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Abstract 

Automatic segmentation of text into min- 
imal content-bearing units is an unsolved 
problem even for languages like English. 
Spaces between words offer an easy first ap- 
proximation, but this approximation is not 
good enough for machine translation (MT), 
where many word sequences are not trans- 
lated word-for-word. This paper presents 
an efficient automatic method for discover- 
ing sequences of words that  are translated 
as a unit. The method proceeds by com- 
paring pairs of statistical translation mod- 
els induced from parallel texts in two lan- 
guages. It can discover hundreds of non- 
compositional compounds on each itera- 
tion, and constructs longer compounds out 
of shorter ones. Objective evaluation on a 
simple machine translation task has shown 
the method's  potential to improve the qual- 
ity of MT output.  The method makes few 
assumptions about the data, so it can be 
applied to parallel data other than parallel 
texts, such as word spellings and pronunci- 
ations. 

1 Introduction 

The optimal way t o  analyze linguistic data into 
its primitive elements is rarely obvious but  often 
crucial. Identifying phones and words in speech 
has been a major focus of research. Automati- 
cally finding words in text, the problem addressed 
here, is largely unsolved for languages such as Chi- 
nese and Thai, which are written without spaces 

* Many thanks to Mike Collins, Jason Eisner, Mitch 
Marcus and two anonymous reviewers for their feedback 
on earlier drafts of this paper. This research was sup- 
ported by an equipment grant from Sun MicroSystems 
and by ARPA Contract #N66001-94C-6043. 

(but see Fung & Wu, 1994; Sproat et al., 1996). 
Spaces in texts of languages like English offer an 
easy first approximation to minimal content-bearing 
units. However, this approximation mis-analyzes 
n o n - c o m p o s i t i o n a l  c o m p o u n d s  ( N C C s )  such as 
"kick the bucket" and "hot dog." N C C s  are com- 
pound words whose meanings are a mat ter  of con- 
vention and cannot be synthesized from the mean- 
ings of their space-delimited components. Treating 
NCCs as multiple words degrades the performance 
of machine translation (MT), information retrieval, 
natural language generation, and most other NLP 
applications. 

NCCs are usually not translated literally to other 
languages. Therefore, one way to discover NCCs is 
to induce and analyze a translation model between 
two languages. This paper is about an information- 
theoretic approach to this kind of ontological dis- 
covery. The method is based on the insight that  
t reatment of NCCs as multiple words reduces the 
predictive power of translation models. Whether  
a given sequence of words is an NCC can be de- 
termined by comparing the predictive power of two 
translation models that  differ on whether they treat  
the word sequence as an NCC. Searching a space of 
data models in this manner has been proposed be- 
fore, e.g. by Brown et al. (1992) and Wang et al. 
(1996), but  their particular methods have been lim- 
ited by the computational expense of inducing data  
models and the typically vast number of potential 
NCCs that  need to be tested. The method presented 
here overcomes this limitation by making indepen- 
dence assumptions that  allow hundreds of NCCs to 
be discovered from each pair of induced translation 
models. It is further accelerated by heuristics for 
gauging the a priori  likelihood of validation for each 
candidate NCC. 

The predictive power of a translation model de- 
pends on what the model is meant to predict. This 
paper considers two different applications of trans- 
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lation models, and their corresponding objective 
functions. The different objective functions lead 
to different mathematical formulations of predictive 
power, different heuristics for estimating predictive 
power, and different classifications of word sequences 
with respect to compositionality. Monolingual prop- 
erties of NCCs are not considered by either ob- 
jective function. So, the method will not detect 
phrases tha t  are translated word-for-word despite 
non-compositional semantics, such as the English 
metaphors "ivory tower" and "banana republic," 
which translate literally into French. On the other 
hand, the method will detect word sequences that  
are often paraphrased in translation, but have per- 
fectly compositional meanings in the monolingual 
sense. For example, "tax system" is most often 
translated into French as "r6gime fiscale." Each new 
batch of validated NCCs raises the value of the ob- 
jective function for the given application, as demon- 
strated in Section 8. You can skip ahead to Table 4 
for a random sample of the NCCs that  the method 
validated for use in a machine translation task. 

The NCC detection method makes some assump- 
tions about  the properties of statistical translation 
models, but  no assumptions about the data  from 
which the models are constructed. Therefore, the 
method is applicable to parallel da ta  other than 
parallel texts. For example, Section 8 applies the 
method to orthographic and phonetic representa- 
tions of English words to discover the NCCs of 
English orthography. 

2 T r a n s l a t i o n  M o d e l s  

A translation model can be constructed auto- 
matically from texts that  exist in two languages 
(b i t ex t s )  (Brown et al., 1993; Melamed, 1997). 
The more accurate algorithms used for construct- 
ing translation models, including the EM algorithm, 
alternate between two phases. In the first phase, 
the algorithm finds and counts the most likely links 
between word tokens in the two halves of the bi- 
text.  L inks  connect words that  are hypothesized 
to be mutual translations. In the second phase, the 
algorithm estimates translation probabilities by di- 
viding the link counts by the total number of links. 
Let S and 7- represent the distributions of linked 
words in the source and target 1 texts. A simple 
t r a n s l a t i o n  m o d e l  is just a joint probability dis- 
tribution Pr(s , t ) ,  which indicates the probability 
that  a randomly selected link in the bitext links 

1In the context of symmetric translation models, the 
words "source" and "target" are merely labels. 

s E S wi th  t E 7-. 2 A d i r e c t e d  t r a n s l a t i o n  
m o d e l  can be derived in the standard way: 
Pr(t ls  ) = Pr(s,  t ) /Pr(s) .  

3 O b j e c t i v e  F u n c t i o n s  

The decision whether a given sequence of words 
should count as an NCC can be made automatically, 
if it can be expressed in terms of an explicit objective 
function for the given application. The first appli- 
cation I will consider is statistical machine trans- 
lation involving a directed translation model and 
a target language model, of the sort advocated by 
Brown et al. (1993). If only the translation model 
may be varied, then the objective function for this 
application should be based on how well the transla- 
tion model predicts the distribution of words in the 
target language. In information theory, one such ob- 
jective function is called mutual information. M u -  
t u a l  i n f o r m a t i o n  measures how well one random 
variable predicts another3: 

Pr ( s , t )  
I(S; T)  = ~ ~ Pr(s,  t) log Pr(s)  Pr( t)  (1) 

sES t E T  

When Pr(s,  t) is a text  translation model, mutual 
information indicates how well the model can predict 
the distribution of words in the target text given 
the distribution of words in the source text,  and 
vice versa. This objective function may also be used 
for optimizing cross-language information retrieval, 
where translational distributions must be estimated 
either for queries or for documents before queries 
and documents can be compared (Oard & Dorr, 
1996). 

Figure 1 shows a simple example of how 
recognition of NCCs increases the mutual infor- 
mation of translation models. The English word 
"balance" is most often translated into French as 
"6quilibre" and "sheet" usually becomes "feuille." 
However, a "balance sheet" is a "bilan." A trans- 
lation model that  doesn't  recognize "balance sheet" 
as an NCC would distribute the translation prob- 
abilities of "bilan" over multiple English words, as 
shown in the Incorrect Model. The Incorrect Model 
is uncertain about how "bilan" should be trans- 
lated. On the other hand, the Correct Model, 
which recognizes "balance sheet" as an NCC is com- 
pletely certain about its translation. As a result, 
the mutual information of the Incorrect Model is 
2 .  71 log ~_._ + 2 • gx log ~_._ =~2 log 2, whereas the 

2 3 2 3 

mutual information of the Correct Model is log 3. 

2s E S means that Prs(s) > 0. 
3See Cover & Thomas (1991) for a good introduction 

to information theory. 
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Segment # 
1 
2 
3 

English half 
balance 

sheet 
balance sheet 

French half 
~quilibre 
feuille 
bilan 

Incorrect Model 

1/3 - balance ~-~ equUibre 

1/6~ bilan 

sheet ~ feuille 

Correct Model 

balance " 1/3, ~quilibre 

balance sheet - 1/3 bilan 

sheet, 1/3. feuille 

Figure 1: Two translation models that my be induced 
from the trivial bitext at the top of the figure. Trans- 
lation models that know about NCCs have higher mu- 
tual information than those that do not. 

4 P r e d i c t i v e  V a l u e  F u n c t i o n s  

An explicit objective function immediately leads to 
a simple test of whether a given sequence of words 
should be treated as an NCC: Induce two transla- 
tion models, a t r i a l  t r a n s l a t i o n  m o d e l  that  in- 
volves the candidate NCC and a base  t r a n s l a t i o n  
m o d e l  that  does not. If the value of the objective 
function is higher in the trial model than in the base 
model, then the NCC is valid; otherwise it is not. In 
theory, this test can be repeated for each sequence 
of words in the text. In practice, texts contain an 
enormous number of word sequences (Brown et al., 
1992), only a tiny fraction of which are NCCs, and 
it takes considerable computational effort to induce 
each translation model. Therefore, it is necessary to 
test many NCCs on each pair of translation models. 

Suppose we induce a trial translation model from 
texts E and F involving a number of NCCs in the 
language ,5 of E,  and compare it to a base transla- 
tion model without any of those NCCs. We would 
like to keep the NCCs that  caused a net increase 
in the objective function I and discard those that  
caused a net decrease. We need some method of 
assigning credit for the difference in the value of I 
between the two models. More precisely, we need a 
function iT(s) over the words s E ,5 such that  

I(S; 7-) = ~ iT(s). (2) 
sE8 

Fortunately, the objective function in Equations 1 
is already a summation over source words. So, its 

value can be distributed as follows: 

iT(S) Z PrCs, " '" Pr(s,  t) 
= ~) l og  Pr(s) Pr(t)  (3) 

tET  

The p r e d i c t i v e  va lue  f u n c t i o n  iT(s) represents 
the contribution of s to the objective function of the 
whole translation model. I will write simply i(s) 
when T is clear from the context. 

Comparison of predictive value functions across 
translation models can only be done under 

A s s u m p t i o n  1 Treating the bigram < x, y > as an 
NCC will not affect the predictive value function of 
any s E ,5 other than x, y, and the NCC xy. 

Let i and i '  be the predictive value functions for 
source words in the base translation model and in 
the tr ial  translation model, respectively. Under As- 
sumption 1, the net change in the objective function 
effected by each candidate NCC xy is 

zx=, = i ' (x )  + i ' (y)  + i ' (xy )  - - i ( u ) .  (4 )  

If A=u > 0, then xy is a valid NCC for the given 
application. 

Assumption 1 would likely be false if either x or 
y was a part of any candidate NCC other than xy. 
Therefore, NCCs that  are tested at the same time 
must satisfy the m u t u a l  ex c lu s io n  cond i t i on :  No 
word s E ,5 may participate in more than one candi- 
date NCC at the same time. Assumption 1 may not 
be completely safe even with this restriction, due to 
the imprecise nature of translation model construc- 
tion algorithms. 

5 I t e r a t i o n  

The mutual exclusion condition implies that  mul- 
tiple tests must be performed to find the majority 
of NCCs in a given text. Furthermore, Equation 4 
allows testing of only two-word NCCs. Certainly, 
longer NCCs exist. Given parallel texts E and F ,  
the following algorithm runs multiple NCC tests and 
allows for recognition of progressively longer NCCs: 

1. Initialize the stop-list and the NCC list to be 
empty. 

. In E,  find all occurrences of all NCCs on the 
NCC list, and replace them with single "fused" 
tokens, which the translation model construc- 
tion algorithm will t reat  as single words. 

3. Induce a base translation model between E 
and F.  
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4. For all adjacent bigrams < x , y  > in E that  
are not on the stop-list and whose frequency is 
at least ¢4, compute ~xu, the estimate of A~y, 
using the equations in Section 6. 

5. Make a list of candidate NCCs, containing all 
the bigrams for which A~u > 0, sorted by A~u" 

6. Remove from the list all candidates x y  where 
either x or y is part  of another bigram higher 
in the list. This step implements the mutual 
exclusion condition described in Section 4. 

7. C o p y E t o  E ' .  For eachb igram < x ,y  > re- 
maining on the candidate NCC list, fuse each 
instance of < x, y > in E '  into a single token 
xy .  

8. Induce a trial translation model between E '  
and F .  

9. Compute the actual Axu values for all candidate 
NCCs, using Equation 4. 

10. For each candidate NCC xy ,  if A~y > 0, then 
add x y  to the NCC list; otherwise add x y  to the 
stop-list. 

11. Repeat from Step 2. 

The algorithm can also be run in "two-sided" mode, 
so that  it looks for NCCs in E and in F on alternate 
iterations. This mode enables the translation model 
to link NCCs in one language to NCCs in the other. 

In its simplest form, the algorithm only considers 
adjacent words as candidate NCCs. However, func- 
tion words are translated very inconsistently, and it 
is difficult to model their translational distributions 
accurately. To make discovery of NCCs involving 
function words more likely, I consider content words 
that  are separated by one or two functions words to 
be adjacent. Thus, NCCs like "blow ... whistle" and 
"icing ... cake" may contain gaps. 

Fusing NCCs with gaps may fuse some words in- 
correctly, when the NCC is a frozen expression. For 
example, we would want to recognize that  "icing 
. . .  cake" is an NCC when we see it in new text, 
but  not if it occurs in a sentence like "Mary ate 
the icing off the cake." It is necessary to deter- 
mine whether the gap in a given NCC is fixed or 
not. Thus, the price for this flexibility provided by 
NCC gaps is that ,  before Step 7, the algorithm fills 
gaps in proposed NCCs by looking through the text. 

4The threshold ¢ reduces errors due to noise in the 
data and in the translation model. It should be opti- 
mized empirically for each kind of parallel data. For 
parallel texts, I use ¢ = 2. 

Sometimes, NCCs have multiple possible gap fillers, 
for example "make up {my, your,his,their} mind." 
When the gap filling procedure finds two or three 
possible fillers, the most frequent filler is used, and 
the rest are ignored in the hope that  they will be 
discovered on the next iteration. When there are 
more than three possible fillers, the NCC retains the 
gap. The token fuser (in Steps 2 and 7) knows to 
shift all words in the NCC to the location of the 
leftmost word. E.g. an instance of the previous ex- 
ample in the text might be fused as "make_up_< 
G A P  >_mind his." 

In principl~ the NCC discovery algorithm could 
iterate until Axy < 0 for all bigrams. This would 
be a classic case of over-fitting the model to the 
training data. NCC discovery is more useful if it is 
stopped at the point where the NCCs discovered so 
far would maximize the application's objective func- 
tion on new data. A domain-independent method to 
find this point is to use held-out data  or, more gen- 
erally, to cross-validate between different subsets of 
the training data. Alternatively, when the applica- 
tions involves human inspection, e.g. for bilingual 
lexicography, a suitable stopping point can be found 
by manually inspecting validated NCCs. 

6 C r e d i t  E s t i m a t i o n  

Sections 3 and 4 describe how to carry out NCC 
validity tests, but  not how to choose which NCCs to 
test. Making this choice at random would make the 
discovery process too slow, because the vast majori ty 
of word sequences are not valid NCCs. The discovery 
process can be greatly accelerated by testing only 
candidate NCCs for which Equation 4 is likely to 
be positive. This section presents a way to guess 
whether Axy > 0 for a candidate NCC x y  be]ore 
inducing a translation model that  involves this NCC. 
To do so, it is necessary to estimate i ' ( x ) ,  i ' (y ) ,  and 
i ' ( xy ) ,  using only the base translation model. 

First, a bit of notation. Let LC and Rc denote 
word contexts to the left and to the right. Let 
(x : RC = y) be the set of tokens of x whose right 
context is y, and vice versa for (y : LC = x). Now, 
i '(x) and i ' (y) ,  can be estimated under 

A s s u m p t i o n  2 When  x occurs without y in its 
context, it will be linked to the same target words by 
the trial translation model as by the base translation 
model, and likewise ]or y without  x.  

Assumption 2 says that  

i '(x) = i (x :  Rc # y) 

i ' (y)  = i(y  : LC ~ x) 

(6) 

(7) 
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i'(xy) 

(by Eq. 8) 

(by Eq. 9) 

(by Eq. 10) 

Pr(xy, t) 
= E Pr(xy, t) log Pr(xy) Pr(t) 

fEW 

= E [ P r ( x :  RC = y, t )  + Pr (y :  LC = x, t ) l log [Pr(x: RC = y, t )  + Pr (y :  LC = x,t)] 
teT Pr(y : LC = x) Pr(t) 

Pr(x : Rc = y, t) 
= E P r ( x : a c = Y ' t ) l ° g P r ~  a c ~ - ~ r ( t )  

t E T  

Pr(y : LC = x, t) 
+ E P r ( Y :  LC = x, t ) !og Pr (y :  LC = x) Pr(t) 

t E T  

(5) 

Figure 2: Estimation of i '(xy).  Note that, by definition, Pr(x : R C  = y) = Pr(y : LC = X) ---- Pr(xy). 

Estimating i ' (xy) is more difficult because it re- 
quires knowledge of the entire translational distribu- 
tions of both x and y, conditioned on all the contexts 
of x and y. Since we wish to consider hundreds of 
candidate NCCs simultaneously, and contexts from 
many megabytes of text, all this information would 
not fit on disk, let alone in memory. The best we 
can do is approximate with lower-order distributions 
that  are easier to compute. 

The approximation begins with 

A s s u m p t i o n  3 I f  xy is a valid NCC, then at most  
one of x and y will be linked to a target word when- 
ever x and y co-occur. 

Assumption 3 implies that  for all t E T 

Pr(xy, t) = Pr (x :  ac  = y, t )  + Pr (y :  LC = x,t)  (8) 

The approximation continues with 

A s s u m p t i o n  4 I f  xy is a valid NCC, then for all 
t E T ,  either Pr(x, t) = 0 or Pr(y, t) = 0. 

Assumption 4 also implies that  for all t E T, either 

Pr(x : Re = y, t )  = 0 (9) 

o r  

Pr (y :  LC = x, t )  = 0. (10) 

Under Assumptions 3 and 4, we can estimate i ' (xy) 
as shown in Figure 2. 

The final form of Equation 5 (in Figure 2) allows 
us to partition all the terms in Equation 4 into two 
sets, one for each of the components of the candidate 
NCC: 

Amy = £m~y + £me-y (11) 

where 

+ 

+ 

- i ( x )  (12) 

Pr(x : RC ~ y, t) 
E Pr(x : aC ~ y, t) log Pr(x, ac  ~ y) Pr(t) 
t E T  

Pr(x : a c  = y, t) 
E P r ( x  : ac = Y ' t ) l °g  p r ~  ; RC ~_ y i ~ r ( t )  
t E T  

£xe-y = -iCy) (13) 
Pr(y : LC ~ x, t) 

+ E Pr (y :  LC ¢ X, t) log F r ~ ,  LC" ~ x) Pr(t) 
t E T  

Pr(y : LC = x, t) 
+ E Pr (y :  LC = x, t) log P r ~  .: I]C ~-- "x)¥~(t) 

t ~ T  

All the terms in Equation 12 depend only on the 
probability distributions Pr(x, t), Pr(x : ac  = y, t) 
and Pr(x : RC ¢ y, t). All the terms in Equation 13 
depend only on Pr(y,t) ,  Pr(y : LC = x, t )  
and Pr(y : LC ¢ x, t). These distributions can 
be computed efficiently by memory-external sorting 
and streamed accumulation. 

7 B a g - o f - W o r d s  T r a n s l a t i o n  

In bag-of-words translation, each word in the source 
text is simply replaced with its most likely transla- 
tion. No target language model is involved. For this 
application, it is sufficient to predict only the maxi- 
mum likelihood translation of each source word. The 
rest of the translational distribution can be ignored. 
Let mT(s )  be the most likely translation of each 
source word s, according to the translation model: 

roT(s) = arg ma2¢ Pr(s, t) (14) 
t E r  

Again, I will write simply re(s) when T is clear from 
the context. The objective function V for this ap- 
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plication follows by analogy with the mutual infor- 
mation function I in Equation 1: 

Pr(s,t) 
V(S; T) = ~ E ~(t, re(s)) Pr(s, t)log Pr(s) Pr(t) 

8E~ tET 

Pr(s,m(s)) (15) 
= ~ Pr(s, re(s)) log Pr(s) Pr(m(s)) 

sE8 

The Kronecker ~ function is equal to one when its 
arguments are identical and zero otherwise. 

The form of the objective function again permits 
easy distribution of its value over the s E S: 

Pr(s,m(s)) (16) 
vT"(s) = Pr(s, re(s))log Pr(s) Pr(m(s))" 

The formula for estimating the net change in the 
objective function due to each candidate NCC re- 
mains the same: 

= ¢ ( = )  + ¢ ( y )  + v ' ( x y )  - v ( x )  - v (y ) .  (17) 

It is easier to estimate the values of v' using only the 
base translation model, than to estimate the values 
of i', since only the most likely translations need to 
be considered, instead of entire translational distri- 
butions, v'(x) and v'(y) are again estimated under 
Assumption 2: 

v'(x) = v(x : Rc # y) (18) 

v'(y) = v(y: LC # x) (19) 

v~(xy) can be estimated without making the strong 
assumptions 3 and 4. Instead, I use the weaker 

Assumpt ion  5 Let t= and ty be the most frequent 
translations of x and y in each other's presence, in 
the base translation model. The most likely transla- 
tion of xy in the trial translation model will be the 
more frequent of t= and ty. 

Assumption 5 implies that 

¢ ( z y )  = max[v(  : Rc = y) ,vCy : Lc = x)].  (20) 

This quantity can be computed exactly at a reason- 
able computational expense. 

8 E x p e r i m e n t s  

To demonstrate the method's applicability to data 
other than parallel texts, and to illustrate some of 
its interesting properties, I describe my last exper- 
iment first. I applied the mutual information ob- 
jective function and its associated predictive value 
function to a data set consisting of spellings and pro- 
nunciations of 17381 English words. Table 1 shows 

Iteration Validated NCCs Example 
1 er father, her 

ng hang 
ch chat, school 
ou court, could 
es files 
au august 
gh laugh 
th this, thin 
ough though, through 
(none) 
sh share 
io tension 
ph graph 

7 tio nation 
ow know, how 
ck stack 
ea near 
oo book, tool 
ess dress 

9 ia partial, facial 
10 (none) 

Table 1: The NCCs of English orthography discov- 
ered by the algorithm. 

the NCCs of English spelling that the algorithm dis- 
covered on the first 10 iterations. The table reveals 
some interesting behavior of the algorithm. The 
NCCs "er," "ng" and "ow" were validated because 
this data set represents the sounds usually produced 
by these letter combinations with one phoneme. The 
NCC "es" most often appears in word-final posi- 
tion, where the "e" is silent. However, when "es" is 
not word-final, the "e" is usually not silent, and the 
most frequent following letter is "s", which is why 
the NCC "ess" was validated. NCCs like "tio" and 
"ough" are built up over multiple iterations, some- 
times out of pairs of previously discovered NCCs. 

The other two experiments were carried out 
on transcripts of Canadian parliamentary debates, 
known as the Hansards. French and English ver- 
sions of these texts were aligned by sentence using 
the method of Gale & Church (1991). Morpholog- 
ical variants in both languages were stemmed to a 
canonical form. Thirteen million words (in both lan- 
guages combined) were used for training and another 
two and a half million were used for testing. All 
translation models were induced using the method of 
Melamed (1997). Six iterations of the NCC discov- 
ery algorithm were run in "two-sided" mode, using 
the objective function I, and five iterations were run 
using the objective function V. Each iteration took 
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Iteration Bitext Vocabulary II Number of Number of Validation 
Number Size I] Proposed NCCs Accepted NCCs Rate Side 

English 29617 
French 31664 
English 29691 
French 31768 
English 29739 
French 31809 

647 
618 
253 
245 
161 
205 

105 
121 
49 
41 
38 
33 

16% 
20% 
19% 
17% 
24% 
16% 

Table 2: NCCs proposed and accepted, using the mutual information objective function I. 

Iteration 
Number 

1 
2 
3 
4 
5 

Bitext 
Side 

English 
French 
English 
French 
English 

Vocabulary 
Size 

29617 
31664 
30333 
32384 
30711 

Number of 
Proposed NCCs 

776 
758 
399 
355 
300 

Number of 
Accepted NCCs 

758 
748 
388 
340 
286 

Validation 
Rate 

98% 
99% 
97% 
96% 
95% 

Table 3: NCCs proposed and accepted, using the simpler objective function V. 

approximately 78 hours on a 167MHz UltraSPARC 
processor, running unoptimized Perl code. 

Tables 2 and 3 chart the NCC discovery process. 
The NCCs proposed for the V objective function 
were much more likely to be validated than those 
proposed for I, because the predictive value func- 
tion v ~ is much easier to estimate a priori than the 
predictive value function iq In 3 iterations on the 
English side of the bitext, 192 NCCs were validated 
for I and 1432 were validated for V. Of the 1432 
NCCs validated for V, 84 NCCs consisted of 3 words, 
3 consisted of 4 words and 2 consisted of 5 words. 
The French NCCs were longer on average, due to 
the frequent "N de N" construction for noun com- 
pounds. 

The first experiment on the Hansards involved the 
mutual information objective function I and its asso- 
ciated predictive value function in Equation 3. The 
first step in the experiment was the construction of 
5 new versions of the test data, in addition to the 
original version. Version k of the test data was con- 
structed by fusing all NCCs validated up to iteration 
k on the training data. The second step was to in- 
duce a translation model from each version of the 
test data. There was no opportunity to measure the 
impact of NCC recognition under the objective func- 
tion I on any real application, but Figure 3 shows 
that the mutual information of successive test trans- 
lation models rose as desired. 

The second experiment was based on the simpler 
objective function V and its associated predictive 
value function in Equation 16. The impact of NCC 

5.68 

5.66 

5.64 

5.62 

5.60 

5.58 
5.56 
5.54 
5.52 
5.50 
5.481 

iteration number 

Figure 3: Mutual information of successive trans- 
lation models induced on held-out test data. Nats 
are a measure of information like bits, but based on 
the natural logarithm. Translation models that know 
about NCCs have higher mutual information than 
those that do not. 

recognition on the bag-of-words translation task was 
measured directly, using Bitext-Based Lexicon Eval- 
uation (BIBLE: Melamed, 1995). BIBLE is a fam- 
ily of evaluation algorithms for comparing different 
translation methods objectively and automatically. 
The algorithms are based on the observation that 
if translation method A is better than translation 
method B, and each method produces a translation 
from one half of a held-out test bitext, then the other 
half of that bitext will be more similar to the trans- 
lation produced by A than to the translation pro- 
duced by B. In the present experiment, the trans- 
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Figure 4: English ~ French BIBLE scores for 6 
translation models. Labels 0 to 5 indicate iteration 
number. 
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Figure 5: French ~ English BIBLE scores for 6 
translation models. Labels 0 to 5 indicate iteration 
number. 

lation method was always bag-of-words translation, 
but using different translation models. The simi- 
larity of two texts was measured in terms of word 
precision and word recall in aligned sentence pairs, 
ignoring word order. 

I compared the 6 base translation models induced 
in 6 iterations of the algorithm in Section 5. 5 The 
first model is numbered 0, to indicate that  it did 
not recognize any NCCs. The 6 translation models 
were evaluated on the test bitext (E, F)  using the 
following BIBLE algorithm: 

1. Fuse all word sequences in E that correspond 
to NCCs recognized by the translation model. 

2. Initialize the counters a and c to zero. 

3. Let b be the number of words in F.  

5The entire algorithm was only run six times, but 
Steps 2 and 3 were run a seventh time. 
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0.542 ................... : ................ .,~ .................... ...~-.,..':::. ........... : ................... 

0.540 : i  ..................... 

: i 
I 

0.538 1 2 3 4 5 

Iteration 

Figure 6: F-measures for BIBLE tests on successive 
translation models. 

4. For each pair of aligned sentences 
(e, f )  E (E, F) ,  

(a) For each word s in e, add the most likely 
translation of s to the trial target sentence 

^ 

f .  If t hemos t  likely translation is an NCC, 
then break it up into its components. If s is 
not in the translation model (an unknown 

word), then add s itself to f .  

(b)  a = a + I]1 
(c) For each word in f ,  check whether it occurs 

in f .  If so, increment the counter c and 
remove the word from f.6 

5. Precision := c/a. Recall := c/b. 

The BIBLE algorithm compared the 6 models in 
both directions of translation. The results are de- 
tailed in Figures 4 and 5. Figure 6 shows F-measures 
that  are standard in the information retrieval liter- 
ature: 

2 * precision * recall 
F = (21) 

precision + recall 

The absolute recall and precision values in these fig- 
ures are quite low, but this is not a reflection of the 
quality of the translation models. Rather, it is an ex- 
pected outcome of BIBLE evaluation, which is quite 
harsh. Many translations are not word for word in 
real bitexts and BIBLE does not even give credit for 
synonyms. The best possible performance on this 

6Removing words from f in Step 3(c) is necessary to 
ensure that no target word gives credit to more than 
one source word translation, and thereby to foil a simple 
method of cheating: If matched words in f are not re- 
moved, then a trivial translation model where all source 
words translate to the most frequent target word would 
score surprisingly high! E.g. a French to English trans- 
lation method that outputs "the the the t h e . . . "  would 
recall more than 6% of English words. 
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kind of BIBLE evaluation has been estimated at 62% 
precision and 60% recall (Melamed, 1995). 

The purpose of BIBLE is internally valid compari- 
son, rather than externally valid benchmarking. On 
a sufficiently large test bitext, BIBLE can expose the 
slightest differences in translation quality. The num- 
ber of NCCs validated on each iteration was never 
more than 2.5% of the vocabulary size. Thus, the 
curves in Figures 4 and 5 have a very small range, 
but the trends are clear. 

A qualitative assessment of the NCC discovery 
method can be made by looking at Table 4. It con- 
tains a random sample of 50 of the English NCCs 
accumulated in the first five iterations of the al- 
gorithm in Section 5, using the simpler objective 
function V. All of the NCCs in the table are non- 
compositional with respect to the objective function 
V. Many of the NCCs, like "red tape" and "blaze 
the trail," are true idioms. Some NCCs are incom- 
plete. E.g. "flow-" has not yet been recognized as a 
non-compositional part  of "flow-through share," and 
likewise for "head" in "rear its ugly head." These 
NCCs would likely be completed if the algorithm 
were allowed to run for more iterations. Some of the 
other entries deserve more explanation. 

First, "Della Noce" is the last name of a Cana- 
dian Member of Parliament. Every occurrence of 
this name in the French training text was tok- 
enized as "Della noce" with a lowercase "n," because 
"noce" is a common noun in French meaning "mar- 
riage," and the tokenization algorithm lowercases 
all capitalized words that  are found in the lexicon. 
When this word occurs in the French text without 
"Della," its English translation is "marriage," but 
when it occurs as part  of the name, its translation is 
"Noce." So, the French bigram "Della Noce" is non- 
compositional with respect to the objective function 
V. It was validated as an NCC. On a subsequent 
iteration, the algorithm found that  the English bi- 
gram "Della Noce" was always linked to one French 
word, the NCC "Dellamoce," so it decided that  the 
English "Della Noce" must also be an NCC. This is 
one of the few non-compositional personal names in 
the Hansards. 

Another interesting entry in the table is the last 
one. The capitalized English words "Generic" and 
"Association" are translated with perfect consis- 
tency to "Generic" and "association," respectively, 
in the training text.  The translation of the middle 
two words, however, is non-compositional. When 
"Pharmaceutical" and "Industry" occur together, 
they are rendered in the French text without trans- 
lation as "Pharmaceutical Industry." When they 
occur separately, they are translated into "pharma- 

ceutique" and "industrie." Thus, the English bi- 
gram "Pharmaceutical Industry" is an NCC, but  the 
words that  always occur around it are not part  of the 
NCC. 

Similar reasoning applies to "ship unprocessedura- 
nium." The bigram < ship, unprocessed > is an 
NCC because its components are translated non- 
compositionally whenever they co-occur. However, 
"uranium" is always translated as "uranium," so it 
is not a part  of the NCC. This NCC demonstrates 
that  valid NCCs may cross the boundaries of gram- 
matical constituents. 

9 R e l a t e d  W o r k  

In their seminal work on statistical machine trans- 
lation, Brown et al. (1993) implicitly accounted for 
NCCs in the target language by estimating "fertil- 
ity" distributions for words in the source language. 
A source word s with fertility n could generate a 
sequence of n target words, if each word in the se- 
quence was also in the translational distribution of 
s and the target language model assigned a suffi- 
ciently high probability to the sequence. However, 
Brown et al.'s models do not account for NCCs in 
the source language. Recognition of source-language 
NCCs would certainly improve the performance of 
their models, but Brown e~ al. warn that  

. . .  one must be discriminating in choos- 
ing multi-word cepts. The caution that  we 
have displayed thus far in limiting ourselves 
to cepts with fewer than two words was mo- 
tivated primarily by our respect for the fea- 
tureless desert that  multi-word cepts offer 
a priori. (Brown et aL, 1993) 

The heuristics in Section 6 are designed specifically 
to find the interesting features in that  featureless 
desert. Furthermore, translational equivalence re- 
lations involving explicit representations of target- 
language NCCs are more useful than fertility distri- 
butions for applications that do translation by table 
lookup. 

Many authors (e.g. Daille et al., 1994; 
Smadja et al., 1996) define "collocations" in 
terms of monolingual frequency and part-of-speech 
patterns. Markedly high frequency is a necessary 
property of NCCs, because otherwise they would 
fall out o f  use. However, at least for translation- 
related applications, it is not a sufficient property. 
Non-compositional translation cannot be detected 
reliably without looking at translational distri- 
butions. The deficiency of criteria that  ignore 
translational distributions is illustrated by their 
propensity to validate most personal names as 
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"collocations." At least among West European 
languages, translations of the vast majority of 
personal names are perfectly compositional. 

Several authors have used mutual information and 
similar statistics as an objective function for word 
clustering (Dagan et al., 1993; Brown et al., 1992; 
Pereira et al., 1993; Wang et al., 1996), for au- 
tomatic determination of phonemic baseforms (Lu- 
cassen & Mercer, 1984), and for language modeling 
for speech recognition (Ries ct al., 1996). Although 
the applications considered in this paper are differ- 
ent, the strategy is similar: search a space of data 
models for the one with maximum predictive power. 
Wang et al. (1996) also employ parallel texts and 
independence assumptions that are similar to those 
described in Section 6. Like Brown et al. (1992), 
they report a modest improvement in model per- 
plexity and encouraging qualitative results. Unfor- 
tunately, their estimation method cannot propose 
more than ten or so word-pair clusters before the 
translation model must be re-estimated. Also, the 
particular clustering method that they hoped to im- 
prove using parallel data is not very robust for low 
frequencies. So, like Smadja et al., they were forced 
to ignore all words that occur less than five times. If 
appropriate objective functions and predictive value 
functions can be found for these other tasks, then 
the method in this paper might be applied to them. 

There has been some research into matching 
composit ional  phrases across bitexts. For example, 
Kupiec (1993) presented a method for finding trans- 
lations of whole noun phrases. Wu (1995) showed 
how to use an existing translation lexicon to popu- 
late a database of "phrasal correspondences" for use 
in example-based MT. These compositional transla- 
tion patterns enable more sophisticated approaches 
to MT. However, they are only useful if they can be 
discovered reliably and efficiently. Their time may 
come when we have a better understanding of how 
to model the human translation process. 

10 Conc lus ion  

It is well known that two languages are more 
informative than one (Dagan et al., 1991). I 
have argued that texts in two languages are not 
only preferable but necessary for discovery of non- 
compositional compounds for translation-related ap- 
plications. Given a method for constructing statis- 
tical translation models, NCCs can be discovered by 
maximizing the models' information-theoretic pre- 
dictive value over parallel data sets. This paper 
presented an efficient algorithm for such ontologi- 
cal discovery. Proper recognition of NCCs resulted 
in improved performance on a simple MT task. 

Lists of NCCs derived from parallel data may be 
useful for NLP applications that do not involve par- 
allel data. Translation-oriented NCC lists can be 
used directly in applications that have a human in 
the loop, such as computer-assisted lexicography, 
computer-assisted language learning, and corpus lin- 
guistics. To the extent that translation-oriented 
definitions of compositionality overlap with other 
definitions, NCC lists derived from parallel data 
may benefit other applications where NCCs play a 
role, such as information retrieval (Evans & Zhai, 
1996) and language modeling for speech recognition 
(Ries et al., 1996). To the extent that different appli- 
cations have different objective functions, optimizing 
these functions can benefit from an understanding 
of how they differ. The present work was a step 
towards such understanding, because "an explica- 
tion of a monolingual idiom might best be given af- 
ter bilingual idioms have been properly understood" 
(Bar-Hillel, 1964, p. 48). 

The NCC discovery method makes few assump- 
tions about the data sets from which the statistical 
translation models are induced. As demonstrated 
in Section 8, the method can find NCCs in English 
letter strings that are aligned with their phonetic 
representations. We hope to use this method to dis- 
cover NCCs in other kinds of parallel data. A natu- 
ral next target is bitexts involving Asian languages. 
Perhaps the method presented here, combined with 
an appropriate translation model, can make some 
progress on the word identification problem for lan- 
guages like Chinese and Japanese. 
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Count 

786 
183 

79 
63 
36 
34 
24 
23 
17 
17 
16 
14 
11 
10 
10 
10 

NCC (in italics) in typical context non-compositional translation in French text 

could have 
flow-through shares 
I repeat 
the case I just mentioned 
tax base 
single parent family 
perform < GAP > duty 
red tape 
middle of the night 
Della Noce 
heating oil 
proceeds of crime 
rat pack 
urban dwellers 
nuclear generating station 
Air India disaster 

9 Ottawa River 
8 I dare hope 
8 Ottawa Valley 
7 plea bargaining 
7 manifestly unfounded claims 
7 machine gun 
7 a group called Rural Dignity 
6 a slight bit 
6 cry for help 
5 video tape 
5 sow the seed 
5 arrange a meeting 
4 shot-gun wedding 
4 we lag behind 
4 Great West Life Company 
4 Canadian Forces Base and cease negotiations 
3 severe sentence 
3 rear its ugly head 
3 inability to deal effectively with 
3 en masse 
3 create a disturbance 
3 blaze the trail 
2 wrongful conviction 
2 weak sister 
2 of both the users and providers of transportat ion 
2 understand the motivation 
2 swimming pool 
2 ship unprocessed uranium 
2 by reason of insanity 
2 l'agence de Presse libre du QuEbec 
2 do cold weather research 
2 the bread basket of the nation 
2 turn back the boatload of European Jews 
2 Generic Pharmaceutical Industry Association 

pourrait  
actions accrgditives 
je tiens ~ dire 
le casque  je viens de mentionner 
assiette fiscale 
famille monoparentale 
assumer . . .  fonction 
la paperasserie 
en pleine nuit 
Della noce (see text for explanation) 
mazout 
les produits tirds du crime 
meute 
citadins 
centrale nucl~aire 
dcrasement de l'avion indien 
Outaouais 
j 'ose croire 
vall~e de l 'Outaouais 
marchandage 
avoir revendiqud ~i tort  le s tatut  
mitrailleuse 
une groupe appel~ Rural Dignity 
la moindre 
appel au secour 
video 
semer 
organiser un entretien 
mariage force 
nous trainions de la patte 
Great West Life Company 
mettre fin et interrompre le n~gociation 
s~v~re sanction 
manifests 
ne sait pas traiter de mani~re efficace avec 
en bloc 
suscite de perturbation 
ouvre la voie 
erreur judiciaire 
parent pauvre 
des utilisateurs et des transporteurs 
saisir le motif 
piscine 
exp~dier de l 'uranium non raffin~ 
pour cause d'ali~nation mentale 
l'agence de Presse libre du Qudbec 
~tudier l'effet du froid 
le grenier du Canada 
renvoyer tout  ces juifs europ~ens 
Generic Pharmaceutical Industry Association 

Table 4: Random sample of 50 of the English NCCs validated in the first five iterations of the NCC discovery 
algorithm, using the objective function V. "Count" is the number of times the NCC occurs in the training 
text. All the NCCs are non-compositional with respect to the objective function V. 
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