
An Object-Oriented Model for the Design of Cross-Domain
Dialogue Systems

I a n M . O ' N e i l l and M i c h a e l F . M c T e a r
School of I n f o r m a t i o n and Sof tware Engineer ing

Un ive r s i t y of Uls te r
Shore R o a d

N e w t o w n a b b e y
B T 3 7 0 Q B , N . I r e l and
m f . m c t e a r Q u l s t . a c . u k

A b s t r a c t

Our approach to speech-based dialogue
modelling aims to exploit, in the context
of an object-oriented architecture, dialogue
processing abilities that are common to
many application domains. The coded
objects that comprise the system contrib-
ute both recognition rules and processing
rules (heuristics). A Domain Spotter sup-
ports the ability to move between domains
and between individual skillsets. A Dia-
logue Model records individual concepts
as they occur; notes the extent to which
concepts have been confirmed; populates
request templates; and fulfils a remem-
bering and reminding role as the system
attempts to gather coherent information
from an imperfect speech recognition com-
ponent. Our work will aim to confirm the
extent to which the potential strengths of
an object-oriented-paradigm (system ex-
tensibility, component reuse, etc.) can be
realised in a natural language dialogue sys-
tem, and the extent to which a function-
ally rich suite of collaborating and inherit-
ing objects can support purposeful human-
computer conversations that are adaptable
in structure, and wide ranging in subject
matter and skillsets.

1 Introduction
The system we propose addresses two key issues
that face developers of speech-based natural lan-
guage dialogue systems. Firstly, how can developers
exploit the commonality that exists between differ-
ent application domains - to make the development
task easier on the one hand, and on the other hand

to make systems as computationally efficient and
as functionally wide-ranging as possible? Secondly,
given the current inaccuracies of speech recogni-
tion, how can developers implement domain inde-
pendent strategies for limiting the damage caused
by misrecognition, while at the same time main-
raining an apparently natural conversational flow
between system and user? An object-oriented devel-
opment paradigm offers valuable insights into how
these challenges might be addressed. In this re-
spect the current approach builds on previous work
involving an object-oriented approach to dialogue
management (Sparks, Meiskey & Brunner, 1994),
in which the main system components might be re-
garded as forming a developer's toolkit. We envis-
age system components that draw on the strength
of an object-oriented architecture. Inheritance and
association relationships will be used to ensure that
generic functionality which can be shared by more
specialised system components need be defined only
once and can be introduced into the dialogue flow,
in real time, as and when required.

Based on the notion of an evolving, multi-layered
dialogue model (McGlashan, 1996), our system
design includes a number of dialogue model classes
(collectively the Dialogue Model) whose role it is to
record each concept (a booking request, for example)
as it is identified; to monitor and guide the process
by which concept's attributes (destination, depar-
ture time, etc.) are confirmed or assumed; and to
populate a request template that will ultimately be
used in database accesses.

Central to our project is a notion of discrete, re-
usable system components, some of which are in-
tended to work collaboratively in software mechan-
isms, some to provide generic functionality that can
be tailored or augmented to suit particular applica-
tions. Identifying and exploiting areas of common-
ality and specialisation between different processing

25

domains promises rich rewards. We have been in-
spired to some extent by the premise that everyday,
person-to-person dialogues (whether it is a booking
clerk at a theatre responding to a customer's enquir-
ies, or a teacher helping a pupil with a mathemat-
ics problem) are in some sense 'scripted'. Previous
experience of a situation, or explicit tutoring in a
particular task, means that real-life dialogues often
consist of elements that have been rehearsed, and are
therefore predictable. However, as in natural human
speech, the system must recognise and accommodate
spontaneous shifts from one script to another, and
be able to cope with changes in the detailed content
and structure of a script in different circumstances.

To make three broad distinctions, one may view
these 'set pieces' as occurring at a meta-level, a do-
main level and a skill level - and these levels are
reflected in the system architecture we are evolving.
At a meta-level, for example, people tend to recog-
nise cues for taking, relinquishing or continuing a
dialogue turn; at a domain level, someone wanting
to reserve a ticket for a show broadly knows the sorts
of questions they can ask at the theatre booking of-
fice and the sorts of answer they are likely to re-
ceive; at a skill level, people generally know how to
do conversions between dates on the one hand and
days of the week or duration on the other. We have
endeavoured to identify some of these set pieces at
their different dialogue levels, with a view to creat-
ing classes that encapsulate the meta-dialogue be-
haviour that is common to the great majori ty of
interactions (and which is represented in our gen-
eric Dialogue Intention class), the business domain
expertise that in human terms distinguishes pro-
fessionals in one field from those in another (our
Business Expert classes), and the individual skills
like handling dates and numbers, that are used in
many different business domains (our Skill Expert
classes). In general terms, adherence to best practice
in object-oriented development offers the prospect of
systems that can be readily extended and custom-
ised, in building block fashion. More significantly,
though, it is our intention to use our suite of classes
in implementations that support highly complex in-
teractions with the user: a single dialogue may range
over several business domains, each of which may
use several distinct skill sets. The system has the
intelligence to decide, in real time, which business
expertise and which skillsets are required to pursue
the user's enquiries, and calls upon the services of
the appropriate coded objects.

To give a flavour of our system's architecture, we
include outline descriptions of some of its most im-
portant classes: Dialogue Manager; Dialogue Inten-

tion; Find Enquiry Type; and Domain Expert. The
preliminary class relationship model (see Figure 1)
further sets these classes in context - the model uses
a simplified version of the Booch notation (Booch,
1994).

2 Dialogue Manager
• The Dialogue Manager is responsible for the

overall control of interaction between the sys-
tem and the user, and between the main sys-
tem subcomponents - which in broad terms in-
clude Corns facilities, Generate Speech facilities,
the enquiry processing objects, and the system
Database.

• The Dialogue Manager is responsible for select-
ing the current Dialogue Intention, of which
there are several subclasses. By default the
Dialogue Manager pursues a sequence of dia-
logue intentions that is typical of the major-
ity of dialogue domains: the system greets the
user; determines the nature of the user's en-
quiry; gathers the data necessary for the suc-
cessful answering of the enquiry; handles any
(database) transactions associated with the en-
quiry; checks if the user has any further enquir-
ies; and concludes the dialogue.

• It uses system resources to identify and respond
appropriately to user interruptions.

Dialogue Intention
Dialogue Intention embodies generic function-
ality for the furtherance of a dialogue.

• Dialogue Flow. The Dialogue Intention class
encapsulates a variety of approaches to phras-
ing, rephrasing and personalising system utter-
ances, with the aim of handling (in as natural a
manner as possible) communication errors and
processing delays.

• Use of Expertise/Skills. Dialogue Intentions
may themselves encapsulate heuristics that al-
low them to instantiate a Dialogue Model (and
by extension the associated Dialogue Objects,
Discourse States and Request Templates) for re-
latively high-level processing tasks (Greet, Find
Enquiry Type, for example). However, most
Dialogue Intentions make use of the Skill and
Domain Expert classes, whose heuristics per-
mit rather more specialised enquiries involving
either generic but complex skillsets (working
with colours or gathering address information,
for example) or specialised application domains

3

26

s~ c h

,,niser

iZ
flCSS

F :
I D o m a i n t

E x ~ , t t '
I I

.

i n h e r i t a n c e " ' association

. instanfiation • has 0 using

Figure 1: Class Relationship Model

27

4

6

(organising travel itineraries, or booking theatre
tickets, for example). Again these skills and ex-
pertise subclasses provide the Dialogue Inten-
tion subclass with the necessary heuristics to
instantiate a Dialogue Model.

Find Enquiry Type

The Find Enquiry Type class (a subclass of Dia-
logue Intention) allows the Dialogue Manager,
both to prompt the user into specifying the
nature of his/her inquiry, and to interpret the
nature of a user's utterance when it receives an
indication that the user has spoken unpromp-
ted.

The Find Enquiry Type class uses a Domain
Spotter class to identify the Domain Expert
that is best suited to handling the enquiry.
An appropriate Domain Expert is confirmed
through the elaboration of an appropriate Dia-
logue Model. The Dialogue Manager supplies
the Handle Enquiry dialogue intention with de-
tails of the selected Domain Expert.

Domain Expert

• Each Domain Expert class, regardless of the
specific domain its subclass addresses, typically
provides the following functionality:

1. Request template structure for the domain;

2. Enquiry processing algorithms for the do-
main (typically IF...THEN...ELSE con-
structs), including recommended use of
any Skills Expert, for specialised but non-
domain-specific processing (e.g. handling
colours, times, etc.)

3. Word combinations (bigrams or trigrams)
from the domain to extend the generic cap-
abilities of the Recogniser Grammar.

• The Domain Expert is used to instantiate and
evolve a related Dialogue Model.

Dialogue Model: Dialogue Object,
Discourse State, Request
Template

The Dialogue Model class is a containment class
encompassing Dialogue Objects (semantic in-
terpretations of user utterances in the light of
specialist knowledge brought to bear by the ap-
propriate Domain Expert); the Discourse State
(which records the current status - confirmed,
assumed, etc. - of the parameters that apply

to the Dialogue Objects) and the Request Tem-
plate (which when fully populated is used by the
Handle Transaction class - a database driver -
to make a database access).

The Dialogue Model evolves in a manner similar
to that outlined by (McGlashan, 1996). Con-
firmation strategies are tailored to the partic-
ular operating environment and the specialised
domain. They are recorded in the Dialogue In-
tention class, or in the relevant Domain Expert
subclass.

7 C o n c l u d i n g r e m a r k s

A key aim of our work will be to ascertain if our suite
of objects (which in combination encompass dialogue
skills from the generic to the highly specialised) can
be built into co-operative mechanisms in real time
to simulate realistically the richness, robustness and
adaptability of natural human dialogue. If this does
indeed prove to be the case, our dialogue model will
have attained its core communicative goal: more
than this, its object-oriented architecture will facilit-
ate the work of the software engineer by providing a
set of discrete components that can be easily reused,
modified or extended in new dialogue systems.

R e f e r e n c e s

G. Booch. 1994. Object-Oriented Analysis and
Design with Applications (2nd Edition}. Redwood
City, CA: Benjamin/Cummings.

S. MeGlashan. 1996. Towards Multlmodal Dialogue
Management. In S. Luperfoy, A. Nijholt, and G.
Veldhuijzen van Zanten, editors, Dialogue Man-
agement in Natural Language Systems, Proceed-
ings of the Twente Workshop on Language Tech-
nology 11, Enschede: Universiteit Twente.

R. Sparks, L. Meiskey, and H. Brunner. 1994. An
Object-Oriented Approach to Dialogue Manage-
ment in Spoken Language Systems. In Human
Factors in Computing Systems - CHI '94, New
York: ACM, 211-217.

28

