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A b s t r a c t  

There has recently been considerable inter- 
est in the use of lexically-based statistical 
techniques to resolve prepositional phrase 
attachments. To our knowledge, however, 
these investigations have only considered 
the problem of attaching the first PP, i.e., 
in a IV NP PP] configuration. In this 
paper, we consider one technique which 
has been successfully applied to this prob- 
lem, backed-off estimation, and demon- 
strate how it can be extended to deal 
with the problem of multiple PP attach- 
ment. The multiple PP attachment intro- 
duces two related problems: sparser data 
(since multiple PPs are naturally rarer), 
and greater syntactic ambiguity (more at- 
tachment configurations which must be dis- 
tinguished). We present and algorithm 
which solves this problem through re-use 
of the relatively rich data obtained from 
first PP training, in resolving subsequent 
PP attachments. 

1 I n t r o d u c t i o n  

Ambiguity is the most specific feature of natural lan- 
guages, which sets them aside from programming 
languages, and which is at the root of the difficulty 
of the parsing enterprise, pervading languages at all 
levels: lexical, morphological, syntactic, semantic 
and pragmatic. Unless clever techniques are devel- 
oped to deal with ambiguity, the number of possible 
parses for an average sentence (20 words) is simply 
intractable. In the case Of prepositional phrases, the 
expansion of the number of possible analysis is the 
Catalan number series, thus the number of possible 
analyses grows with a function that is exponential 
in the number of Prepositional Phrase (Church and 
Patil, 1982). One of the most interesting topics of 
debate at the moment, is the use of frequency in- 
formation for automatic syntactic disambiguation. 

As argued in many pieces of work in the AI tra- 
dition (Marcus, 1980; Crain and Steedman, 1985; 
Altmann and Steedman, 1988; Hirst, 1987), the ex- 
act solution of the disambiguation problem requires 
complex reasoning and high level syntactic and se- 
mantic knowledge. However, current work in part- 
of-speech tagging has succeeded in showing that it 
is possible to carve one particular subproblem and 
solve it by approx imat ion  - -  using statistical tech- 
niques - -  independently of the other levels of com- 
putation. 

In this paper we consider the problem of prepo- 
sitional phrase (PP) ambiguity. While there have 
been a number of recent studies concerning the use 
of statistical techniques for resolving single PP at- 
tachments, i.e. in constructions of the form [V NP 
PP], we are unaware of published work which applies 
these techniques to the more general, and patho- 
logical, problem of multiple PPs, e.g. IV NP PP1 
PP2 ...]. In particular, the multiple PP attachment 
problem results in sparser data which must be used 
to resolve greater ambiguity: a strong test for any 
probabilistic approach. 

We begin with an overview of techniques which 
have been used for PP attachment disambiguation, 
and then consider how one of the most successful 
of these, the backed-off estimation technique, can 
be applied to the general problem of multiple PP 
attachment. 

2 E x i s t i n g  M o d e l s  o f  A t t a c h m e n t  

Attempts to resolve the problem of PP attachment 
in computational linguistics are numerous, but the 
problem is hard and success rate typically depends 
on the domain of application. Historically, the shift 
from attempts to resolve the problem completely, 
by using heuristics developed using typical AI tech- 
niques (Jensen and Binot, 1987; Marcus, 1980; Crain 
and Steedman, 1985; Altmann and Steedman, 1988) 
has left the place for attempts to solve the problem 
by less expensive means, even if only approximately. 
As shown by many psycholinguistic and practical 
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studies (Ford et al., 1982; Taraban and McClelland, 
1988; Whit temore et al., 1990), lexical information 
is one of the main cues to PP attachment disam- 
biguation. 

In one of the earliest at tempts to resolve the prob- 
lem of PP attachment ambiguity using lexical mea- 
sures, Hindle and Pmoth (1993) show that  a measure 
of mutual information limited to lexical association 
can correctly resolve 80% of the cases of PP attach- 
ment ambiguity, confirming the initial hypothesis 
that lexical information, in particular co-occurrence 
frequency, is central in determining the choice of at- 
tachment. 

The same conclusion is reached by Brill and 
Resnik (1994). They apply transformation-based 
learning (Brill, 1993) to the problem of learning dif- 
ferent patterns of PP  attachment.  After acquiring 
471 patterns of PP attachment,  the parser can cor- 
rectly resolve approximately 80% of the ambiguity. 
If word classes (Resnik, 1993) are taken into account, 
only 266 rules are needed to perform at 80% accu- 
racy. 

Magerman and Marcus (1991) report 54/55 cor- 
rect PP attachments for Pearl, a probabilistic chart 
parser, with Earley style prediction, that  integrates 
lexical co-occurrence knowledge into a probabilistic 
context-free grammar.  The probabilities of the rules 
are conditioned on the parent rule and on the tri- 
gram centered at the first input symbol that  would 
be covered by the rule. Even if the parser has been 
tested only in the direction giving domain, where the 
behaviour of prepositions is very consistent, it shows 
that a mixture of lexical and structural information 
is needed to solve the problem successfully. 

Collins and Brooks (1995) propose a 4-gram model 
for PP disambiguation which exploits backed-off es- 
t imation to smooth null events (see next section). 
Their model achieves 84.5% accuracy. The authors 
point out that  prepositions are the most informative 
element in the tuple, and that  taking low frequency 
events into account improves performance by sev- 
eral percentage points. In other words, in solving 
the PP at tachment  problem, backing-off is not ad- 
vantageous unless the tuple that  is being tested is 
not present in the training set (it has zero counts). 
Moreover, tuples that  contain prepositions are the 
most informative. 

The second result is roughly confirmed by Brill 
and Resnik, (ignoring the importance of n2 when it 
is a temporal modifier, such as yesterday, today). In 
their work, the top 20 transformations learned are 
primarily based on specific prepositions. 

3 B a c k - o f f  E s t i m a t i o n  

The PP at tachment model presented by Collins and 
Brooks (1995) determines the most likely attach- 
ment for a particular prepositional phrase by esti- 
mating the probability of the attachment.  We let C 

represent the attachment event, where C = 1 indi- 
cates that the PP attaches to the verb, and C = 2 
indicates attachment to the object NP. The attach- 
ment is conditioned by the relevant head words, a 
4-gram, of the VP. 

* Tuple format: (C, v, nl,  p, n2) 

• So :  John read [[the article] [about the budget]] 
• Is encoded as: (2, read, article, about, budget) 

Using a simple maximal likelihood approach, 
the best at tachment for a particular input tuple 
(v,nl,p,n2) can now be determined from the training 
data via the following equation: 

argmaxi 15(C = ilv, nl ,  p, n2) = f( i ,  v, nl ,  p, n2) 
f (v ,  nl ,  p, n2) 

(1) 
Here f denotes the frequency with which a partic- 

ular tuple occurs. Thus, we can estimate the proba- 
bility for each configuration 1 < i < 2, by counting 
the number of times the four head words were ob- 
served in that  configuration, and dividing it by the 
total number of times the 4-tuple appeared in the 
training set. 

While the above equation is perfectly valid in the- 
ory, sparse data means it is rather less useful in prac- 
tice. That  is, for a particular sentence containing a 
PP attachment ambiguity, it is very likely that  we 
will never have seen the precise (v,nl,p,n2) quadru- 
ple before in the training data, or that  we will have 
only seen it rarely. 1 To address this problem, they 
employ backed-off estimation when zero counts oc- 
cur in the training data. Thus if f (v ,  n l ,p ,  n2) is 
zero, they 'back-off' to an alternative estimation of 
/~ which relies on 3-tuples rather than 4-tuples: 

/Sa(C = ilv, n l ,p ,  n2) = 

f(i ,  v, nl ,  p) + f(i ,  v, p, ,72) + f( i ,  nl ,  p, n2) 

(2) 

f (v ,  nl,  p) + f(v,  p, n2) + f ( n l ,  p, n2) 
Similarly, if no 3-tuples exist in the training data, 

they back-off further: 

i52(C = i[v, n l ,p ,  n2)= (3) 

f ( i , v ,p )  + f(i ,  n l ,p)  + f ( i ,p ,  n2) 
f(v,  p) + f ( n l ,  p) + f(p, n2) 

i51(C = ilv, nl ,  p, n2) - f( i ,  p) f(v) (4) 
The above equations incorporate the proposal by 

Collins and Brooks that only tuples including the 
preposition should b e  considered, following their 
results that  the preposition is the most informa- 
tive lexical item. Using this technique, Collins and 
Brooks achieve an overall accuracy of 84.5%. 

aThough as Collins and Brooks point out, this is less 
of an issue since even low counts are still useful. 
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4 T h e  M u l t i p l e  P P  A t t a c h m e n t  

P r o b l e m  

Previous work has focussed on the problem of single 
PP attachment,  in configurations of the form IV NP 
PP] where both the NP and the PP are assumed 
to be attached within the VP. The algorithm pre- 
sented in the previous section, for example, simply 
determines the maximally likely attachment event 
(to NP or VP) based on the supervised training 
provided by a parsed corpus. The broader value of 
this approach, however, remains suspect until it can 
be demonstrated to apply more generally. We now 
consider how this approach - and the use of lexical 
statistics in general - might be naturally extended 
to handle the more difficult problem of multiple PP 
attachment.  In particular, we investigate the PP 
attachment problem in cases containing two PPs, 
[V NP PP1 PP2], and three PPs, [V NP PP1 PP2 
PP3], with a view to determining whether n-gram 
based parse disambiguation models which use the 
backed-off estimate can be usefully applied. Mul- 
tiple PP at tachment presents two challenges to the 
approach: 

1. For a single PP, the model must make a choice 
between two structures. For multiple PPs, the 
space of possible structural configurations in- 
creases dramatically, placing increased demands 
on the disambiguation technique. 

2. Multiple PP structures are less frequent, and 
contain more words, than single PP structures. 
This substantially increases the sparse data 
problems when compared with the single PP 
attachment case. 

4.1 M a t e r i a l s  a n d  M e t h o d  

To carry out the investigation, training and test data 
were obtained from the Penn Tree-bank, using the 
t g r e p  tools to extract tuples for 1-PP, 2-PP, and 3- 
PP cases. For the single PP study, VP attachment 
was coded as 1 and NP attachment was coded as 
2. A database of quadruples of the form (configura- 
tion, v,n,p) was then created. The table below shows 
the two configurations and their frequencies in the 
corpus. 

Configuration Structure Counts 
1 [vpNP PP ]. 7740 
2 [vP [NPPP ]] 12223 

The same procedure was used to create a database 
of 6-tuples (conflguratwn, v, nl,pl,n2,p2) for the at- 
tachment of 2 PPs. The values for the configuration 
varies over a range 1..5, corresponding to the 5 gram- 
matical structures possible for 2 PPs, shown and ex- 
emplified below with their counts in the corpus. 2 

2We did not consider the left-recursive NP structure 
for the 2 PP (or indeed 3 PP) cases. Checking the fre- 

Config 
1 
2 
3 
4 
5 

Structure Counts 
[vpV NP PP PP] 535 
[veV [NpNP PP] PP] 1160 
[vpV [NP[PPP [NpNP PP  ]]]] 1394 
[vpV NP [pp[NpNP PP]]] 1055 
[vpV [NpNP PP PP]] 539 

1. The agency said it will k eep  the d e b t  u n d e r  
r e v i e w  for  possible further downgrade. 

2. Penney decided to e x t e n d  its i n v o l v e m e n t  
w i t h  the se rv ice  for  at least five years. 

3. The bill was then sent back to the House to 
resolve the question of how to a d d r e s s  budget 
l im i t s  o n  credit a l l o ca t i o n s  fo r  the Federal 
Housing Administration. 

4. Sears officials insist they don't  intend to a b a n -  
d o n  the everyday pricing a p p r o a c h  in the face  
o f  the poor results. 

5. Mr. Ridley hinted at this motive in a n s w e r -  
ing  q u e s t i o n s  f r o m  members of P a r l i a m e n t  
after his announcement 

Finally, a database of 8-tuples (configura- 
tion, v, nl,pl, n2,p2,n3,p3) was created for 3 PPs. 
The value of the configuration varies over a range 
1..14, corresponding to the 14 structures possible for 
3 PPs, shown in Table 1 with their counts in the cor- 
pus. 

The above datasets were then split into training 
and test sets by automatically extracting stratified 
samples. For PP1, we extracted quadruples of about 
5% of the total (1014/19963). We then created a test 
set for PP2 which is a subset of the PP1 test set, and 
approximately 10% of the 2 PP tuples (464/4683). 
Similarly, the test set for PP3 is a subset of the PP2 
test set of approximately 10% (94/907). It is impor- 
tant that the test sets are subsets to ensure that,  e.g., 
a PP2 test case doesn't appear in the PP1 training 
set, since the PP1 data is used by our algorithm to 
estimate PP2 attachment, and similarly for the PP3 
test set. 

4.2 D o es  D i s t a n c e  M a t t e r ?  

In exploring multiple PP attachment, it seems natu- 
ral to investigate the effects of the distance of the PP 
from the verb. The following table reports accuracy 
of noun-attachment, when the at tachment decision 
is conditioned only on the preposition and on the 
distance - i n  other words, when estimating 15(lip, d) 
where 1 is the coding of the attachment to the noun, 
p is the preposition and d = {1,2, 3}. 3 

quency of their occurrences revealed that there were only 
2 occurrences of [vP [NP [NP [NPPP] PP]]] structures in the 
corpus .  

3These figures are to be taken only as an indication 
of a trend, as they represent the accuracy obtained by 
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Configuration 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Structure 
[vpV NP PP PP PP ] 
[vvV 
[vvV 
[veV 
[vvV 
[vvV 
[vvV 
[vvV 
[vpV 
[vvV 
[vvV 
[vwV 
[vvV 
[vvV 

Counts 
15 

NP PP [ppP [NpPP ]]] 
[NpNP PP] PP PP ] 
[NpNP PP] [ppp [NPPP ]]] 
[NP[PPP [NvNF PP ]]] FP] 
[NP[PPP [NpNP PP ]]PP ]] 
[Np[ppP [NpNP PP PP ]]]] 
[NP[PPP [NpNP [ppP [NPPP ]]]]]] 
NP [pp[NpNP PP]] PP ] 
NP [pp[NpNP PP PP ]]] 
NP [pp[NpNP [ppP [NpPP ]]]]] 
[NpNP PF PP] PP ] 
[NpNF PP PP PP ]] 
[NpNP PP [ppP [NPPP ]]]] 

86 
63 

168 
81 
31 
47 

142 
47 
34 
80 
20 
21 
72 

Table 1: Corpus counts for the 14 structures possible for 3-PP sequences. 

1 PP 2 P P  3 P P  Total All 
Count 20299 4711 939 25949 25949 
Correct 15173 3525 755 19453 19349 
% 74.7 74.8  80.4 75 74.5 

It can be seen from these figures that  condition- 
mg the at tachment according to both preposition 
and distance results in only a minor improvement 
in performance, mostly because separating the bi- 
ases according to preposition distance increases the 
sparse data problem. It must be noted, however, 
that counts show a steady increase in the proportion 
of low attachments for PP further from the verb, as 
shown in the table below. The simplest explanation 
of this fact is that more (inherently) noun-attaching 
prepositions must be occurring in 2nd and 3rd posi- 
tions. This predicts that  the distribution of prepo- 
sition occurrences changes from PP1 to PP3, with 
an increase in the proportion of low attaching PPs. 
Globally, failure to use position results in 41.3% of 
correct configurations, while use of position results 
in 45% correct attachments. 

1 P P  2 P P  3 P P  Total 
Count 20299 4711 939 25949 
Low 12223 3063 706 15992 
% Low 60.2 i 65.0 75.1 61.6 

Having established that  the distance parameter is 
not as influential a factor as we hypothesized, we ex- 
ploit the observation that  at tachment preferences do 
not significantly change depending on the distance 

testing on the training data. Moreover, we are only con- 
sidering 2 attachment possibilities for each preposition, 
either it attaches to the verb or it attaches to the lowest 
nOlln. 

of the PP from the verb. In the following section, 
we discuss an extension of the back-off estimation 
model that  capitalizes on this property. 

5 T h e  G e n e r a l i z e d  B a c k e d - O f f  
Algor i thm 

The algorithm for attaching the first preposition 
is almost identical to that  of Collins and Brooks 
(1995), and we follow them in including only tuples 
which contain the preposition. We do not, however, 
use the final noun (following the preposition) in any 
of our tuples, thus basing our model of PP 1 on three, 
rather than four, head words. 

P r o c e d u r e  BI :  

The most likely configuration is: 

arg rnaxi pl(C2 ~- ilv, n,p), where 1 < i < 2 

1. IF f (v ,n,p)  > 0 THEN 
!(i ..... p) 

th ( i l v ,  n , p )  = J(.,~,v) 

2. ELSEIF f(v, p) + f(n, p) > 0 THEN 
lh ( i l v ,  n, p) = :(~,v,v)+.:(i,,,v) f(v,p)+J(n,p) 

3. ELSEIF f(p) > 0 THEN 
h ( i l v ,  ~ , p )  = 

](P) 

4. ELSE l~l(l lv,  n , p  ) = O,l)l(21v, n , p  ) = 1 

In this case i denotes the at tachment configura- 
tion: i = 1 is VP attachment,  i = 2 is NP attach- 
ment. The subscript on C~ is used simply to make 
clear that C has 2 possible values. In the subse- 
quent algorithms, C5 and C14 are used to indicate 
the larger sets of configurations. 

The algorithm used to handle the cases contain- 
ing 2PPs is shown in Figure 1, where j ranges over 
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P r o c e d u r e  B2  

The most  likely configuration is: 
arg maxj/~2(C = j l v ,  n L p l , n 2 , p 2 ) ,  where 1 < j < 5 

1. IF f (v ,  n l , p l , n 2 , p 2 )  > 0 THEN 
f( j ,v ,n 1 ,pl,n2,p2) 

~2(j) = f(~,,~,pl,,2,p2) 

2. ELSEIF f ( n l , p l ,  n2,p2) + f ( v , p l ,  n2,p2) + f(v ,  n l , p l , p 2 )  > 0 THEN 
I52(j) = f(j,nl,pl,n2,p2)Tf(j,v,pl,n2,p2)+f(j,v,nl,pl,p2) 

f(nl,pl,n2,p2)+l(v,pl,n2,p2)+f(v,nl,pl,p2) 

3. ELSEIF f ( p l ,  n2, p2) + f ( v , p l , p2 )  + f ( n l , p l , p 2 )  > 0 THEN 
132(j) = f(J'pl'n2'p2)+ f(J'v'pl'v2)+ f(j'nl'pl'v2) 

f(pl,n2,p2)+f(v,pl,p2)+I(nl,pl,p2) 

4. ELSE Compet i t ive  Backed-off  Est imate  

Figure 1: Procedure B2 

the five possible a t tachment  configurations outlined 
above. 

The first three steps use the standard backed-off 
estimation, again including only those tuples con- 
taining bolh prepositions. However, after backing-off 
to three elements, we abandon the standard backed- 
off est imation technique. The combination of sparse 
data., and too few lexical heads, renders backed-off 
estimation ineffective. Rather, we propose a tech- 
nique which makes use of the richer data  available 
from the PP1 training set. Our hypothesis is that  
this information will be useful in determining the 
a t tachments  of subsequent PPs as well. This is mo- 
tivated by our observations, reported in the previ- 
ous section, that  the distribution of high-low attach- 
ments for specific prepositions did not vary signifi- 
cantly for PPs further from the verb. The Compet-  
it ive Backed-Off  Est imate  procedure, presented 
below, operates by initially fixing the configuration 
of the first preposition (to either the VP or the di- 
rect object NP), and then considers how the sec- 
ond preposition would be optimally attached into 
the configuration. 

Procedure  Compet i t ive  Backed-off  Est imate  

1. C~ is the most likely configuration for PP1, 
arg maxi /)1(C~ = ilv, n l , p l )  

2. C~' is the preferred configuration for PP2 w.r.t 
n2, 
arg maxi  /~I(C~' = ilv, n2,p2) 

3. C~" is the preferred configuration for PP2 w.r.t 
n l ,  

max ^ I~,,, iJv, n l ,p2)  a r g  i Pl/t-~2 : 

4. Find Best  Configuration 

First we determine C~,, on which depends the at- 
tachment  of p l .  We then determine C~', which indi- 
cates the preference for p2 to attach to the VP or to 
n2, and C~", which is the preference for p2 to at tach 
to the VP or to nl .  Given the preferred configura- 
tions C~, C~', and C~", we now must determine the 
best of the five possible configurations, C5, for the 
entire VP. 

Procedure  Find Best Configuration 

1. I F C ~ =  
C 5 ~ 1  

2. ELSEIF 
C 5 ~ 4  

3. ELSEIF 
C ~ 2  

4. ELSEIF 
C 5 ~ 3  

5. ELSEIF 
C 5 ~ 2  

6. 

1 and C~ I = 1 THEN 

C~ = 1 and G'~' = 2 THEN 

C~ = 2 and C~ ' = 1 and C;" = 1 THEN 

C~ = 2 and C~' = 2 and C~" = 1 THEN 

C~ = 2 and C~' = 1 and C.~" = 2 THEN 

ELSEIF C~ = 2 and C~' = 2 and C~" = 2 THEN 
tie-break 

(a) IF f (2,  v, n2,p2) < f(2,  v, n l ,p2)  THEN 
C 5 ~ 5  

(b) ELSE C5 ~ 3 

The tests 1 to 5 simply use the a t tachment  values 
C~, C~', and C~" to determine C%: the best config- 
uration. In the final instance, step 6, where the C~' 
indicates a preference for n2 at tachment,  and C~" in- 
dicates a preference for nl  a t tachment  a tie-break is 
necessary to determine which noun to attach to. As 
a first approximation,  we use the frequency of occur- 
rence used in determining these preferences, rather 
than the probabili ty for each preference. Tha t  is, 
we favour the bias for which there is more evidence, 

153 



though whether this is optimal remains an empirical 
question. For example, if C~' is based on 4 observa- 
tions, and C~" is based on 7, then the C~" preference 
is considered stronger. 

Having constructed the algorithm to determine 
the best configuration for 2 PPs, we can similarly 
generalize the algorithm to handle three. In this 
case /k denotes one of fourteen possible attachment 
configurations shown earlier. The pseudo code for 
procedure B3 is shown below, simplified for reasons 
of space. 

Procedure B3 

The most likely configuration is: 

arg m a x k  p3(C14 ~- k[v, na,pl, n2,p2, n3,p3), where 
1 < k < 1 4  

1. IF f(v, nl ,pl ,n2,p2,  n3,p3) > 0) THEN 
](k,v,nl@l,n2,p2,n3,p3) 

2. ELSE Try backing-off to 6 or 5 items . . .  

3. ELSE Competitive Backed-off Estimate: 

(a) Use P r o c e d u r e  B2 to determine C~, the 
configuration of pl  and p2 

(b) Compute C~', C~", C~'", the preferred at- 
tachment of p3 w.r.t n l ,  n2, n3 respectively 

(c) Determine the best configuration 

Again, we back-off up to two times, always in- 
cluding tuples which contain the three prepositions. 
After this, backing-off becomes unstable, so we use 
the C o m p e t i t i v e  B a c k e d - o f f  E s t i m a t e ,  as above, 
but scaled up to handle the three prepositions and 
fourteen possible configurations. 

5.1 R e s u l t s  

To evaluate the performance of our algorithm, we 
nmst first determine what the expected baseline, or 
lower-bound on, performance would be. Given the 
variation in the number of possible configurations 
across the three cases, the performance expected due 
to chance would be 50% for 1 PP, 20% for 2 PPs, 
and 7% for 3 PPs. A better baseline is the perfor- 
mance that  would be expected by simply adopting 
the most likely configuration, without regard to lexi- 
cal items. This is shown in the table below, with the 
most frequent configuration shown in parentheses. 

Total 
Most Frequent 
Percent Correct 

PP i (2 )  
19963 

12223(2) 
61.2% 

PP2(5) PP3(14) 
4683 907 

1394(3) 168(4) 
29.8% 18.5% 

Table 2 presents the performance of the compet- 
itive backed-off estimation algorithm on the test 

data. As can be seen, the performance for PP1 
replicates the findings of Collins and Brooks, who 
achieved 84.5% (using 4 lexical items, compared to 
our three). For PP2 perfordlance is again high, re- 
calling that the algorithm is discriminating five pos- 
sible attachment configurations, and the baseline ex- 
pectation was only 29.8%. Similarly for PP3, our 
performance of 43.6% accuracy (discriminating four- 
teen configurations) far out strips the baseline of 
18.5%. 

6 C o n c l u s i o n s  

The backed-off estimate has been demonstrated to 
work successfully for single PP at tachment,  but  the 
sparse data problem renders it impractical for use 
in more complex constructions such as multiple PP  
attachment; there are too many configurations, too 
many head words, too few training examples. In this 
paper we have demonstrated, however, that  the rela- 
tively rich training data  obtained for the first prepo- 
sition can be exploited in attaching subsequent PPs. 
The algorithm incrementally fixes each preposition 
into the configuration and the more informative PP1 
training data is exploited to settle the competition 
for possible attachments for each subsequent prepo- 
sition. Performance is considerably better than both 
chance and the naive baseline technique. The gen- 
eralized backed-off estimation approach which we 
have presented constitutes a practical solution to 
the problem of multiple PP disambiguation. This 
further suggests that  backed-off estimation may be 
successfully integrated into more general syntactic 
disambiguation systems. 
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