
Learning to Tag Multilingual Texts Through Observation

Scott W. Bennett a n d C h i n a t s u A o n e a n d C r a i g L o v e l l

S R A I n t e r n a t i o n a l
4300 Fai r Lakes C o u r t

Fa i r fax , VA 22033
{ b e n n e t t , a o n e c , l o v e l l c } @sra .com

Abstract
This paper describes RoboTag, an ad-
vanced prototype for a machine learning-
based multilingual information extraction
system. First, we describe a general
client/server architecture used in learning
from observation. Then we give a detailed
description of our novel decision-tree tag-
ging approach. RoboTag performance for
the proper noun tagging task in English
and Japanese is compared against human-
tagged keys and to the best hand-coded
pattern performance (as reported in the
MUC and MET evaluation results). Re-
lated work and future directions are pre-
sented.

1 I n t r o d u c t i o n

The ability to tag proper names such as organi-
zation, person, and place names in multilingual
texts has great value for tasks like information ex-
traction, information retrieval, and machine trans-
lation (Aone, Charocopos, and Gorlinsky, 1997).
The most successful systems currently rely on hand-
coded patterns to identify the desired names in
texts (Adv, 1995; Def, 1996). This approach
achieves its best performance using different hand-
coded rule sets for each language/domain pair. Sev-
eral of these systems have improved in ease of
use, particularly in the speed of the write pat-
tern/evaluate performance/refine pattern loop which
plays the central role in the development process.
One approach in name tagging is to assist in the
creation of hand-coded rules by making it easier for
the developer to mark parts of the name and its
surrounding context to include in the pattern. This
boosts productivity in hand-coding rules but still re-
quires a significant amount of effort by the developer
to identify key parts of the pattern. A step up from
this is to determine how to generalize the rule so
that it is more broadly applicable or to suggest to
the developer which parts of the context have high-
value for inclusion in the pattern. Nevertheless, a

skilled developer with a thorough knowledge of the
particular pattern language is still essential.

Our goal in developing RoboTag was to make it
possible for an end-user to build a tagging system
simply by giving examples of what should be tagged,
rather than requiring the user to understand a pat-
tern language. RoboTag uses a machine learning
algorithm to discover features that the training ex-
amples have in common. This knowledge is used to
construct a tagging procedure that can find addi-
tional, previously unseen examples for extraction.

It was important (for the confidence of our users)
that the tagging procedure induced by the system
be easily explained in terms of how it makes its de-
cisions. This was one of the factors that led us to
consider using decision trees (Quinlan, 1993) as a key
component of the system. Other potential learning
or statistical approaches for a problem like this (e.g.,
Neural Nets or Hidden Markov Models) did not offer
this advantage. The RoboTag system is particularly
well instrumented for exploration of different learn-
ing system parameters and inspection of the induced
tagging procedures.

First, we discuss the overall architecture for the
l~oboTag system. Next, we focus on the machine
learning algorithm employed for tag learning. We
then present experimental results which compare
RoboTag to both human-tagged keys and to the best
hand-coded rule systems. Lastly, related work and
future directions are discussed.

2 RoboTag Architecture

RoboTag design was motivated by our goal of de-
veloping an interactive learning system. The system
had to process a large number of texts as well as
provide the ability to visualize learning results and
allow feedback to the learning system. To this end,
RoboTag was designed as a client/server architec-
ture. The client interface is an enhancement of a
manual annotation tool. The interface works with
multiple languages and includes support for both
single- and double-byte coding schemes. We focus on
English and Japanese in this paper. The server por-

109

tion of the system performs all the document man-
agement, text preprocessing, and machine learning
functions. Because it was important to facilitate in-
teraction between the user and the learning system,
it was essential to show learned results rapidly. By
separating the client interface from the server which
performs the learning functionality, it was possible
to use fast machines for the CPU-intensive learning
operations rather than relying on the user's desktop
machine.

2.1 C l i en t I n t e r f a c e

The client consists of a tagging tool interface written
in Tk /Tc l , a cross-platform GUI scripting language.
The interface, shown in Figure 1, is designed pri-
marily to function as a tagging tool. It makes it
easy for a user to mark and edit tags within mul-
tilingual texts. The tool reads and writes texts in
SGML format. Wha t distinguishes this tagging tool
is that the manually tagged documents are passed
back through the RoboTag server to build a tag-
ging procedure in line with what the user is tagging.
RoboTag can thus suggest what should be tagged
after having received some training through observa-
tion of the user. The interface has been augmented
with several displays that allow for a thorough in-
vestigation of the learned tagging procedure. These
include graphical displays of the induced logic for
tagging (cf. Figure 2), graphical displays of tagging
accuracy (i.e. precision and recall), and the ability
to inspect the examples from the texts that justify
the induced tagging procedure.

2.2 S e r v e r

The RoboTag server performs the tag learning func-
tions. It manages the training and testing files,
extracts features, learns tagging procedures from
tagged training texts, and applies them to un-
seen test texts. Each RoboTag client invokes its
own instance of the server to handle its learning
tasks. There can be multiple servers running on
the same machine, each independently handling a
single client's tasks. The RoboTag server receives
commands from the client and returns learning re-
sults to it. During this dialogue, the server main-
tains intermediate results such as learned tagging
procedures, texts that have been preprocessed for
learning or evaluation, and state information for the
current task. This includes the parameter settings
for the learning algorithm, feature usage statistics,
and preprocessor output. The client connects to the
RoboTag server on a network using T C P / I P . There
is a well-defined interface to the server so it can act
as a learning engine for other text handling applica-
tions as well.

Examples of server commands include:

1. Process a text for training or testing

2. Learn a classifier 1 for a tag

3. Evaluate a learned classifier on a text

4. Load a previously learned classifier or save one
for future use

5. Change a learning parameter

6. Enable or disable a lexical feature

3 L e a r n i n g t o T a g

RoboTag must learn to place tags of varying types
within the text. This means placing an appropriate
SGML begin tag like < P E R S O N > prior to a per-
son's name in the text and following the person's
name with an SGML end tag like < / P E R S O N > . In
this paper, in order to compare with other name tag-
ging system results as reported in the Message Un-
derstanding Conference 6 (MUC-6) (Adv, 1995) and
the Multilingual Enti ty Task (MET) (Def, 1996), we
will be tagging people, places, and organizations.
RoboTag provides for learning other types of tags
as well.

For each tag learning task, RoboTag builds two
decision trees - one to predict begin tags and one
to predict end tags. The results of these classifiers
are then combined using a tag matching algorithm
to yield complete tags of each type. A tag post-
processing step resolves overlapping tags of differ-
ent types using a prioritization scheme. Altogether,
these make up the learned tagging procedure.

In this section we describe RoboTag 's decision
tree learning, learning representation, learning pa-
rameters, the tag matching algorithm, and post-
processing.

3.1 D e c i s i o n T r e e L e a r n i n g

RoboTag learns decision tree classifiers that predict
where tags of each type should begin and end in the
text. The decision trees are trained from texts which
have already been tagged manually.

For learning the tag begin/end classifiers, we build
decision trees using C4.5 (Quinlan, 1993). 2 C4.5 is
used to learn decision tree classifiers which distin-
guish items of one class from another based on at-
tributes of the training examples. These at tr ibutes
are referred to as fealures. In using a decision tree
for classification, each node indicates a feature test
to be performed. The result of the test indicates
which branch of the tree to take next. Ultimately,
a leaf node of the tree is reached which specifies the
classification result. To produce our decision trees,
an information theoretic criteria called information

1RoboTag uses decision tree classifiers as part of the
learned tagging procedure. They will be discussed in the
next section.

:C4.5 has been specially adapted to work directly on
our preprocessor-produced data structures for more ef-
ficient operation rather than through data files which is
the normal mode of operation.

110

Figure 1: RoboTag Interface

gain ratio is used to measure, at each step of tree
construction, which feature test would best distin-
guish the examples on the basis of their class. The
simplest classification problem involves learning to
distinguish positive and negative examples of some
concept. In our case, this means characterizing text
positions where a tag should begin or end from text
positions in which it should not.

In order to extract learning features, the Robo-
Tag server employs a preprocessor plug-in for each
language it operates with. This preprocessor per-
forms tokenization, word segmentation, morpholog-
ical analysis, and lexical lookup as necessary for
each language. The preprocessor produces output
in a well-defined format across languages which the
server uses in carrying out the learning. For in-
stance, in processing Japanese, RoboTag may use
features which are uniquely Japanese but may not
be present in English, or vice versa. Table 1 shows
some of the features used by RoboTag for learning.

Figure 2 shows a screen shot of a portion of a
decision tree trained to produce begin tags. One
of the leaf nodes of the tree has been selected pro-
ducing a window which shows person names in con-
text as classified at the leaf. The last test in the
branch prior to the shown window tests to see if
the word prior to the current word is a person ti-
tle (like "President," "Secretary,!' or "Judge" when
a decision is being made about whether to start a
name with "Reagan," "Robert," or "Galloway" re-
spectively). The screen shot goes on to show that if
the previous word is not a person title, the system
consults the 2nd word prior to the candidate begin
tag to see if it is an organization noun prefix (such

as "bank", "board", or "court").

3.2 L e a r n i n g R e p r e s e n t a t i o n

C4.5 represents training examples as fixed length
feature vectors with class labels. The goal is to learn
to predict the class label from the other features in
the vector. In our case this means learning to label
tokens as begin or end tags from the token's lexical
features. When RoboTag processes a tagged train-
ing text, it creates labeled feature vectors (called
tuples) from the preprocessor data. One tuple is cre-
ated for each token in the text, with the label TRUE
or FALSE. If we are learning a tree to predict be-
gin tags, the label is TRUE if the token is the first
token inside an SGML tag we are trying to learn,
and false otherwise. Similarly for end tags, the tu-
ple is labeled TRUE if the token is the last token in
a training tag and false otherwise.

A single token usually does not contain enough
information to decide whether it makes a good tag
begin or end. Features from the surrounding tokens
must be used as well. To create a tuple from a token,
RoboTag collects the preprocessor features for the
token as well as its immediate neighbors. How many
neighboring tokens to use is determined by a radius
parameter, as will be discussed in Section 3.3. A
radius of 1 means the current token and both the
previous and next tokens will be part of the tuple (1
token in each direction).

To fill in the tuple values, RoboTag calls on the
preprocessor as a feature extractor. Each position in
the tuple's feature vector holds a value from a pre-
processor field. RoboTag can use whatever lexical
and token-type features that the preprocessor pro-

111

Table 1: Features Used in Learning

Features Examples
Token Type lower, upper, cap, hiragana, kanji, katakana
POS adj, adv, aux, conj, det, n, prep, pro, v
Location continent, country, province, city
Semantic Type first name, corporate designator, title

Figure 2: Part of a RoboTag Begin Tag Classifier

vides. In this way the preprocessor forms the back-
ground knowledge for the target language. Once the
training texts have been represented as tuples, the
learning process can begin.

3.3 L e a r n i n g P a r a m e t e r s

There are several parameters to ~oboTag that af-
fect tagging performance. Below are descriptions of
some of the parameters. The Experiments section
discusses the settings that produced the best results
for each task.

• Rad ius : This controls the number of tokens
used to make each training tuple. A higher ra-
dius gives the decision tree algorithm more con-
textual information in deciding whether a token
makes a good begin or end tag.

• S a m p l i n g Ra t io : Creating one tuple from
each token in a text leads to many more nega-
tive training examples than positive, since only
the tokens at the beginning (or end) of a tag
generate positive training tuples. Every other
token forms a negative example; a place where
a tag did not begin or end. Too many neg-
ative examples can hurt learning accuracy by
making the system too conservative. In some
extreme cases, this can lead to decision trees
that never predict a tag begin or end no mat-
ter what the input. The sampling ratio is the
ratio of negative to positive examples to use for
training. All of the positive examples are used,
and negative examples are chosen randomly in
accordance with this parameter. What is in-

teresting about the Sampling Ratio is that it
allows recall to be traded off for precision di-
rectly. Increasing the sampling ratio gives the
learning system more examples of things that
should not be tagged, reducing the number of
false positives which increases precision. Mak-
ing the decision trees more conservative in this
way can also lower recall. Finding a balance of
precision and recall by tuning this parameter is
essential for best results.

• C e r t a i n t y Fac to r : This parameter affects de-
cision tree pruning, a process used to simplify
learned decision trees. Pruning helps reduce
over-fitting of training data and improves clas-
sification accuracy on unseen examples. This
parameter takes values between 0 and 1, with
lower values meaning more pruning.

3.4 T h e M a t c h i n g A l g o r i t h m

When tagging a text, RoboTag evaluates the learned
decision tree classifiers on the new text to produce
a list of potential begin and end tags for each tag
type. These lists are produced independently, and
there may be many ways to pair begin and end tags
together. For each begin tag found there may be sev-
eral plausible end tags that could pair with it (and
vice versa). The matching algorithm must decide
the best possible pairing of the begin and end tags
for each tag type.

Each potential begin and end tag produced by the
decision tree also has a confidence rating, a number
between 0 and 1 estimating the chance of correct

112

classification. A scoring function is used to evalu-
ate the relative merits of different sets of pairings.
In addition to the confidence ratings for the tags,
the scoring function makes use of statistical mea-
sures like the mean and standard deviation of the
tag length in the training examples. The mateher
can be biased to prefer tags longer, shorter, or clos-
est to this mean length.

Considering all possible begin/end tag pairings
quickly becomes intractable as the number of po-
tentially interacting tags increases. Therefore, the
first step in the matching process seeks to divide the
text up into a set of non-interacting sections.

Each time a begin/end pair is made, any begin or
end tags between the pair cannot be used (or the
resulting tags would overlap). This means that each
pair could preclude other possible matches. The text
is divided into sections by observing which tags can
possibly affect other tags. The mean distance, stan-
dard deviation, and match threshold determine the
distance interval within which the matcher searches
for tag pairs. If two tags are far enough apart, they
can be matched independently without fear of one
pairing precluding another. These boundary points
in the text are found first. Then each independent
section is searched separately for tag pairings. The
best pairing set for a section maximizes the sum of
the scores for each pair in the section.

There are three parts to the scoring function for
a pair. The first is the confidence with which the
begin tag tree classifies the token as a good begin
tag. The second component is the end tag tree con-
fidence. The last part is a distance score, which is
calculated from the tag length, mean distance, and
match length preference. Each of the three length
preferences (longest, shortest, or closest to mean dis-
tance) uses an appropriate bias to the way in which
these inputs are combined.

3.5 Tag Overlap Resolution

Because the tag matching algorithm only ensures
non-overlapping tags within each tag type, it is pos-
sible to have cases of embedded tags of different
types (like tagging "Boston" as a location within the
tag for "Boston Edison Company") . To resolve these
cases, RoboTag uses a static tag priority scheme. For
proper noun tagging the priority order from highest
to lowest is person, entity, place. We do not cur-
rently learn the tag priorities although this is a log-
ical extension to the learning technique.

4 E x p e r i m e n t s

We set up experiments on English and Japanese
name tagging using the same texts that were used
for the named entity task of the MUC-6 and MET
competitions. In this way, we can most easily com-
pare RoboTag performance against a variety of other
name tagging systems.

4.1 English Results

For English, the MUC-6 Wall Street Journal cor-
pus was used. RoboTag was trained with 300 train-
ing texts and proceeded to automatically tag the
30 blind test texts. The scores on the test set are
shown in the Table 2. For each tag type, the table
gives the total number of tags of that type present
in the training and testing sets and the recall, pre-
cision, and F-Measure 3 as measured on the test set.
Overall totals are given at the bo t tom of the table.

The best system in the MUC-6 named entity
task, using hand-coded rules, returned F-Measures
of 98.50 for person, 96.96 for place, and 92.48 for
entity as shown in Table 3 (Krupka, 1995) .

We found that RoboTag's best English results
were obtained with a sampling ratio of 10, a radius
of 2, and certainty factors of 0.75 for pruning for all
the tag types.

4.2 Japanese Results

In Japanese, the MET corpus of press-conference re-
lated texts from Kyodo News Agency was used in the
experiment. A training set of 300 texts was used
with a blind test set of 99. RohoTag scores on the
test set are reported in Table 4.

The best system on the MET task, utilizing hand-
coded rules, produced F-Measures of 95.37 for per-
son, 93.43 for place, and 86.90 for entity (cf., Ta-
ble 5) while the second place system posted 78.54 for
person, 84.00 for place, and 79.25 for entity. Robo-
Tag would have ranked 2nd among the MET systems
on the Japanese entity task.

Sampling ratios for our best Japanese results were
35, 15 and 10 for person, place, and entity. For all
three tags we used a radius of 2 and certainty factors
of 0.65 for pruning.

5 R e l a t e d W o r k

Vilain and Day (Vilain and Day, 1996) report on
an approach which learns and applies rule sequences
for the name tagging task (based on Eric Brill's rule
sequence work (Brill, 1993)). It uses a greedy algo-
r i thm to generate and apply rules, incrementally re-
fining the target concept. They report their best pre-
cision/recall results for machine-learned rules on the
MUC-6 task with equivalent F-Measures 4 of 78.50

ZF-measure is calculated by:

F = (fl2+l.O) x P x R
fl~ x P + R

where P is precision, R is recall, and fl is the relative
importance given to recall over precision. In this case, f
= 1.0 as used in MUC-6 and MET.

4The F-Measure formula they report seems to be in
error and they reported with a fl of 0.8. For comparison,
we used the standard F-Measure formula with a fl of 1
as reported above.

113

Table 2: RoboTag English Results

Tag Type # Training ~ Testing Testing Recall I Testing Precision F-Measure
Person 1978 372 93.5 95.9 94.7
Place 2495 110 95.5 89.7 92.5
Entity 3551 448 79.7 83.4 81.5
Total 8024 930 87.1 89.2 88.1

Table 3: Best MUC-6 English Results

Tag Type # Poss I Recall Precision F-Measure
Person 373 98 99 98.5
Place 110 99 95 96.96
Entity 447 91 94 92.48
Total 930 94.8 96.1 95.4

Table 4: RoboTag Japanese Results

Tag Type # Training # Testing Testing Recall Testing Precision F-Measure
Person 1081 346 81.0 89.9 85.2
Place 1960 756 84.5 88.7 86.6
Entity 1958 596 77.1 80.7 78.8

4999 81.2 Total 86.1 1698 83.6

Table 5: Best MET Japanese Results

Tag Type] # Poss I Recall Precision IF-Measure
Person 346 92 99 95.37
Place 756 91 96 93.43
Entity 596 84 90 86.90
Total 1698 88.8 94.5 91.5

114

for person, 74.35 for place, and 82.81 for entity. Our
English score is significantly better, especially for
the person and place tasks. Because their Japanese
results were not reported we cannot compare our
Japanese performance.

Gallippi (Gallippi, 1996) presents an approach to
tag classification using decision trees. Hand-coded
rules are employed to delimit proper nouns within
the text. Each proper noun is then classified into an
appropriate type (e.g., person, entity, place) using
decision trees (ID3), an easier task than also learning
to place tags. It is also less general to rely on hand
coded rules for a significant part of the tagging task.

Bikel et al. (Bikel et al., 1997) report on Nymble,
an HMM-based name tagging system operating in
English and Spanish. Nymble performs well, turn-
ing in F-measures of 90 and 93 respectively in Span-
ish and English on the MUC-6 task. These scores
were achieved using 450,000 words of tagged text, 3
times the size of the 150,000 word training set used
for the RoboTag experimental results reported here.
Bikel reports that moving from 100,000 to 450,000
training texts yielded a 1-2% improvement. A direct
comparison with Nymble on particular tag types is
not possible because only the overall F-measure is
reported for the MUC-6 task. In these experiments
we only trained and tested on person, place, and en-
ti ty tags. If we use RoboTag with our hand-coded
rules for dates and number, the overall F-measure
on the MUC-6 English task is 90.1.

6 F u t u r e D i r e c t i o n s

There are a number of ways in which RoboTag per-
formance could be improved. Perhaps the most obvi-
ous enhancement to our representation involves giv-
ing the learning system the actual text of the token
in the feature vector. Currently, each tuple contains
the preprocessor information for a window of tokens
in the text, but the actual token text is not avail-
able to the learning. The decision trees can refer to
classes of words by their lexicon features, but not
individual words themselves. Adding this capability
would allow performance improvement especially in
cases where lexicon data is sparse. Using words as
features is related to the idea of automatic word list
modification. This would allow RoboTag to actually
reconfigure its knowledge base of word lists and pro-
pose new features. This is one way that RoboTag
could adapt to new extraction domains.

Unlike some of the name tagging systems Robo-
Tag is being compared to, RoboTag has no alias
generation facility. By generating an alias from a
recognized name, a system can scan for that alias
(e.g., a company's acronym or an individual's first
name) in order to improve the likelihood of identi-
fying it. It would be straightforward to add such an
alias capability to RoboTag.

Another accuracy enhancement is to improve the

tag matching algorithm. RoboTag does not cur-
rently use the lexical features of the tokens during
the match process. The scoring function takes into
account tag length and decision tree confidence val-
ues only. Many of the errors RoboTag makes come
from the matching algorithm where the decision
trees correctly predict tag begins and ends but the
wrong tag pairings are chosen. Making the match-
ing algorithm sensitive to lexical features should help
correct this.

Although, for comparison with other systems, we
have presented traditional batch-mode learning re-
sults here, one of RoboTag's strengths is in its in-
teractivity. We believe that allowing the user to
give direct feedback to the learning system is key to
rapidly addressing new extraction tasks. We plan to
do further experiments which address how the use of °
this directed feedback can result in rapidly learned
tagging procedures utilizing fewer tagged texts.

Finally, our experiments have focused on proper
name tagging, but RoboTag is not limited to this.
We are planning to explore additional tagging tasks
besides names in multiple languages such as Chinese,
Thai, Spanish as well as English and Japanese.

7 S u m m a r y

RoboTag is a multilingual text extraction system
that automatically learns to tag texts by observ-
ing its users. Decision trees are learned to predict
where users begin and end tags. These are combined
with a matching algorithm to produce complete tags.
RohoTag is flexible in its ability to work with mul-
tiple languages. We have shown RoboTag perfor-
mance to be competitive with hand-coded pattern-
based systems in very different languages like En-
glish and Japanese.

R e f e r e n c e s

Advanced Research Projects Agency. 1995. Proceed-
ings of Sixth Message Underslanding Conference
(MUC-6). Morgan Kaufmann Publishers.

Aone, Chinatsu, Nicholas Charocopos, and James
Gorlinsky. 1997. An Intelligent Multilingual In-
formation Browsing and Retrieval System Using
Information Extraction. In Proceedings of the
Fifth Conference on Applied Natural Language
Processing.

Bikel, Daniel M., Scott Miller, Richard Schwartz,
and Ralph Weischedel. 1997. Nymble: a High-
Performance Learning Name-finder. In Proceed-
ings of the Fifth Conference on Applied Natural
Language Processing.

Brill, Eric. 1993. A Corpus-based Approach to Lan-
guage Learning. Ph.D. thesis, University of Penn-
sylvania.

115

Defense Advanced Research Projects Agency. 1996.
Advances in Text Processsing: TIPSTER PRO-
GRAM (Phase II). Morgan Kaufmann Publishers.

Gallippi, Anthony. 1996. Recognizing Names Across
Languages. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics
(COLING).

Krupka, George. 1995. SRA: Description of the
SRA System as Used for MUC-6. In Proceed-
ings of Sixth Message Understanding Conference
(MUC-6).

Quinlan, J. Ross. 1993. C~.5: Programs for Ma-
chine Learning. Morgan Kaufmann Publishers.

Vilain, Marc and David Day. 1996. Finite-state and
phrase parsing by rule sequences. In Proceedings
of the 16th International Conference on Compu-
tational Linguistics (COLING).

116

