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A b s t r a c t  

Learning problems in the text processing 
domain often map the text to a space 
whose dimensions are the measured fea- 
tures of the text, e.g., its words. Three 
characteristic properties of this domain are 
(a) very high dimensionality, (b) both the 
learned concepts and the instances reside 
very sparsely in the feature space, and (c) 
a high variation in the number of active 
features in an instance. In this work we 
study three mistake-driven learning algo- 
rithms for a typical task of this nature - 
text  categorization. 

We argue that  these a l g o r i t h m s -  which 
categorize documents bY learning a linear 
separator in the feature space - have a few 
properties that make them ideal for this do- 
main. We then show that  a quantum leap 
in performance is achieved when we fur- 
ther modify the algorithms to better ad- 
dress some of the specific characteristics of 
the domain. In particular, we demonstrate 
(1) how variation in document length can 
be tolerated by either normalizing feature 
weights or by using negative weights, (2) 
the positive effect of applying a threshold 
range in training, (3) alternatives in consid- 
ering feature frequency, and (4) the bene- 
fits of discarding features while training. 

Overall, we present an algorithm, a vari- 
ation of Littlestone's Winnow, which per- 
forms significantly better than any other 
algorithm tested on this task using a simi- 
lar feature set. 
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1 I n t r o d u c t i o n  

Learning problems in the natural language and text 
processing domains are often studied by mapping 
the text to a space whose dimensions are the mea- 
sured features of the text, e.g., the words appearing 
in a document. Three characteristic propertie s of 
this domain are (a) very high dimensionality, (b) 
both the learned concepts and the instances reside 
very sparsely in the feature space and, consequently, 
(c) there is a high variation in the number of active 
features in an instance. 

Multiplicative weight-updating algorithms such as 
Winnow (Littlestone, 1988) have been studied exten- 
sively in the theoretical learning literature. Theoret- 
ical analysis has shown that they have exceptionally 
good behavior in domains with these characteristics, 
and in particular in the presence of irrelevant at- 
tributes, noise, and even a target function chang- 
ing in t ime (Littlestone, 1988; Littlestone and War- 
muth, 1994; Herbster and Warmuth,  1995), but only 
recently have people started to use them in applica- 
tions (Golding and Roth, 1996; Lewis et al., 1996; 
Cohen and Singer, 1996). We address these claims 
empirically in an important  application domain for 
machine learning - text categorization. In partic- 
ular, we study mistake-driven learning algorithms 
that  are based on the Winnow family/, and investi- 
gate ways to apply them in domains with the above 
characteristics. 

The learning algorithms studied here offer a large 
space of choices to be made and, correspondingly, 
may vary widely in performance when applied in spe- 
cific domains. We concentrate here on the text pro- 
cessing domain, with the characteristics mentioned 
above, and explore this space of choices in it. 

In particular, we investigate three variations of 
on-line prediction algorithms and evaluate them ex- 
perimentally on large text categorization problems. 
The algorithms we study are all learning algorithms 
for linear functions. They are used to categorize 
documents by learning, for each category, a linear 
separator in the feature space. The algorithms dif- 
fer by whether they allow the use of negative or only 
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positive weights and by the way they update their 
weights during the training phase. 

We find that while a vanilla version of these algo- 
rithms performs rather well, a quantum leap in per- 
formance is achieved when we modify the algorithms 
to better address some of the specific characteristics 
we identify in textual domains. In particular, we ad- 
dress problems such as wide variations in document 
sizes, word repetitions and the need to rank docu- 
ments rather than just  decide whether they belong 
to a category or not. In some cases we adopt so- 
lutions that  are well known in the IR literature to 
the class of algorithms we use; in others we modify 
known algorithms to better  suit the characteristics 
of the domain. We motivate the modifications to 
the basic algorithms and justify them experimentally 
by exhibiting their contribution to improvement in 
performance. Overall, the best variation we investi- 
gate, performs significantly better than any known 
algorithm tested on this task, using a similar set of 
features. 

The rest of the paper is organized as follows: The 
next section describes the task of text categoriza- 
tion, how we model it as a classification task, and 
some related work. The family of algorithms we use 
is introduced in Section 3 and the extensions to the 
basic algorithms, along with their experimental eval- 
uations, is presented in Section 4. In Section 5 we 
present our final experimental results and compare 
them to previous works in the literature. 

2 T e x t  C a t e g o r i z a t i o n  

In text categorization, given a text document 
and a collection of potential classes, the algo- 
r i thm decides which classes it belongs to, or 
how strongly it belongs to each class. For 
example, possible classes (categories) may be 
{bond}, {loan}, {interest}, {acquisition}. Docu- 
ments that  have been categorized by humans are 
usually used as training data  for a text categoriza- 
tion system; later on, the trained system is used 
to categorize new documents. Algorithms used to 
train text categorization systems in information re- 
trieval (IR) are often ad-hoc and poorly understood. 
In particular, very little is known about their gen- 
eralization performance, that  is, their behavior on 
documents outside the training data. Only recently, 
some machine learning techniques for training lin- 
ear classifiers have been used and shown to be effec- 
tive in this domain (Lewis et al., 1996; Cohen and 
Singer, 1996). These techniques have the advantage 
that  they are better understood from a theoretical 
standpoint, leading to performance guarantees and 
guidance in parameter settings. Continuing this line 
of research we present different algorithms and fo- 
cus on adjusting them to the unique characteristics 
of the domain, yielding good performance on the 
categorization task. 

2.1 T r a i n i n g  T e x t  Class i f iers  

Text classifiers represent a document as a set of fea- 
tures d = { f l , f2 , . . . fm} ,  where m is the number 
of active features in the document, that  is, features 
that  occur in the document. A feature fi may typ- 
ically represent a word w, a set wl, . . .  Wk of words 
(Cohen and Singer, 1996) or a phrasal structure 
(Lewis, 1992; Tzeras and Hartmann, 1993). The 
strength of the feature f in the document d is de- 
noted by s(f, d). The strength is usually a function 
of the number of times f appears in d (denoted by 
n(f, d)). The strength may be used only to indicate 
the presence or absence of f in the document, in 
which case it takes on only the values 0 or 1, it may 
be equal to n(f, d), or it can take other values to 
reflect also the size of the document. 

In order to rank documents, for each category, 
a text categorization system keeps a function Fc 
which, when evaluated on d, produces a score Fc(d). 
A decision is then made by assigning to the category 
c only those documents that  exceed some threshold, 
or just  by placing at the top of the ranking docu- 
ments with the highest such score. 

A linear text classifier represents a category as a 
weight vector wc = (w(f l ,  c), w(f2, c),. . ,  w(fn, c)) 
(wl, w2 , . . .  Wn), where n is the total number of fea- 
tures in the domain and w(f, c) is the weight of the 
feature f for this category. It evaluates the score of 
the document by computing the dot product: 

F (a) = siS, w(S, e). 
$ed 

The problem is modeled as a supervised learn- 
ing problem. The algorithms use the training data, 
where each document is labeled by zero or more cate- 
gories, to learn a classifier which classifies new texts. 
A document is considered as a positive example for 
all categories with which it is labeled, and as a neg- 
ative example to all others. 

The task of a training algorithm for a linear text 
classifier is to find a weight vector which best classi- 
fies new text documents. While a linear text classi- 
fier is a linear separator in the space defined by the 
features, it may not be linear with respect to the 
document, if one chooses to use complex features 
such as conjunctions of simple features. In addition, 
a training algorithm may give also advice on the is- 
sue of feature selection, by reducing the weight of 
non-important  features and thus effectively discard- 
ing them. 

2.2 R e l a t e d  W o r k  

Many of the techniques previously used in text cat- 
egorization make use of linear classifiers, mainly 
for reasons of efficiency. The classical vector space 
model, which ranks documents using a nonlinear 
similarity measure (the "cosine correlation") (Salton 
and Buckley, 1983) can also be recast as a linear clas- 
sification by incorporating length normalization into 
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the weight vector and the document vector features 
values. State of the art IR systems determine the 
strength of a term based on three values: (1) the 
frequency of the feature in the document (t]), (2) 
an inverse measure of the frequency of the feature 
throughout the data  set (id]), and (3) a normaliza- 
tion factor that  takes into account the length of the 
document. In Sections 4.1 and 4.3 we discuss how 
we incorporate those ideas in our setting. 

Most relevant to our work are non-parametric 
methods, which seem to yield better results than 
parametric techniques. Rocchio's algorithm (Roc- 
chio, 1971), one of the most commonly used tech- 
niques, is a batch method that works in a relevance 
feedback context. Typically, classifiers produced by 
the Rocchio algorithm are restricted to having non- 
negative weights. An important  distinction between 
most of the classical non-parametric methods and 
the learning techniques we study here is that  in the 
former case, there was no theoretical work that  ad- 
dressed the generalization ability of the learned clas- 
sifter, that  is, how it behaves on new data. 

The methods that  are most similar to our tech- 
niques are the on-line algorithms used in (Lewis et 
al., 1996) and (Cohen and Singer, 1996). In the first, 
two algorithms, a multiplicative update and additive 
update algorithms suggested in (Kivinen and War- 
muth, 1995a) are evaluated in the text categoriza- 
tion domain, and are shown to perform somewhat 
better than Rocchio's algorithm. While both these 
works make use of multiplicative update algorithms, 
as we do, there are two major differences between 
those studies and the current one. First, there are 
some important  technical differences between the al- 
gorithms used. Second, the algorithms we study here 
are mistake-driven; they update the weight vector 
only when a mistake is made, and not after every 
example seen. The Experts algorithm studied in 
(Cohen and Singer, 1996) is very similar to a basic 
version of the BalancedWinnow algorithm which we 
study here. The way we treat the negative weights is 
different, though, and significantly more efficient, es- 
pecially in sparse domains (see Section 3.1). Cohen 
and Singer experiment also, using the same algo- 
rithm, with more complex features (sparse n-grams) 
and show that,  as expected, it yields better results. 

Our additive update algorithm, Perceptron, is 
somewhat similar to what is used in (Wiener, Peder- 
sen, and Weigend, 1995). They use a more complex 
representation, a multi-layer network, but this ad- 
ditional expressiveness seems to make training more 
complicated, without contributing to better results. 

2.3 M e t h o d o l o g y  

We evaluate our algorithms on the the Reuters- 
22173 text collection (Lewis, 1992), one of the most 
commonly used benchmarks in the literature. 

For the experiments reported In Sections 3.2 we 
explore and compare different variations of the al- 

gorithms; we evaluate those on two disjoint pairs of 
a training set and a test set, both subsets of the 
Reuters collection. Each pair consists of 2000 train- 
ing documents and 1000 test documents, and was 
used to train and test the classifier on a sample of 
10 topical categories. The figures reported are the 
average results on the two test sets. 

In addition, we have tested our final version of 
the classifier on two common partitions of the com- 
plete Reuters collection, and compare the results 
with those of other works. The two partitions used 
are those of Lewis (Lewis, 1992) (14704 documents 
for training, 6746 for testing) and Apte (Apte, Dam- 
erau, and Weiss, 1994) (10645 training, 3672 testing, 
omitting documents with no topical category). 

To evaluate performance, the usual measures of 
recall and precision were used. Specifically, we mea- 
sured the effectiveness of the classification by keep- 
ing track of the following four numbers: 

• Pl = number of correctly classified class mem- 
bers 

• P2 = number of mis-classified class members 

• nl = number of correctly classified non-class 
members 

• n2 = number of mis-classified ion-class mem- 
bers 

In those terms, the recall measure is defines as 
Pl/Pl+P2, and the precision is defined as pl/pl÷n2. 
Performance was further summarized by a break- 
even point - a hypothetical point, obtained by in- 
terpolation, in which precision equals recall. 

3 O n - L i n e  l e a r n i n g  a l g o r i t h m s  

In this section we present the basic versions of the 
learning algorithms we use. The algorithms are used 
to learn a classifier Fc for each category c. These 
algorithms use the training data, where each docu- 
ment is labeled by zero or more categories, to learn 
a weight vector which is used later on, in the test 
phase, to classify new text documents. A document 
is considered as a positive example for all categories 
with which it is labeled, and as a negative exam- 
ple to all others• The algorithms are on-line and 
mistake-driven. In the on-line learning model, learn- 
ing takes place in a sequence of trials. On each trial, 
the learner first makes a prediction and then receives 
feedback which may be used to update the current 
hypothesis (the vector of weights). A mistake-driven 
algorithm updates its hypothesis only when a mis- 
take is made. In the training phase, given a collec- 
tion of examples, we may repeat this process a few 
times, by iterating on the data. In the testing phase, 
the same process is repeated on the test collection, 
only that the hypothesis is not updated. 

Let n be the number of features of the current 
category. For the remainder of this section we de- 
note a training document with rn active features 

5 7  



by d = ( s i l , s i~ , . . . s i , , ) ,  where sij stands for the 
strength of the ij feature. The label of the document 
is denoted by y; y takes the value 1 if the document 
is relevant to the category and 0 otherwise. Notice, 
that we care only about the active features in the do- 
main, following (Blum, 1992). The algorithms have 
three parameters: a threshold/9, and two update pa- 
rameters, a promotion parameter o~ and a demotion 
parameter ft. 

P o s i t i v e  W i n n o w  ( L i t t l e s t o n e ,  1988):  
The algorithm keeps an n-dimensional weight vec- 

tor w = (w l ,w2 , . . .Wn) ,  wi being the weight of the 
ith feature, which it updates whenever a mistake is 
made. Initially, the weight vector is typically set to 
assign equal positive weight to all features. (We use 
the value/9/d, where d is the average number of ac- 
tive features in a document; in this way initial scores 
are close to/9.) The promotion parameter is a > 1 
and the demotion is 0 < ~ < 1. 

For a given instance (Sil,Sia... , 8ira) the algo- 
r i thm predicts 1 iff 

m 

~ Wijaij ~ O, 
j = l  

where wit is the weight corresponding to the active 
feature indexed by ij. The algorithm updates its 
hypothesis only when a mistake is made, as follows: 
(1) If the algorithm predicts 0 and the label is 1 
(positive example) then the weights of all the active 
features are promoted - -  the weight wit is multiplied 
by o~. (2) If the algorithm predicts 1 and the received 
label is 0 (negative example) then the weights of all 
the active features are demoted - -  the weight wit is 
multiplied by ft. In both cases, weights of inactive 
features maintain the same value. 

P e r c e p t r o n  ( R o s e n b l a t t ,  1958) 
As in PositiveWinnow, in Perceptron we also keep 

an n-dimensional weight vector w = (wl, w2 , . . ,  wn) 
whose entries correspond to the set of potential fea- 
tures, which is updated whenever a mistake is made. 
As above, the initial weight vector is typically set to 
assign equal weight to all features. The only dif- 
ference between the algorithms is that  in this case 
the weights are updated in an additive fashion. A 
single update parameter  c~ > 0 is used, and a weight 
is promoted by adding c~ to its previous value, and 
is demoted by subtracting o~ from it. In both cases, 
all other weights maintain the same value. 

B a l a n c e d  W i n n o w  ( L i t t l e s t o n e ,  1988):  
In this case, the algorithm keeps two weights, 

w +, w- ,  for each feature. The overall weight of a 
feature is the difference between these two weights, 
thus allowing for negative weights. For a given in- 
stance (si~, sis . . . ,  si~) the algorithm predicts 1 iff 

m 

- > / 9 ,  (1 )  
j = l  

where w~, wi- ~ correspond to the active feature in- 
dexed by ij. In our implementation, the weights w + 
are initialized to 20/d and the weights w-  are set to 
0/d, where d is the average number of active features 
in a document in the collection. 

The algorithm updates the weights of active fea- 
tures only when a mistake is made, as follows: (1) In 
the promotion step, following a mistake on a positive 
example, the positive part of the weight is promoted, 
w~ ~ a • w~ while the negative part  of the weight 

is demoted, wi~ ~-- ft.  wij. Overall, the coefficient of 
sij in Eq. 1 increases after a promotion. (2) In the 
demotion step, following a mistake on a negative ex- 
ample, the coefficient ofsi j  in Eq. 1 is decreased: the 
positive part of the weight is demoted, w~ ~ j3. w~ 
while the negative part of the weight is promoted, 

m wij *- a .  w~. In both cases, all other weights main- 
tain the same value. 

In this algorithm (see in Eq. 1) the coefficient of 
the ith feature can take negative values, unlike the 
representation used in PositiveWinnow. There are 
other versions of the Winnow algorithm that  allow 
the use of negative features: (1) Littlestone, when 
introducing the Balanced version, introduced also a 
simpler version - a version of PositiveWinnow with 
a duplication of the number of features. (2) A ver- 
sion of the Winnow algorithm with negative features 
is used in (Cohen and Singer, 1996). In both cases, 
however, whenever there is a need to update the 
weights, all the weights are being updated (actually, 
n out of the 2n). In the version we use, only weights 
of active features are being updated; this gives a sig- 
nificant computational advantage when working in 
a sparse high dimensional space. 

3.1 P r o p e r t i e s  o f  t h e  A l g o r i t h m s  

Winnow and its variations were introduced in Little- 
stone's seminal paper (Littlestone, 1988); the the- 
oretical behavior of multiplicative weight-updating 
algorithms for learning linear functions has been 
studied since then extensively. In particular, Win- 
now has been shown to learn efficiently any linear 
threshold function (Littlestone, 1988). These are 
functions F : {0, 1} n ---~ {0, 1} for which there ex- 
ist real weights w l , . . . , w n  and a real threshold /9 
such that  F ( s l , . . . , s n )  = 1 iff ~i"=1 wisi > /9. In 
particular, these functions include Boolean disjunc- 
tions and conjunctions on k _< n variables and r-of-k 
threshold functions (1 < r < k _< n). While Win- 
now is guaranteed to find a perfect separator if one 
exists, it also appears to be fairly successful when 
there is no perfect separator. The algorithm makes 
no independence or ~tny other assumptions on the 
features, in contrast to other parametric estimation 
techniques (typically, Bayesian predictors) which are 
commonly used in statistical NLP. 

Theoretical analysis has shown that  the algorithm 
has exceptionally good behavior in the presence of 
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irrelevant features, noise, and even a target func- 
tion changing in time (Littlestone, 1988; Littlestone, 
1991; Littlestone and Warmuth, 1994; Herbster and 
Warmuth,  1995), and there is already some empiri- 
cal support for these claims (Littlestone, 1995; Gold- 
ing and Roth, 1996; Blum, 1995). The key feature 
of Winnow is that  its mistake bound grows linearly 
with the number of relevant features and only log- 
arithmically with the total number of features. A 
second important  property is being mistake driven. 
Intuitively, this makes the algorithm more sensitive 
to the relationships among the features - -  relation- 
ships that may go unnoticed by an algorithm that  
is based on counts accumulated separately for each 
attribute. This is crucial in the analysis of the algo- 
r i thm as well as empirically (Littlestone, 1995; Gold- 
ing and Roth, 1996). 

The discussion above holds for both versions of 
Winnow studied here, PositiveWinnow and Bal- 
ancedWinnow. The theoretical results differ only 
slightly in the mistake bounds, but have the same 
flavor. However, the major difference between the 
two algorithms, one using only positive weights and 
the other allowing also negative weights, plays a sig- 
nificant role when applied in the current domain, as 
discussed in Section 4. 

Winnow is closely related, and has served 
as the motivation for a collection of recent 
works on combining the "advice" of different 
"experts"(Littlestone and Warmuth, 1994; Cesa- 
Bianchi et al., 1995; Cesa-Bianchi et al., 1994). The 
features used are the "experts" and the learning al- 
gorithm can be viewed as an algorithm that  learns 
how to combine the classifications of the different 
experts in an optimal way. 

The additive-update algorithm that  we evaluate 
here, the Perceptron, goes back to (Rosenblatt, 
1958). While this algorithm is also known to learn 
the target linear function when it exists, the bounds 
given by the Perceptron convergence theorem (Duda 
and Hart, 1973) may be exponential in the opti- 
mal mistake bound, even for fairly simple functions 
(Kivinen and Warmuth, 1995b). We refer to (Kivi- 
nen and Warmuth, 1995a) for a thorough analysis 
of multiplicative update algorithms versus additive 
update algorithms. In particular, it is shown that  
the number of mistakes the additive and multiplica- 
tive update algorithms make, depend differently on 
the domain characteristics. Informally speaking, it 
is shown that the multiplicative update algorithms 
have advantages in high dimensional problems (i.e., 
when the number of features is large) and when the 
target weight vector is sparse (i.e., contain many 
weights that  are close to 0). This explains the re- 
cent success in using these methods on high dimen- 
sional problems (Golding and Roth, 1996) and sug- 
gests that multiplicative-update algorithms might 
do well on IR applications, provided that  a good 
set of features is selected. On the other hand, it is 

shown that additive-update algorithms have advan- 
tages when the examples are sparse in the feature 
space, another typical characteristics of the IR do- 
main, which motivates us to study experimentally 
an additive-update algorithm as well. 

3.2 Evaluat ing the  Basic Versions 

We started by evaluating the basic versions of the 
three algorithms. The features we use throughout 
the experiments are single words, at the lemma level, 
for nouns and verbs only, with minimal frequency of 
3 occurrences in the corpus. In the basic versions 
the strength of the feature is taken to indicate only 
the presence or absence of f in the document, that 
is, it is either 1 or 0. The training algorithm was run 
iteratively on the training set, until no mistakes were 
made on the training collection or until some upper 
bound (50) on the number of iterations was reached. 
The results for the basic versions are shown in the 
first column of Table 1. 

4 E x t e n s i o n s  t o  t h e  B a s i c  a l g o r i t h m s  

4.1 Length  Variat ion and Negat ive  features 
Text documents vary widely in their length and a 
text classifier needs to tolerate this variation. This 
issue is a potential problem for a linear classifier 
which scores a document by summing the weights 
of all its active features: a long document may have 
a better chance of exceeding the threshold merely by 
its length. 

This problem has been identified earlier on and 
attracted a lot of work in the classical work on IR 
(Salton and Buckley, 1983), as we have indicated 
in Section 2.2. The treatment described there ad- 
dresses at the same time at least two different con- 
cerns: length variation of documents and feature 
repetition. In this section we consider the first of 
those, and discuss how it applies to the algorithms 
we investigate. The second concern is discussed in 
Section 4.3. 

Algorithms that  allow the use of negative features, 
such as BalancedWinnow and Perceptron, tolerate 
variation in the documents length naturally, and 
thus have a significant advantage in this respect. 
In these cases, it can be expected that  the cumu- 
lative contribution of the weights and, in particular, 
those that are not indicative to the current cate- 
gory, does not count towards exceeding the thresh- 
old, but rather averages out to 0. Indeed, as we 
found out, no special normalization is required when 
using these algorithms. Their significant advantage 
over the unnormalized version of PositiveWinnow is 
readily seen in Table 1. 

In addition, using negative weights gives the text 
classifier more flexibility in capturing "truly nega- 
tive" features, where the presence of a feature is in- 
dicative for the irrelevance of the document to the 
category. However, we found that  this phenomenon 
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Algorithm Version 
Basic Norm 0-range Linear Freq. 

BalancedWinnow 64.87 NA 69.66 72.11 
PositiveWinnow 55.56 63.56 65.80 67.20 
Perceptron 65.91 NA 63.05 66.72 

Sqrt. Freq Discard 

71.56 73.2 
69.67 70.0 
68.29 70.8 

Table 1: Recall/precision break-even point (in percentages) for different versions of the algorithm. Each 
figure is an average result for two pairs of training and testing sets, each containing 2000 training documents 
and 1000 test documents. 

only rarely occurs in text categorization and thus 
the main use of the negative features is to tolerate 
the length variation of the documents. 

When using PositiveWinnow, which uses only pos- 
itive weights, we no longer have this advantage and 
we seek a modification that tolerates the variation in 
length. As in the standard IR solution, we suggest 
to modify s(f, d), the strength of the feature f in d, 
by using a quantity that is normalized with respect 
to the document size. 

Formally, we replace the strength s(f ,d) (which 
may be determined in several ways according to fea- 
ture frequency, as explained below) by a normalized 
strenglh, 

s(f, d) 
sn(f, d) = E fEd s(f, d)" 

In this case (which applies, as discussed above, 
only for PositiveWinnow), we also change the initial 
weight vector and initialize all the weights to 0. 

Using normalization gives an effect that  is similar 
to the use of negative weights, but to a lesser degree. 
The reason is that  it is used uniformly; in long doc- 
uments, the number of indicative features does not 
increase significantly, but their strength, neverthe- 
less, is reduced proportionally to the total number 
of features in the document. In the long version of 
the paper we present a more thorough analysis of 
this issue. 

The results presented in Table 1 (second column) 
show the significant improvements achieved in Pos- 
itiveWinnow performance, when normalization is 
used. In all the results presented from this point on, 
positive winnow is normalized. 

4.2 U s i n g  T h r e s h o l d  r a n g e  

Training a linear text classifier is a search for a 
weight vector in the feature space. The search is for a 
linear separator that  best separates documents that  
are relevant to the category from those that  are not. 
In general, there is no guarantee that  a weight vec- 
tor of this sort exists, even in the training data, but 
a good selection of features make this more likely. 
While the basic versions of our algorithms search 
for linear separators, we have modified those so that  
our search for a linear classifier is biased to look for 
"thick" classifiers. To understand this, consider, for 

the moment,  the case in which all the data is per- 
fectly linearly separable. Then there will generally 
be many linear classifiers that  separate the training 
data  we actually see. Among these, it seems plau- 
sible that  we have a better  chance of doing well on 
the unseen test data if we choose a linear separator 
that  separates the positive and negative training ex- 
amples as "widely" as possible. The idea of having 
a wide separation is less clear when there is no per- 
fect separator, but we can still appeal to the basic 
intuition. 

Using a "thick" separator is even more impor- 
tant  when documents are ranked rather than sim- 
ply classified; that  is, when the actual score pro- 
duced by the classifier is used in the decision process. 
The reason is that  if Fc(d) is the score produced by 
the classifier Fc when evaluated on the document d 
then, under some assumptions on the dependencies 
among the features, the probability that  the doc- 
ument d is relevant to the category c is given by 
Prob(d E c) _ l+e=~;r~7 This function, known as 
the sigmoid function, "flattens" the decision region 
in a way that  only scores that  are far apart from the 
threshold value indicate that  the decision is made 
with significant probability. 

Formally, among those weight vectors we would 
like to choose the hyper-plane with the largest "sep- 
arating parameter",  where the separating parameter 
r is defined as the largest value for which there exists 
a classifier F¢ (defined by a weight vector w) such 
that  for all positive examples d, F¢(d) > 0 + r/2 and 
for all negative d, Fc(d) < 0 - r/2. 

In this implementation we do not try to find the 
optimal r (as is done in (Cortes and Vapnik, 1995), 
but rather determine it heuristically. In order to 
find a "thick" separator, we modify, in all three al- 
gorithms, the update rule used during the training 
phase as follows: Rather than using a single thresh- 
old we use two separate thresholds, 0 + and 0-,  such 
that  0 + - 0- = 7-. During training, we say that  the 
algorithm predicts 0 (and makes a mistake, if the ex- 
ample is labeled positive) when the score it assigns 
an example is below 0 - .  Similarly, we say that  the 
algorithm predicts 1 when the score exceeds 0 +. All 
examples with scores in the range [0-, 0 +] are con- 
sidered mistakes. 'Parameters used: 0 -=0 .9 ,  0 + = 
1.1, 0 = 1). 
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The results presented in the third column of Ta- 
ble 1 show the improvements obtained when the 
threshold range is used. In all the results presented 
from this point on, all the algorithms use the thresh- 
old range modification. 

4.3 F e a t u r e  R e p e t i t i o n  

Due to the bursty nature of term occurrence in doc- 
uments, as well as the variation in document length, 
a feature may occur in a document more than once. 
It is therefore important  to consider the frequency 
of a feature when determining its strength. On one 
hand, there are cases where a feature is more indica- 
tive to the relevance of the document to a category 
when it appears several times in a document. On 
the other hand, in any long document, there may 
be some random feature that  is not significantly in- 
dicative to the current category although it repeats 
many times. While the weight of f in the weight 
vector of the category, w(f, c), may be fairly small, 
its cumulative contribution might be too large if we 
increase its strength, s(f, d), in proportion to its fre- 
quency in the document. 

As mentioned in Section 2.2, the classical IR liter- 
ature has addressed this problem using the i f  and idf 
factors. We note that  the standard treatment in IR 
suggests a solution to this problem that  suits batch 
algorithms - algorithms that  determine the weight 
of a feature after seeing all the examples. We, on 
the other hand, seek a solution that can be used in 
an on-line algorithm. Thus, the frequency of a fea- 
ture throughout the data set, for example, cannot be 
taken into account and we take into account only the 
if  term. We have experimented with three alterna- 
tive ways of adjusting the value of s(f, d) according 
to the frequency of the feature in the document: (1) 
Our default is to let the strength indicate only the 
activity of the feature. Tha t  is, s(f, d) = 1, if the fea- 
ture is present in the document (active feature) and 
s(f, d) = 0 otherwise. (2) s(f,d) = n(f,d),  where 
n(f, d) is the number of occurrences of f in d; and 
(3) s(f, d) = ~ d) (as in (Wiener, Pedersen, and 
Weigend, 1995)). These three alternatives examine 
the tradeoff between the positive and negative im- 
pacts of assigning a strength in proportion to feature 
frequency. In most of our experiments, on different 
data sets, the choice of using ~/n(f, d) performed 
best. The results of the comparative evaluation ap- 
pear in columns 3, 4, and 5 of Table 1, corresponding 
to the three alternatives above. 

4.4 D i s c a r d i n g  f e a t u r e s  

Multiplicative update algorithm are known to tol- 
erate a very large number of features. However, it 
seems plausible that most categories depend only on 
fairly small subsets of indicative features and not on 
all the features that  occur in documents that  belong 
to this class. Efficiency reasons, as well as the occa- 
sional need to generate comprehensible explanations 

to the classifications, suggest that  discarding irrele- 
vant features is a desirable goal in IR applications. 
If done correctly, discarding irrelevant features may 
also improve the accuracy of the classifier, since irrel- 
evant features contribute noise to the classification 
score. 

An important  property of the algorithms investi- 
gated here is that they do not require a feature se- 
lection pre-processing stage. Instead, they can run 
in the presence of a large number of features, and 
allow for discarding features "on the fly", based on 
their contribution to an accurate classification. This 
property is especially important  if one is considering 
enriching the set of features, as is done in (Golding 
and Roth, 1996; Cohen and Singer, 1996); in these 
cases it is important  to allow the algorithm to de- 
cide for itself which of the features contribute to the 
accuracy of the classification. 

We filter features that  are irrelevant for the cate- 
gory based on the weights they were assigned in the 
first few training rounds. 

The algorithm is given as input a range of weight 
value which we call the filtering range. First, the 
training algorithm is run for several iterations, until 
the number of mistakes on the training data drops 
below a certain threshold. After this initial training, 
we filter out all the features whose weight lie in this 
filtering range. Training then continues as usual. 

There are various ways to determine the filtering 
range. The obvious one may be to filter out all fea- 
tures whose weight is very close to 0, but there are 
a few subtle issues involved due to the normaliza- 
tion done in the PositiveWinnow algorithm. In the 
results presented here we have used, instead, a dif- 
ferent filtering range: Our filtering range is centered 
around the initial value assigned to the weights (as 
specified earlier for each algorithm), and is bounded 
above and below by the values obtained after one 
promotion or demotion step relative to the initial 
value. Thus, with high likelihood, we discard fea- 
tures which have not contributed to many mistakes 
- those that were promoted or demoted at most once 
(possibly, with additional promotions and demotions 
which canceled each other, though). 

The results of classification with feature filtering 
appear in the last column of Table 1. We hypothe- 
size that the improved results are due to reduction 
in the noise introduced by irrelevant features. Fur- 
ther investigation of this issue will be presented in 
the long version of this paper. Typically, about two 
thirds of the features were filtered for each category, 
significantly reducing the output  representation size. 

5 S u m m a r y  o f  E x p e r i m e n t a l  R e s u l t s  

The study described in Section 3.2 was used to 
determined the version that  performs best, out 
of those we have experimented with. Eventually, 
we have selected the version of the BalancedWin- 
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Algorithm 

B a l a n c e d W i n n o w  + 
Experts unigram (Cohen and Singer, 1996) 
Neural Network (Wiener, Pedersen, and Weigend, 1995) 
Rocchio (Rocchio, 1971) 
Ripper (Cohen and Singer, 1996) 
Decision trees (Lewis and Ringuette, 1994) 
Bayes (Lewis and Ringuette, 1994) 
SWAP (Apte, Damerau, and Weiss, 1994) 

Apte's split 

83 .3  
64.7 

Lewis's split 

74.7 
65.6 

77.5 NA 
74.5 66.0 
79.6 71.9 
NA 67.0 
NA 
78.9 

65.0 
NA 

Table 2: Break-even points comparison. The data is split into training set and test set based on Lewis's 
split - (Lewis, 1992), 14704 documents for training, 6746 for testing, and Apte's split - (Apte, Damerau, 
and Weiss, 1994), 10645 training, 3672 testing, omitting documents with no topical category. 

now algorithm, which incorporates the 0-range mod- 
ification, a square-root of occurrences as the fea- 
ture strength and the discard features modification 
(BalancedWinnow + in Table 2). 

We have compared this version with a few other 
algorithms which have appeared in the literature 
on the complete Reuters corpus. Table 2 presents 
break-even points for BalancedWinnow + and the 
other algorithms, as defined in Section 2.3. 

The results are reported for two splits of the com- 
plete Reuters corpus as explained in Section 2.3. The 
algorithm was run with iterations, threshold range, 
feature filtering, and frequency-square-root feature 
strength. 

The first two rows in Table 2 compare the per- 
formance of BalancedWinnow + with the two algo- 
rithms that  most resemble our approach, the Ex- 
perts algorithm from (Cohen and Singer, 1996) and a 
neural network approach presented in (Wiener, Ped- 
ersen, and Weigend, 1995). (see Section 2.2). 

Rocchio's algorithm is one of the classical algo- 
rithms for this tasks, and it still performs very 
good compared to newly developed techniques (e.g, 
(Lewis et al., 1996)). We also compared with the 
Ripper algorithm presented in(Cohen and Singer, 
1996) (we present the best results for this task, with 
negative tests), a simple decision tree learning sys- 
tem and a Bayesian classifier. The last two figure are 
taken from (Lewis and Ringuette, 1994) where they 
were evaluated only on Lewis's split. The last com- 
parison is with the learning system used by (Apte, 
Damerau, and Weiss, 1994), SWAP, which was eval- 
uated only on Apte's split. 

Our results significantly outperform (by at least 2- 
4%) all results which appear in that  table and use the 
same set of features (based on single words). Of the 
results we know of in the literature, only a version of 
the Experts algorithm of (Cohen and Singer, 1996) 
which uses a richer feature set - sparse word trigrams 
- outperforms our result on the Lewis split, with 
a break-even point of 75.3%, compared with 74.6% 
for the unigram-based BalancedWinnow + . However, 

this version achieves only 75.9% on the Apte split 
(compared with 83.3% of BalancedWinnow+). In 
the long version of this paper we plan to present the 
results of our algorithm on a richer feature set as 
well. 

6 C o n c l u s i o n s  

Theoretical analyses of the Winnow family of algo- 
rithms have predicted an exceptional ability to deal 
with large numbers of features and to adapt to new 
trends not seen during training. Until recently, these 
properties have remained largely undemonstrated. 

We have shown that  while these algorithms have 
many advantages there is still a lot of room to ex- 
plore when applying them to a real-world problem. 
In particular, we have demonstrated (1) how vari- 
ation in document length can be tolerated through 
either normalization or negative weights, (2) the pos- 
itive effect of applying a threshold range in training, 
(3) alternatives in considering feature frequency, and 
(4) the benefits of discarding irrelevant features as 
part of the training algorithm. The main contri- 
bution of this work, however, is that  we have pre- 
sented an algorithm, BalancedWinnow +, which per- 
forms significantly better than any other algorithm 
tested on these tasks using unigram features. 

We have exhibited that,  as expected, 
multiplicative-update algorithms have exceptionally 
good behavior in high dimensional feature spaces, 
even in the presence of irrelevant features. One ad- 
vantage this important property has is that  is allows 
one to decompose the learning problem from the fea- 
ture selection problem. Using this family of algo- 
rithms frees the designer from the need to choose the 
appropriate set of features ahead of time: A large set 
of features can be used and the algorithm will even- 
tually discard those that  do not contribute to the 
accuracy of the classifier. While we have chosen in 
this study to use a fairly simple set of features, it is 
straight forward to plug in instead a richer set of fea- 
tures. We expect that this will further improve the 
results of the algorithm, although further research is 
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needed on policies of  d i sca rd ing  fea tures  and avoid-  
ance of  over-f i t t ing.  In conclusion,  we suggest  t ha t  
the  d e m o n s t r a t e d  advan tages  of  the  Winnow - fa mi ly  
of  a lgo r i thms  make  i t  an appea l ing  cand ida t e  for fur- 
ther  use in th is  doma in .  
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