T h e V O D I S p r o j e c t

The main objective of the VODIS project is to in-
tegrate and further develop the technologies which
are required for the design and implementation of
voice-based user-system interfaces. More concretely,
the project aims at developing a vocal interface to
an existing driver information system (namely the
Berlin RCM303A of Rober t Bosch GmbH), which
integrates a tuner, an amplifier, a CD changer, a cas-
sette player, a navigation computer and a GSM tele-
phone. The vocal interface is speaker independent,
and is developed for German and French. The pro-
ject consists of two stages: for the first stage a basic
command & control language is defined consisting of
about 70 keywords, which essentially encompasses
the functionalities of the current system (selecting
a device: "navigation", " tuner", choosing a destin-
ation, making phone calls, etc.), as well as dialogue
control keywords ("no", "OK", "abort" , etc.). Ex-
perimental evaluations of the first prototype will be
the input to design and development of the second
prototype, which also aims at broadening the range
of possible user's input by allowing spontaneously
spoken database queries for the navigation task. The
reader can visit http ://www. is. cs. cmu. edu/VODIS
for more details.

Figure 1 depicts the general architecture of the
VODIS system. As said, the purpose is to design
and implement a voice interface to the Berlin driver
information system. A controller module provides
a software interface to the Berlin system: it can
modify the state of the Berlin system, and it can
retrieve information from it. If the user wants to
say something, (s)he can indicate this by pressing a
button, located near the steering wheel (the Push-
To-Talk (PTT) button). The result of a P T T push
action is that the speech recognition unit is activated.
The DM module fills the gap between the speech re-
cognition and the controller. The DM can provide
information to the user via Text-To-Speech (TTS)
synthesis and via a small display.

This architecture can already be related to some
commandments. The P T T but ton allows the user to
take the initiative: interaction is not forced, the sys-

84

Dia

'1 Theuser I"

[Speech Recognition]

--V---V--
Dialogue Manager

T
I I

T
BEI~LIN [

Figure 1: The VODIS architecture

tem just presents the user with his/her options, and
by pressing the but ton the user requests at tention
of the speech recognition unit (cf. v). Additionally,
TTS is used instead of pre-recorded natural speech
(v /v I) . This choice is more or less forced upon us,
since there is no fixed vocabulary from the system's
point of view. For instance, each user has a personal
phone book stored in his GSM telephone, and to pro-
nounce the names in this phone book the system can
only use TTS.

3.2 C o p i n g w i t h t h e l i m i t a t i o n s o f s p e e c h
recognition

Good results from speech recognition is a conditio
s ine qua non for any spoken dialogue system. A sys-
tem with bad results from speech recognition makes
it impossible to satisfy many of the commandments
(how could a user judge a system as flexible, consist-
ent, adaptive, simple etc., if (s)he is often misunder-
stood by the system?).

Commandment Iv stresses the importance of
error-prevention (IV.a) and error-handling (Iv.b).
With regard to Iv.a, several techniques are used
within VODIS to prevent SR errors. First of all,
a lot of at tention is paid to optimizing the speech
recognition unit 'off line', e.g., by noise reduction.
Fortunately, the kind of noise in the car (engine ro-
tation, tires, wind, etc.) is rather specific, and highly
correlated to the driving speed, which is available all
the time, which means that distortion c a n b e com-
pensated effectively. Moreover, the recognition unit
is trained on the basic command and control lan-
guage developed for the first phase of the project.
A third way to optimize speech recognition is based
on the fact that not all the keywords need to be
available all the time. 'Since these keywords em-
brace the functionalities of the original Berlin sys-
tem, they are parti t ioned in a more or less compar-

able way (thus, when the interaction is dealing with
HiFi, the user cannot enter a destination for route-
guidance). This makes it possible to partition the
language by means of a number of sub-grammars
(roughly speaking: there is a default-set of always
active keywords, and each mode is associated with
its own grammar , thus one could speak of a HiFi-
subgrammar , a navigat ion-subgrammar etc.). The
DM module decides which sub-grammar(s) should
be active at any point in the dialogue, and sends
this information to the speech recognition unit. As
a consequence, the branching factor (= the number
of available keywords at a given point) is always sig-
nificantly less than the total number of key-words,
which further decreases the chance of speech recog-
nition errors. 2

Nevertheless, SR errors cannot be precluded. The
lowest error rate for speaker independent recogni-
tion achieved up to now on a task with a perplexity
comparable to the one in VODIS is around 4% (Cole
et al. 1996). And it is unlikely that recognition in
the car will lead to better results. In other words:
recognition errors will occur and this means that a
method has to be developed to handle them. Each
time the user utters something, the SR unit sends
an n-best list of results to the DM. When the top
element of this list is different from the user's actual
utterance, we are facing a SR error. In general, the
system cannot decide whether the first candidate of
the list is:

1. the right candidate (as it will be in most
cases)~

2. an error due to confusion within the SR
unit, or

3. an error due to the user, e.g., because
a phrase was uttered outside the
currently active vocabulary.

The only way to detect and solve an error is via

2A disadvantage of this part i t ioning is that there is a
certain risk of the user ut tering a keyword which does not
correspond to the current s tate of the system, and since
the speech recognition unit will not be able to recognize
the user's utterance in that case only a relatively non-
specific warning can be given (e.g, system: "The system
cannot interpret your utterance."). Thus, this choice
might lead to a reduction in 'user-friendliness' of the sys-
tem. However: as noted above, good results of speech
recognition is the basic requirement for a voice interface.
Thus, the actual partitioning is a compromise between
commandment Iv on the one hand, and commandments
I, III, V and vI on the other. Notice that this comprom-
ise puts extra emphasis on the marking of the current
interaction context (cf. m), since a user which is well
aware of the current s tate of the system is less likely to
perform an input which is not allowed at that point.

85

a validation process (more of which below). When
the first candidate of speech recognition is rejec-
ted by the user, the system has to initiate a re-
cover strategy. It would be a bad strategy to sys-
tematically request a repetition from the user, as
users are known to vary their pronunciation during
subsequent at tempts (volume, pitch, rate) as they
would do when a human dialogue partner made a
'speech recognition' error, which has the undesired
side effect of deteriorating speech recognition results.
These two considerations imply that the handling of
speech recognition results by the DM should be a
sys tem controlled strategy, which is applied to all
results given by the speech recognition. Figure 2
shows a strategy develop.ed in VODIS for that pur-
pose.

vesul~ off S ~ 'q

nol challenged [. . . .
by She user ieeanacK

I ~l~ ~on current
[. I]candidate

SR result cancelled[
by ~he user [

?
feedback gz F
p rompt for
re-ut ter ing

challenged [
by the user

yes
o ther
candidates
available?

no

increment [
n u mb e r of
a t t empt s

Figure 2: The handling of SR results

Let us illustrate this view diagram via an example.
One place where SR errors might arise is in the
recognition of names in the user's personal phone
book. Suppose that the user's phone book contains
two nicknames: "Phil" and "Bill". Now the user
utters "Call Bill". The SR unit returns an ordered
tuple of results to the DM: ("Call Phil", "Call Bill"
/. Thus, "Call Phil" is a~signed a higher confidence
score than the designated, second candidate "Call
Bill". The DM now proposes the first candidate of
speech recognition via a validation feedback, e.g.,
the system says "Call Phil?". At this stage, the user
can do three things:

1. cancel the SR results,
2. challenge the first candidate, or
3. accept it.

In the current example, the user can be expected to
go for the second option. Then the DM proceeds
with the the next candidate ("Call Bill?"), which
corresponds with the actual utterance. Again, the
user can do three things, but now we may assume
that the user will not challenge this proposed can-
didate, as it corresponds with the actual input from

the user. The advantage of such a routine is that it
applies to all inputs from the user in a uniform way,
and does not put a too heavy burden on the user's
attention. Naturally, the user has to 'know' what is
expected from him, and this puts high demands on
feedback and prompt design.

Summarizing, the basic mechanism sketched in
figure 2 applies to every spoken input of the user in
the same way, which complies with commandment I
(be consistent). Whenever an error occurs, the error-
handling part of commandment IV is obeyed as well:
no blame is assigned, the focus is on recovering the
error and there is an undo option ("abort") .

3.3 F e e d b a c k a n d p r o m p t des ign

In general, feedback aims at helping the user in keep-
ing a good mental representation of the system (com-
mandments II-IV), and a good representation gener-
ally increases the efficiency of the communication
(e.g., the chances of out-of-vocabulary input are re-
duced). The DM can give feedback to the user via
two modalities: sound and vision. In general, it is
difficult to decide which modality should be chosen
to present a given piece of information (witness e.g.,
Kariagiannides et al. 1995). However, two practical
guidelines apply for VODIS:

1. Since a relatively short visual message might be
missed (vision is employed for driving), essential
information should at least (see 2.) be conveyed
via sound,

2. Since speech is transient, information which the
user may need to consult more than once should
be available via vision.

A central ingredient of the procedure which handles
user's inputs, sketched above, is the system's valid-
ation feedback on the current SR candidate. Leiser
(1993:276) mentions two extremes regarding to val-
idation: 1. assume that no errors have occurred,
and leave it to the user to recover from any in-
opportune change of state as a result, and 2. al-
ways ask the user to explicitly confirm. The first
alternative ignores error-handling (Iv.b) and is ob-
viously in conflict with the underlying philosophy
of the handling of user's input. The second altern-
ative, however, disobeys commandments 11 (looking
back too much) and IV (forcing unnecessary valid-
ation), and both violate v (by not being adaptive).
An adequate balance between both strategies, to-
gether with implicit validation, would greatly im-
prove the situation. This is the strategy chosen in
VODIS. Suppose, for example, that the n-best list
of SR results contains "radio" as the first candidate.

86

This candidate is presented for validation to the user
via a feedback message which tells the user that the
system will switch to the radio and start playing the
last selected radio station, e.g., "Switching to radio
station BBC 1". Once this message has been syn-
thesized, the user can do various things. The user
can challenge the prompt by explicitly saying "no"
or "abort". But the user can also validate it, either
explicitly by saying "yes" or "OK", or implicitly by
keeping silent (' those who don't speak, agree'), or
by proceeding with the discourse via the utterance
of a new command (e.g., "play KISS FM").

For this approach to work, the feedback messages
have to meet certain criteria. It is well known that
people are not only sensitive to the content of a mes-
sage but also to the way it is sent. 3 A syntactically
marked yes/no question ("Do you want to switch
to navigation mode?") or a clear question contour
('high and rising', in the notation of Pierrehumbert
and Hirschberg (1990): H* H H%) will cause the user
to feel forced to explicitly confirm or reject. This in-
dicates why feedback messages should be phrased
in a consistent style (I and If). Sometimes, it may
be useful to violate these'commandments, most not-
ably in non-standard situations, e.g., after an error
has been detected. Notice that in such cases, 're-
packaging' of the message serves a purpose: the user
is provided with extra clues which are significant in
that they provide additional information which may
help the user in updating his model of the system.
Thus: prompts should be short and to the point, and
violations of this principle should serve a purpose. 4

4 O n t h e i m p l e m e n t a t i o n o f t h e D M

Our ultimate objective is the development of a
'good' DM module as part of the VODIS system,
and we believe that designing a dialogue manager
which obeys the 7 commandments as far as possible
is a first, indispensable step towards that objective.
The second step, which is addressed in this section,
is implementing a DM module based on this design,
as part of the first VODIS prototype. Since this pro-
totype will be tested by drivers in the car, it runs on
a stand-alone machine. The DM module is a separ-
ate block in the VODIS architecture, which interacts

3This relates to the notion of information packaging
(cf. Chafe 1976). Chafe points out that the format of a
message is only part ial ly related with the content of the
message, "[information packaging has] to do primarily
with how the message is sent and only secondarily with
the message itself, just as the packaging of toothpaste
can affect sales in part ial independence to the quality of
the toothpaste inside".

4Put differently, what holds for human speakers (cf.
Grice 1975), should hold for speaking systems as well.

with other blocks via intercommunication protocols.
The DM is written in C + + .

The DM receives messages from two sources: the
controller (the software interface to the Berlin sys-
tem) and the SR unit. Messages from the control-
ler concern state-changes of the system. They can
lead to an update of the state-representation of the
system, or to an interruption (e.g., in the case of
an incoming phone call). In the case of an inter-
ruption, the DM can support the interruption of the
main thread of the dialogue and restore the previous
context, employing stack mechanisms. In general,
change of status information (as far as it is directly
relevant for the user) is handled via specific system
initiated routines.

The other, from the point of view of this paper,
more interesting source of messages received by the
DM are mostly the result of a user initiative: the
user has said something. Whenever the user indic-
ates that (s)he wants to say something by pressing
the P T T button, the DM is notified of this P T T
event and waits for the actual results of speech re-
cognition. Figure 3 depicts the modules of the DM
which are involved in the subsequent handling of the
input from the user.

/

DM ~ '° !

_Result s i

lexicon I
I

l p a r s e s I
I

lexicon t ask ,,J Interpreter context il

I candidates I

IValidation~ I
[gwzez~uzj----------j p r o t o c o l]~ , f

. ~ " ~ 2 ~

l co"roUe~ l

Figure 3: DM software architecture

The DM module has a modular structure. After
the user's input has been analysed in the speech re-
cognition unit, the DM receives a message consist-
ing of a list SR._results, which contains the recog-
nized phrases and their respective confidence scores.
In the DM module, this list is unwrapped, and
the phrases are parsed. Each recognized phrase is

87

mapped to a set of representations as found in the
lexicon. If parsing one candidate results in a non-
singleton set of interpretations, it is ambiguous. The
Parser returns a new l i s t , ' pa r ses , to the Interpreter .
In this module, the lexical items are mapped to tasks
(found in the task lexicon) and related to a con-
text, containing information about the current situ-
ation (including application and dialogue). We fol-
low the common t rea tment of resolving ambiguities
using this contextual information. 5 The result of
this process is a list c a n d i d a t e s , the first element of
which consists of the task representation of the first
disambiguated SR_result. This is the first candidate
which is proposed for validation to the user (via T T S
and /o r the display, depending on the kind of mes-
sage); an implementat ion of the validation protocol
given in figure 2. The feedback messages are for-
mulated by a generator module. In most cases, the
first candidate will be the right one (see discussion
in section 3). If a proposed candidate is (explicitly
or implicitly) accepted by the user, the DM sends a
message (containing the validated Task) to the con-
trol unit requesting modification of the status of the
Berlin system according to the user 's wishes. Also,
the DM sends a message to the speech recognition
(using the Select_SR_Grammar function) to act ivate
a new set of sub-grammars corresponding to the new
state of the system and the ongoing dialogue.

5 Discussion: fu ture work

In this discussion section we want to address three
issues. The first is evaluation, the second concerns
the generalizability of the methods described in this
paper, the third the applicability of the 7 command-
ments.

5.1 E v a l u a t i o n

The DM module described in this paper will be par t
of the first VODIS prototype, to be completed in fall
1997. As mentioned, this first pro to type will be ex-
tensively evaluated by users. For this purpose, the
vocal interface to the Berlin system will be placed in
a car, and evaluated by French and German drivers,
in Paris and Karlsruhe respectively. During the eval-
uation, at tention will be paid to (i) the speech re-
cognition performance, and (ii) the user-system in-
terface, with the emphasis on security, safety, ac-
ceptability and effectiveness. ~ The results of these
experiments will constitute the input for the devel-
opment of the second prototype, which also aims at

50f course, the limited control-and-command lan-
guage will not give rise to many ambiguities. The situ-
ation is expected to change when the range of user's in-
puts is widened at a later stage.

broadening the range of the possible user 's input by
allowing more 'natural language like' database quer-
ies for the navigation task. This raises the question
whether the DM methods described in this paper are
transmissible to the second prototype.

5.2 H o w g e n e r a l i z a b l e a r e t h e D M
m e t h o d s ?

The pr imary aim of the first VODIS prototype is
to build a simple, but robust spoken language sys-
tem which can be used effectively in the car. The
DM methods described in this paper are also in-
tended to be simple, but robust, and that is why
the prevention and handling of speech errors plays
a central role. Of course, the step from a limited
command and control language to more 'spontan-
eous' speech is a big one, and is likely to affect the
DM. However, we would like to claim that the basic
DM methodology can remain largely unchanged. To
backup this claim, let us first describe the (planned)
second prototype in somewhat more detail. The
main difference in architecture between the two pro-
totypes is that in the first one the results from the
SR unit are directly fed to the DM module, while
in the second one the two modules are connected
via a semantic parser (see e.g., Ward 1994). This
parser is trained on a language model, and differs
from classical parsers in that it does not (only) use
' syntact ic ' information, but also domain dependent
' semantic ' information. Tha t is: it does not look
in the input for NPs and APs, but rather for, say,
'destination phrases ' and 'arrival t ime phrases' . It
tries to extract as much information as possible from
the received input, simply ignoring input it cannot
parse (e.g., interjections and false starts). This en-
tails that the DM will not be confronted with an n
best list of recognized key-words, but with a more
complex structure; a kind of list of parses annota ted
with confidence scores from both the SR and the se-
mantic parser. Again, the DM can validate the first
candidate in the way described above. Suppose the
first candidate of the input list received by the DM
indicates that the user wants to go to Bistro Le pot
de terre in Paris. The DM can put up this first can-
didate for validation. Essentially, the user will have
the same options as for the keyboard based commu-
nication (Figure 2), except that (s)he now will have
the additional oppor tuni ty of clarifying his challenge
(user: "No, I don ' t want to go to Bistro Le pot de
fer, but to Bistro Le pot de terre"). 6 On the basis

6The recognition of proper names (and in particular
city names) is a major problem to be tackled for the
second demonstrator. For example, the German navig-
ation computer knows 30.000 city names. Plain recog-

8 8

of such corrections the DM can perform an update
on the original list of annota ted inputs. Of course,
this is all speculative, but it indicates that the DM
methods to deal with SR results presented above can
be used for the second prototype as well.

5.3 H o w a p p l i c a b l e a r e t h e 7
c o m m a n d m e n t s ?

In the Introduction we noted that the li terature does
not contain a general theory for the development of
a DM module, while it does contain a lot of prac-
tical guidelines. On the one hand, this can be seen as
an indication that this is still a relatively immature
area of research. On the other hand, it also indicates
that the characteristics of a Dialogue Manager are
largely determined by the kind of application. Of
course, the many guidelines found in the li terature
(summarized in our 7 commandments) are poten-
tially very useful when one designs a DM module.
However, we also saw that obeying all command-
ments is effectively impossible, since some of the
guidelines they subsume are inconsistent with each
other. This raises an obvious question: how applic-
able are the 7 commandments? Or more in general:
what are useful guidelines? The evaluation of the
first VODIS prototype may give some indications in
this respect. For example, it might turn out that
users do not like to proceed with the discourse, but
would prefer explicit validation of each input. In
our opinion, it would be very interesting to find out
which specific guidelines are useful in which specific
situations. However, this research program will not
be carried out within VODIS.

6 C o n c l u s i o n s

We have described some aspects of the design of the
DM module within the VODIS project, with spe-
cial at tention to the methods the DM can employ
to compensate for the limitations of speech recogni-
tion. Where possible, we have related our propos-
Ms to guidelines found in the literature, summarized
in our 7 commandments for spoken dialogue. Of
course, the ul t imate objective is the development of
a "good" dialogue manager module as part of the
VODIS project, and we believe that designing a dia-
logue manager which obeys the 7 commandments as
far as possible is an indispensable step towards that
objective. The implementation, briefly described in
section 4, will be part of the first VODIS prototype,
which will be evaluated by users. The results of these

nition (user: Ich m~chte nach Himmelpforten fahren)
on such a list will cause problems, for which alternative
strategies have to be chosen.

experiments will be the input for the development of
the second prototype.

A c k n o w l e d g m e n t s

This work was funded by the Language Engineer-
ing/Telematics Applications Program, project LE-
1 2277 (VODIS). Thanks are due to Maddy Janse,
Kees van Deemter and Gert Veldhuijzen van Zanten
for comments on an earlier version of this paper.

R e f e r e n c e s

Chafe, W. 1976 Givenness, contrastiveness, definiteness,
subjects, topics and point of view. In: C. Li (ed.),
Subject and topic, 25-55, New York, Academic Press.

Cole, R. et al. 1996 Survey of the state of the art in
human language technology, to appear. 7

Fraser, N., 1994, Interactive diMogue, In: EAGLES
spoken language systems (draft), ESPRIT.

Grice, H. P. 1975, Logic and conversation. In: Syntax
and semantics 3: speech acts, P. Cole (ed.) Academic
Press, New York

Grudin, J. 1989, The case against user interface con-
sistency. In: Communications of the ACM, 32 (10):
1164-1173

Hix, D. & H. Hartson, 1993, Developing user interfaces,
Wiley, New York

Kariagiannides, C., et al. 1995 Media/modalities in in-
telligent multimedia interfaces. In: J. Lee (ed.) First
international workshop on intelligence and multimod-
ality in multimedia interfaces, HCRC

Karis, D. & Dobroth, K. 1991, Automating services with
speech recognition over the public switched telephone
network: human factors considerations. In: IEEE J.
Selected Areas in Commun., 9 (4), 574-585

Lea, W., 1994, Developing usable voice interfaces. In:
Journal of the American Voice I / 0 Society, 16

Leiser, R., 1993, Driver-vehicle interface: dialogue design
for voice input. In: A. Parkes ~z S. Franzen (eds),
Driving future vehicles, Taylor & Francis, 275-294

Pierrrehumbert, J. & J. Hirschberg 1990 The meaning
of intonational contours in the interpretation of dis-
course. In: P. Cohen et al. (eds.), Intentions in com-
munication, 271-311, MIT Press

Shneiderman, B., 1987, Designing the user interface -
strategies for effective human-computer interaction,
Second edition, Addison Wesley, Reading, MA.

Ward, W., 1994, Extracting information in spontaneous
speech. In: Proceedings of ICSLP 94, Yokohama

Thttp : I/www. cse. ogi. edu/CSLU/HLTsurvey/ for the
web-version.

89

