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Abstract 
This paper describes RoboTag, an ad- 
vanced prototype for a machine learning- 
based multilingual information extraction 
system. First, we describe a general 
client/server architecture used in learning 
from observation. Then we give a detailed 
description of our novel decision-tree tag- 
ging approach. RoboTag performance for 
the proper noun tagging task in English 
and Japanese is compared against human- 
tagged keys and to the best hand-coded 
pattern performance (as reported in the 
MUC and MET evaluation results). Re- 
lated work and future directions are pre- 
sented. 

1 I n t r o d u c t i o n  

The ability to tag proper names such as organi- 
zation, person, and place names in multilingual 
texts has great value for tasks like information ex- 
traction, information retrieval, and machine trans- 
lation (Aone, Charocopos, and Gorlinsky, 1997). 
The most successful systems currently rely on hand- 
coded patterns to identify the desired names in 
texts (Adv, 1995; Def, 1996). This approach 
achieves its best performance using different hand- 
coded rule sets for each language/domain pair. Sev- 
eral of these systems have improved in ease of 
use, particularly in the speed of the write pat- 
tern/evaluate performance/refine pattern loop which 
plays the central role in the development process. 
One approach in name tagging is to assist in the 
creation of hand-coded rules by making it easier for 
the developer to mark parts of the name and its 
surrounding context to include in the pattern. This 
boosts productivity in hand-coding rules but still re- 
quires a significant amount of effort by the developer 
to identify key parts of the pattern. A step up from 
this is to determine how to generalize the rule so 
that it is more broadly applicable or to suggest to 
the developer which parts of the context have high- 
value for inclusion in the pattern. Nevertheless, a 

skilled developer with a thorough knowledge of the 
particular pattern language is still essential. 

Our goal in developing RoboTag was to make it 
possible for an end-user to build a tagging system 
simply by giving examples of what should be tagged, 
rather than requiring the user to understand a pat- 
tern language. RoboTag uses a machine learning 
algorithm to discover features that the training ex- 
amples have in common. This knowledge is used to 
construct a tagging procedure that can find addi- 
tional, previously unseen examples for extraction. 

It was important (for the confidence of our users) 
that the tagging procedure induced by the system 
be easily explained in terms of how it makes its de- 
cisions. This was one of the factors that led us to 
consider using decision trees (Quinlan, 1993) as a key 
component of the system. Other potential learning 
or statistical approaches for a problem like this (e.g., 
Neural Nets or Hidden Markov Models) did not offer 
this advantage. The RoboTag system is particularly 
well instrumented for exploration of different learn- 
ing system parameters and inspection of the induced 
tagging procedures. 

First, we discuss the overall architecture for the 
l~oboTag system. Next, we focus on the machine 
learning algorithm employed for tag learning. We 
then present experimental results which compare 
RoboTag to both human-tagged keys and to the best 
hand-coded rule systems. Lastly, related work and 
future directions are discussed. 

2 RoboTag Architecture 

RoboTag design was motivated by our goal of de- 
veloping an interactive learning system. The system 
had to process a large number of texts as well as 
provide the ability to visualize learning results and 
allow feedback to the learning system. To this end, 
RoboTag was designed as a client/server architec- 
ture. The client interface is an enhancement of a 
manual annotation tool. The interface works with 
multiple languages and includes support for both 
single- and double-byte coding schemes. We focus on 
English and Japanese in this paper. The server por- 
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tion of the system performs all the document man- 
agement, text preprocessing, and machine learning 
functions. Because it was important  to facilitate in- 
teraction between the user and the learning system, 
it was essential to show learned results rapidly. By 
separating the client interface from the server which 
performs the learning functionality, it was possible 
to use fast machines for the CPU-intensive learning 
operations rather than relying on the user's desktop 
machine. 

2.1 C l i en t  I n t e r f a c e  

The client consists of a tagging tool interface written 
in Tk /Tc l ,  a cross-platform GUI scripting language. 
The interface, shown in Figure 1, is designed pri- 
marily to function as a tagging tool. It  makes it 
easy for a user to mark and edit tags within mul- 
tilingual texts. The tool reads and writes texts in 
SGML format.  Wha t  distinguishes this tagging tool 
is that  the manually tagged documents are passed 
back through the RoboTag server to build a tag- 
ging procedure in line with what the user is tagging. 
RoboTag can thus suggest what should be tagged 
after having received some training through observa- 
tion of the user. The interface has been augmented 
with several displays that  allow for a thorough in- 
vestigation of the learned tagging procedure. These 
include graphical displays of the induced logic for 
tagging (cf. Figure 2), graphical displays of tagging 
accuracy (i.e. precision and recall), and the ability 
to inspect the examples from the texts that  justify 
the induced tagging procedure. 

2.2 S e r v e r  

The RoboTag server performs the tag learning func- 
tions. It  manages the training and testing files, 
extracts features, learns tagging procedures from 
tagged training texts, and applies them to un- 
seen test texts. Each RoboTag client invokes its 
own instance of the server to handle its learning 
tasks. There can be multiple servers running on 
the same machine, each independently handling a 
single client's tasks. The RoboTag server receives 
commands from the client and returns learning re- 
sults to it. During this dialogue, the server main- 
tains intermediate results such as learned tagging 
procedures, texts that  have been preprocessed for 
learning or evaluation, and state information for the 
current task. This includes the parameter  settings 
for the learning algorithm, feature usage statistics, 
and preprocessor output.  The client connects to the 
RoboTag server on a network using T C P / I P .  There 
is a well-defined interface to the server so it can act 
as a learning engine for other text handling applica- 
tions as well. 

Examples of server commands include: 

1. Process a text for training or testing 

2. Learn a classifier 1 for a tag 

3. Evaluate a learned classifier on a text 

4. Load a previously learned classifier or save one 
for future use 

5. Change a learning parameter  

6. Enable or disable a lexical feature 

3 L e a r n i n g  t o  T a g  

RoboTag must learn to place tags of varying types 
within the text. This means placing an appropriate  
SGML begin tag like < P E R S O N >  prior to a per- 
son's name in the text and following the person's 
name with an SGML end tag like < / P E R S O N > .  In 
this paper, in order to compare with other name tag- 
ging system results as reported in the Message Un- 
derstanding Conference 6 (MUC-6) (Adv, 1995) and 
the Multilingual Enti ty Task (MET) (Def, 1996), we 
will be tagging people, places, and organizations. 
RoboTag provides for learning other types of tags 
as well. 

For each tag learning task, RoboTag builds two 
decision trees - one to predict begin tags and one 
to predict end tags. The results of these classifiers 
are then combined using a tag matching algorithm 
to yield complete tags of each type. A tag post- 
processing step resolves overlapping tags of differ- 
ent types using a prioritization scheme. Altogether, 
these make up the learned tagging procedure. 

In this section we describe RoboTag 's  decision 
tree learning, learning representation, learning pa- 
rameters, the tag matching algorithm, and post- 
processing. 

3.1 D e c i s i o n  T r e e  L e a r n i n g  

RoboTag learns decision tree classifiers that  predict 
where tags of each type should begin and end in the 
text. The decision trees are trained from texts which 
have already been tagged manually. 

For learning the tag begin/end classifiers, we build 
decision trees using C4.5 (Quinlan, 1993). 2 C4.5 is 
used to learn decision tree classifiers which distin- 
guish items of one class from another based on at- 
tributes of the training examples. These at tr ibutes 
are referred to as fealures. In using a decision tree 
for classification, each node indicates a feature test 
to be performed. The result of the test indicates 
which branch of the tree to take next. Ultimately, 
a leaf node of the tree is reached which specifies the 
classification result. To produce our decision trees, 
an information theoretic criteria called information 

1RoboTag uses decision tree classifiers as part of the 
learned tagging procedure. They will be discussed in the 
next section. 

:C4.5 has been specially adapted to work directly on 
our preprocessor-produced data structures for more ef- 
ficient operation rather than through data files which is 
the normal mode of operation. 
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Figure 1: RoboTag Interface 

gain ratio is used to measure, at each step of tree 
construction, which feature test would best distin- 
guish the examples on the basis of their class. The 
simplest classification problem involves learning to 
distinguish positive and negative examples of some 
concept. In our case, this means characterizing text 
positions where a tag should begin or end from text 
positions in which it should not. 

In order to extract learning features, the Robo- 
Tag server employs a preprocessor plug-in for each 
language it operates with. This preprocessor per- 
forms tokenization, word segmentation, morpholog- 
ical analysis, and lexical lookup as necessary for 
each language. The preprocessor produces output  
in a well-defined format  across languages which the 
server uses in carrying out the learning. For in- 
stance, in processing Japanese, RoboTag may use 
features which are uniquely Japanese but may not 
be present in English, or vice versa. Table 1 shows 
some of the features used by RoboTag for learning. 

Figure 2 shows a screen shot of a portion of a 
decision tree trained to produce begin tags. One 
of the leaf nodes of the tree has been selected pro- 
ducing a window which shows person names in con- 
text as classified at the leaf. The last test in the 
branch prior to the shown window tests to see if 
the word prior to the current word is a person ti- 
tle (like "President," "Secretary,!' or "Judge" when 
a decision is being made about whether to start  a 
name with "Reagan," "Robert," or "Galloway" re- 
spectively). The screen shot goes on to show that  if 
the previous word is not a person title, the system 
consults the 2nd word prior to the candidate begin 
tag to see if it is an organization noun prefix (such 

as "bank", "board",  or "court"). 

3.2 L e a r n i n g  R e p r e s e n t a t i o n  

C4.5 represents training examples as fixed length 
feature vectors with class labels. The goal is to learn 
to predict the class label from the other features in 
the vector. In our case this means learning to label 
tokens as begin or end tags from the token's lexical 
features. When RoboTag processes a tagged train- 
ing text, it creates labeled feature vectors (called 
tuples) from the preprocessor data. One tuple is cre- 
ated for each token in the text, with the label TRUE 
or FALSE. If  we are learning a tree to predict be- 
gin tags, the label is TRUE if the token is the first 
token inside an SGML tag we are trying to learn, 
and false otherwise. Similarly for end tags, the tu- 
ple is labeled TRUE if the token is the last token in 
a training tag and false otherwise. 

A single token usually does not contain enough 
information to decide whether it makes a good tag 
begin or end. Features from the surrounding tokens 
must be used as well. To create a tuple from a token, 
RoboTag collects the preprocessor features for the 
token as well as its immediate neighbors. How many 
neighboring tokens to use is determined by a radius 
parameter,  as will be discussed in Section 3.3. A 
radius of 1 means the current token and both the 
previous and next tokens will be part  of the tuple (1 
token in each direction). 

To fill in the tuple values, RoboTag calls on the 
preprocessor as a feature extractor. Each position in 
the tuple's feature vector holds a value from a pre- 
processor field. RoboTag can use whatever lexical 
and token-type features that  the preprocessor pro- 
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Table 1: Features Used in Learning 

Features Examples 
Token Type lower, upper, cap, hiragana, kanji, katakana 
POS adj, adv, aux, conj, det, n, prep, pro, v 
Location continent, country, province, city 
Semantic Type first name, corporate designator, title 

Figure 2: Part  of a RoboTag Begin Tag Classifier 

vides. In this way the preprocessor forms the back- 
ground knowledge for the target language. Once the 
training texts have been represented as tuples, the 
learning process can begin. 

3.3 L e a r n i n g  P a r a m e t e r s  

There are several parameters to ~oboTag that af- 
fect tagging performance. Below are descriptions of 
some of the parameters. The Experiments section 
discusses the settings that  produced the best results 
for each task. 

• Rad ius :  This controls the number of tokens 
used to make each training tuple. A higher ra- 
dius gives the decision tree algorithm more con- 
textual information in deciding whether a token 
makes a good begin or end tag. 

• S a m p l i n g  Ra t io :  Creating one tuple from 
each token in a text leads to many more nega- 
tive training examples than positive, since only 
the tokens at the beginning (or end) of a tag 
generate positive training tuples. Every other 
token forms a negative example; a place where 
a tag did not begin or end. Too many neg- 
ative examples can hurt learning accuracy by 
making the system too conservative. In some 
extreme cases, this can lead to decision trees 
that never predict a tag begin or end no mat- 
ter what the input. The sampling ratio is the 
ratio of negative to positive examples to use for 
training. All of the positive examples are used, 
and negative examples are chosen randomly in 
accordance with this parameter. What  is in- 

teresting about the Sampling Ratio is that it 
allows recall to be traded off for precision di- 
rectly. Increasing the sampling ratio gives the 
learning system more examples of things that 
should not be tagged, reducing the number of 
false positives which increases precision. Mak- 
ing the decision trees more conservative in this 
way can also lower recall. Finding a balance of 
precision and recall by tuning this parameter is 
essential for best results. 

• C e r t a i n t y  Fac to r :  This parameter affects de- 
cision tree pruning, a process used to simplify 
learned decision trees. Pruning helps reduce 
over-fitting of training data  and improves clas- 
sification accuracy on unseen examples. This 
parameter takes values between 0 and 1, with 
lower values meaning more pruning. 

3.4 T h e  M a t c h i n g  A l g o r i t h m  

When tagging a text, RoboTag evaluates the learned 
decision tree classifiers on the new text to produce 
a list of potential begin and end tags for each tag 
type. These lists are produced independently, and 
there may be many ways to pair begin and end tags 
together. For each begin tag found there may be sev- 
eral plausible end tags that  could pair with it (and 
vice versa). The matching algorithm must decide 
the best possible pairing of the begin and end tags 
for each tag type. 

Each potential begin and end tag produced by the 
decision tree also has a confidence rating, a number 
between 0 and 1 estimating the chance of correct 
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classification. A scoring function is used to evalu- 
ate the relative merits of different sets of pairings. 
In addition to the confidence ratings for the tags, 
the scoring function makes use of statistical mea- 
sures like the mean and standard deviation of the 
tag length in the training examples. The mateher 
can be biased to prefer tags longer, shorter, or clos- 
est to this mean length. 

Considering all possible begin/end tag pairings 
quickly becomes intractable as the number of po- 
tentially interacting tags increases. Therefore, the 
first step in the matching process seeks to divide the 
text up into a set of non-interacting sections. 

Each time a begin/end pair is made, any begin or 
end tags between the pair cannot be used (or the 
resulting tags would overlap). This means that  each 
pair could preclude other possible matches. The text 
is divided into sections by observing which tags can 
possibly affect other tags. The mean distance, stan- 
dard deviation, and match threshold determine the 
distance interval within which the matcher searches 
for tag pairs. If  two tags are far enough apart,  they 
can be matched independently without fear of one 
pairing precluding another. These boundary points 
in the text are found first. Then each independent 
section is searched separately for tag pairings. The 
best pairing set for a section maximizes the sum of 
the scores for each pair in the section. 

There are three parts to the scoring function for 
a pair. The first is the confidence with which the 
begin tag tree classifies the token as a good begin 
tag. The second component is the end tag tree con- 
fidence. The last part  is a distance score, which is 
calculated from the tag length, mean distance, and 
match length preference. Each of the three length 
preferences (longest, shortest, or closest to mean dis- 
tance) uses an appropriate bias to the way in which 
these inputs are combined. 

3.5 Tag Overlap Resolution 

Because the tag matching algorithm only ensures 
non-overlapping tags within each tag type, it is pos- 
sible to have cases of embedded tags of different 
types (like tagging "Boston" as a location within the 
tag for "Boston Edison Company") .  To resolve these 
cases, RoboTag uses a static tag priority scheme. For 
proper noun tagging the priority order from highest 
to lowest is person, entity, place. We do not cur- 
rently learn the tag priorities although this is a log- 
ical extension to the learning technique. 

4 E x p e r i m e n t s  

We set up experiments on English and Japanese 
name tagging using the same texts that  were used 
for the named entity task of the MUC-6 and MET 
competitions. In this way, we can most easily com- 
pare RoboTag performance against a variety of other 
name tagging systems. 

4.1 English Results 

For English, the MUC-6 Wall Street Journal cor- 
pus was used. RoboTag was trained with 300 train- 
ing texts and proceeded to automatically tag the 
30 blind test texts. The scores on the test set are 
shown in the Table 2. For each tag type, the table 
gives the total number of tags of that  type present 
in the training and testing sets and the recall, pre- 
cision, and F-Measure 3 as measured on the test set. 
Overall totals are given at the bo t tom of the table. 

The best system in the MUC-6 named entity 
task, using hand-coded rules, returned F-Measures 
of 98.50 for person, 96.96 for place, and 92.48 for 
entity as shown in Table 3 (Krupka, 1995) . 

We found that  RoboTag's  best English results 
were obtained with a sampling ratio of 10, a radius 
of 2, and certainty factors of 0.75 for pruning for all 
the tag types. 

4.2 Japanese Results 

In Japanese, the MET corpus of press-conference re- 
lated texts from Kyodo News Agency was used in the 
experiment. A training set of 300 texts was used 
with a blind test set of 99. RohoTag scores on the 
test set are reported in Table 4. 

The best system on the MET task, utilizing hand- 
coded rules, produced F-Measures of 95.37 for per- 
son, 93.43 for place, and 86.90 for entity (cf., Ta- 
ble 5) while the second place system posted 78.54 for 
person, 84.00 for place, and 79.25 for entity. Robo- 
Tag would have ranked 2nd among the MET systems 
on the Japanese entity task. 

Sampling ratios for our best Japanese results were 
35, 15 and 10 for person, place, and entity. For all 
three tags we used a radius of 2 and certainty factors 
of 0.65 for pruning. 

5 R e l a t e d  W o r k  

Vilain and Day (Vilain and Day, 1996) report on 
an approach which learns and applies rule sequences 
for the name tagging task (based on Eric Brill's rule 
sequence work (Brill, 1993)). It  uses a greedy algo- 
r i thm to generate and apply rules, incrementally re- 
fining the target concept. They report their best pre- 
cision/recall results for machine-learned rules on the 
MUC-6 task with equivalent F-Measures 4 of 78.50 

ZF-measure is calculated by: 

F =  (fl2+l.O) x P x R  
fl~ x P + R  

where P is precision, R is recall, and fl is the relative 
importance given to recall over precision. In this case, f 
= 1.0 as used in MUC-6 and MET. 

4The F-Measure formula they report seems to be in 
error and they reported with a fl of 0.8. For comparison, 
we used the standard F-Measure formula with a fl of 1 
as reported above. 
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Table 2: RoboTag English Results 

Tag Type # Training ~ Testing Testing Recall I Testing Precision F-Measure 
Person 1978 372 93.5 95.9 94.7 
Place 2495 110 95.5 89.7 92.5 
Entity 3551 448 79.7 83.4 81.5 
Total 8024 930 87.1 89.2 88.1 

Table 3: Best MUC-6 English Results 

Tag Type # Poss I Recall Precision F-Measure 
Person 373 98 99 98.5 
Place 110 99 95 96.96 
Entity 447 91 94 92.48 
Total 930 94.8 96.1 95.4 

Table 4: RoboTag Japanese Results 

Tag Type # Training # Testing Testing Recall Testing Precision F-Measure 
Person 1081 346 81.0 89.9 85.2 
Place 1960 756 84.5 88.7 86.6 
Entity 1958 596 77.1 80.7 78.8 

4999 81.2 Total 86.1 1698 83.6 

Table 5: Best MET Japanese Results 

Tag Type ] # Poss I Recall Precision IF-Measure 
Person 346 92 99 95.37 
Place 756 91 96 93.43 
Entity 596 84 90 86.90 
Total 1698 88.8 94.5 91.5 
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for person, 74.35 for place, and 82.81 for entity. Our 
English score is significantly better, especially for 
the person and place tasks. Because their Japanese 
results were not reported we cannot compare our 
Japanese performance. 

Gallippi (Gallippi, 1996) presents an approach to 
tag classification using decision trees. Hand-coded 
rules are employed to delimit proper nouns within 
the text. Each proper noun is then classified into an 
appropriate type (e.g., person, entity, place) using 
decision trees (ID3), an easier task than also learning 
to place tags. It is also less general to rely on hand 
coded rules for a significant part of the tagging task. 

Bikel et al. (Bikel et al., 1997) report on Nymble, 
an HMM-based name tagging system operating in 
English and Spanish. Nymble performs well, turn- 
ing in F-measures of 90 and 93 respectively in Span- 
ish and English on the MUC-6 task. These scores 
were achieved using 450,000 words of tagged text, 3 
times the size of the 150,000 word training set used 
for the RoboTag experimental results reported here. 
Bikel reports that  moving from 100,000 to 450,000 
training texts yielded a 1-2% improvement. A direct 
comparison with Nymble on particular tag types is 
not possible because only the overall F-measure is 
reported for the MUC-6 task. In these experiments 
we only trained and tested on person, place, and en- 
ti ty tags. If we use RoboTag with our hand-coded 
rules for dates and number, the overall F-measure 
on the MUC-6 English task is 90.1. 

6 F u t u r e  D i r e c t i o n s  

There are a number of ways in which RoboTag per- 
formance could be improved. Perhaps the most obvi- 
ous enhancement to our representation involves giv- 
ing the learning system the actual text of the token 
in the feature vector. Currently, each tuple contains 
the preprocessor information for a window of tokens 
in the text, but the actual token text is not avail- 
able to the learning. The decision trees can refer to 
classes of words by their lexicon features, but not 
individual words themselves. Adding this capability 
would allow performance improvement especially in 
cases where lexicon data is sparse. Using words as 
features is related to the idea of automatic word list 
modification. This would allow RoboTag to actually 
reconfigure its knowledge base of word lists and pro- 
pose new features. This is one way that RoboTag 
could adapt to new extraction domains. 

Unlike some of the name tagging systems Robo- 
Tag is being compared to, RoboTag has no alias 
generation facility. By generating an alias from a 
recognized name, a system can scan for that alias 
(e.g., a company's acronym or an individual's first 
name) in order to improve the likelihood of identi- 
fying it. It would be straightforward to add such an 
alias capability to RoboTag. 

Another accuracy enhancement is to improve the 

tag matching algorithm. RoboTag does not cur- 
rently use the lexical features of the tokens during 
the match process. The scoring function takes into 
account tag length and decision tree confidence val- 
ues only. Many of the errors RoboTag makes come 
from the matching algorithm where the decision 
trees correctly predict tag begins and ends but the 
wrong tag pairings are chosen. Making the match- 
ing algorithm sensitive to lexical features should help 
correct this. 

Although, for comparison with other systems, we 
have presented traditional batch-mode learning re- 
sults here, one of RoboTag's strengths is in its in- 
teractivity. We believe that allowing the user to 
give direct feedback to the learning system is key to 
rapidly addressing new extraction tasks. We plan to 
do further experiments which address how the use of ° 
this directed feedback can result in rapidly learned 
tagging procedures utilizing fewer tagged texts. 

Finally, our experiments have focused on proper 
name tagging, but RoboTag is not limited to this. 
We are planning to explore additional tagging tasks 
besides names in multiple languages such as Chinese, 
Thai, Spanish as well as English and Japanese. 

7 S u m m a r y  

RoboTag is a multilingual text extraction system 
that automatically learns to tag texts by observ- 
ing its users. Decision trees are learned to predict 
where users begin and end tags. These are combined 
with a matching algorithm to produce complete tags. 
RohoTag is flexible in its ability to work with mul- 
tiple languages. We have shown RoboTag perfor- 
mance to be competitive with hand-coded pattern- 
based systems in very different languages like En- 
glish and Japanese. 
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