
Mistake-Driven Learning in Text Categorization

I d o D a g a n *

Dept. of Math. & CS

Bar Ilan University

Ramat Gan 52900, Israel

dagan@cs .biu. ac. il

Y a e l K a r o v

Dept. of Appl. Math. & CS

Weizmann Institute of Science

Rehovot 76100, Israel

yaelk@wisdom, we £zmann. ac. il

D a n R o t h t

Dept. of Appl. Math. & CS

Weizmann Institute of Science

Rehovot 76100, Israel

danrQwisdom, weizmalm, ac. il

A b s t r a c t

Learning problems in the text processing
domain often map the text to a space
whose dimensions are the measured fea-
tures of the text, e.g., its words. Three
characteristic properties of this domain are
(a) very high dimensionality, (b) both the
learned concepts and the instances reside
very sparsely in the feature space, and (c)
a high variation in the number of active
features in an instance. In this work we
study three mistake-driven learning algo-
rithms for a typical task of this nature -
text categorization.

We argue that these a l g o r i t h m s - which
categorize documents bY learning a linear
separator in the feature space - have a few
properties that make them ideal for this do-
main. We then show that a quantum leap
in performance is achieved when we fur-
ther modify the algorithms to better ad-
dress some of the specific characteristics of
the domain. In particular, we demonstrate
(1) how variation in document length can
be tolerated by either normalizing feature
weights or by using negative weights, (2)
the positive effect of applying a threshold
range in training, (3) alternatives in consid-
ering feature frequency, and (4) the bene-
fits of discarding features while training.

Overall, we present an algorithm, a vari-
ation of Littlestone's Winnow, which per-
forms significantly better than any other
algorithm tested on this task using a simi-
lar feature set.

*Partly supported by a grant no. 8560195 from the
Israeh Ministry of Science.

tPartly supported by a grant from the Israeli Ministry
of Science. Part of this work was done while visiting at
Harvard University, supported by ONR grant N00014-
96-1-0550.

1 I n t r o d u c t i o n

Learning problems in the natural language and text
processing domains are often studied by mapping
the text to a space whose dimensions are the mea-
sured features of the text, e.g., the words appearing
in a document. Three characteristic propertie s of
this domain are (a) very high dimensionality, (b)
both the learned concepts and the instances reside
very sparsely in the feature space and, consequently,
(c) there is a high variation in the number of active
features in an instance.

Multiplicative weight-updating algorithms such as
Winnow (Littlestone, 1988) have been studied exten-
sively in the theoretical learning literature. Theoret-
ical analysis has shown that they have exceptionally
good behavior in domains with these characteristics,
and in particular in the presence of irrelevant at-
tributes, noise, and even a target function chang-
ing in t ime (Littlestone, 1988; Littlestone and War-
muth, 1994; Herbster and Warmuth, 1995), but only
recently have people started to use them in applica-
tions (Golding and Roth, 1996; Lewis et al., 1996;
Cohen and Singer, 1996). We address these claims
empirically in an important application domain for
machine learning - text categorization. In partic-
ular, we study mistake-driven learning algorithms
that are based on the Winnow family/, and investi-
gate ways to apply them in domains with the above
characteristics.

The learning algorithms studied here offer a large
space of choices to be made and, correspondingly,
may vary widely in performance when applied in spe-
cific domains. We concentrate here on the text pro-
cessing domain, with the characteristics mentioned
above, and explore this space of choices in it.

In particular, we investigate three variations of
on-line prediction algorithms and evaluate them ex-
perimentally on large text categorization problems.
The algorithms we study are all learning algorithms
for linear functions. They are used to categorize
documents by learning, for each category, a linear
separator in the feature space. The algorithms dif-
fer by whether they allow the use of negative or only

5 5

positive weights and by the way they update their
weights during the training phase.

We find that while a vanilla version of these algo-
rithms performs rather well, a quantum leap in per-
formance is achieved when we modify the algorithms
to better address some of the specific characteristics
we identify in textual domains. In particular, we ad-
dress problems such as wide variations in document
sizes, word repetitions and the need to rank docu-
ments rather than just decide whether they belong
to a category or not. In some cases we adopt so-
lutions that are well known in the IR literature to
the class of algorithms we use; in others we modify
known algorithms to better suit the characteristics
of the domain. We motivate the modifications to
the basic algorithms and justify them experimentally
by exhibiting their contribution to improvement in
performance. Overall, the best variation we investi-
gate, performs significantly better than any known
algorithm tested on this task, using a similar set of
features.

The rest of the paper is organized as follows: The
next section describes the task of text categoriza-
tion, how we model it as a classification task, and
some related work. The family of algorithms we use
is introduced in Section 3 and the extensions to the
basic algorithms, along with their experimental eval-
uations, is presented in Section 4. In Section 5 we
present our final experimental results and compare
them to previous works in the literature.

2 T e x t C a t e g o r i z a t i o n

In text categorization, given a text document
and a collection of potential classes, the algo-
r i thm decides which classes it belongs to, or
how strongly it belongs to each class. For
example, possible classes (categories) may be
{bond}, {loan}, {interest}, {acquisition}. Docu-
ments that have been categorized by humans are
usually used as training data for a text categoriza-
tion system; later on, the trained system is used
to categorize new documents. Algorithms used to
train text categorization systems in information re-
trieval (IR) are often ad-hoc and poorly understood.
In particular, very little is known about their gen-
eralization performance, that is, their behavior on
documents outside the training data. Only recently,
some machine learning techniques for training lin-
ear classifiers have been used and shown to be effec-
tive in this domain (Lewis et al., 1996; Cohen and
Singer, 1996). These techniques have the advantage
that they are better understood from a theoretical
standpoint, leading to performance guarantees and
guidance in parameter settings. Continuing this line
of research we present different algorithms and fo-
cus on adjusting them to the unique characteristics
of the domain, yielding good performance on the
categorization task.

2.1 T r a i n i n g T e x t Class i f iers

Text classifiers represent a document as a set of fea-
tures d = { f l , f2 , . . . fm} , where m is the number
of active features in the document, that is, features
that occur in the document. A feature fi may typ-
ically represent a word w, a set wl, . . . Wk of words
(Cohen and Singer, 1996) or a phrasal structure
(Lewis, 1992; Tzeras and Hartmann, 1993). The
strength of the feature f in the document d is de-
noted by s(f, d). The strength is usually a function
of the number of times f appears in d (denoted by
n(f, d)). The strength may be used only to indicate
the presence or absence of f in the document, in
which case it takes on only the values 0 or 1, it may
be equal to n(f, d), or it can take other values to
reflect also the size of the document.

In order to rank documents, for each category,
a text categorization system keeps a function Fc
which, when evaluated on d, produces a score Fc(d).
A decision is then made by assigning to the category
c only those documents that exceed some threshold,
or just by placing at the top of the ranking docu-
ments with the highest such score.

A linear text classifier represents a category as a
weight vector wc = (w(f l , c), w(f2, c),. . , w(fn, c))
(wl, w2 , . . . Wn), where n is the total number of fea-
tures in the domain and w(f, c) is the weight of the
feature f for this category. It evaluates the score of
the document by computing the dot product:

F (a) = siS, w(S, e).
$ed

The problem is modeled as a supervised learn-
ing problem. The algorithms use the training data,
where each document is labeled by zero or more cate-
gories, to learn a classifier which classifies new texts.
A document is considered as a positive example for
all categories with which it is labeled, and as a neg-
ative example to all others.

The task of a training algorithm for a linear text
classifier is to find a weight vector which best classi-
fies new text documents. While a linear text classi-
fier is a linear separator in the space defined by the
features, it may not be linear with respect to the
document, if one chooses to use complex features
such as conjunctions of simple features. In addition,
a training algorithm may give also advice on the is-
sue of feature selection, by reducing the weight of
non-important features and thus effectively discard-
ing them.

2.2 R e l a t e d W o r k

Many of the techniques previously used in text cat-
egorization make use of linear classifiers, mainly
for reasons of efficiency. The classical vector space
model, which ranks documents using a nonlinear
similarity measure (the "cosine correlation") (Salton
and Buckley, 1983) can also be recast as a linear clas-
sification by incorporating length normalization into

56

the weight vector and the document vector features
values. State of the art IR systems determine the
strength of a term based on three values: (1) the
frequency of the feature in the document (t]), (2)
an inverse measure of the frequency of the feature
throughout the data set (id]), and (3) a normaliza-
tion factor that takes into account the length of the
document. In Sections 4.1 and 4.3 we discuss how
we incorporate those ideas in our setting.

Most relevant to our work are non-parametric
methods, which seem to yield better results than
parametric techniques. Rocchio's algorithm (Roc-
chio, 1971), one of the most commonly used tech-
niques, is a batch method that works in a relevance
feedback context. Typically, classifiers produced by
the Rocchio algorithm are restricted to having non-
negative weights. An important distinction between
most of the classical non-parametric methods and
the learning techniques we study here is that in the
former case, there was no theoretical work that ad-
dressed the generalization ability of the learned clas-
sifter, that is, how it behaves on new data.

The methods that are most similar to our tech-
niques are the on-line algorithms used in (Lewis et
al., 1996) and (Cohen and Singer, 1996). In the first,
two algorithms, a multiplicative update and additive
update algorithms suggested in (Kivinen and War-
muth, 1995a) are evaluated in the text categoriza-
tion domain, and are shown to perform somewhat
better than Rocchio's algorithm. While both these
works make use of multiplicative update algorithms,
as we do, there are two major differences between
those studies and the current one. First, there are
some important technical differences between the al-
gorithms used. Second, the algorithms we study here
are mistake-driven; they update the weight vector
only when a mistake is made, and not after every
example seen. The Experts algorithm studied in
(Cohen and Singer, 1996) is very similar to a basic
version of the BalancedWinnow algorithm which we
study here. The way we treat the negative weights is
different, though, and significantly more efficient, es-
pecially in sparse domains (see Section 3.1). Cohen
and Singer experiment also, using the same algo-
rithm, with more complex features (sparse n-grams)
and show that, as expected, it yields better results.

Our additive update algorithm, Perceptron, is
somewhat similar to what is used in (Wiener, Peder-
sen, and Weigend, 1995). They use a more complex
representation, a multi-layer network, but this ad-
ditional expressiveness seems to make training more
complicated, without contributing to better results.

2.3 M e t h o d o l o g y

We evaluate our algorithms on the the Reuters-
22173 text collection (Lewis, 1992), one of the most
commonly used benchmarks in the literature.

For the experiments reported In Sections 3.2 we
explore and compare different variations of the al-

gorithms; we evaluate those on two disjoint pairs of
a training set and a test set, both subsets of the
Reuters collection. Each pair consists of 2000 train-
ing documents and 1000 test documents, and was
used to train and test the classifier on a sample of
10 topical categories. The figures reported are the
average results on the two test sets.

In addition, we have tested our final version of
the classifier on two common partitions of the com-
plete Reuters collection, and compare the results
with those of other works. The two partitions used
are those of Lewis (Lewis, 1992) (14704 documents
for training, 6746 for testing) and Apte (Apte, Dam-
erau, and Weiss, 1994) (10645 training, 3672 testing,
omitting documents with no topical category).

To evaluate performance, the usual measures of
recall and precision were used. Specifically, we mea-
sured the effectiveness of the classification by keep-
ing track of the following four numbers:

• Pl = number of correctly classified class mem-
bers

• P2 = number of mis-classified class members

• nl = number of correctly classified non-class
members

• n2 = number of mis-classified ion-class mem-
bers

In those terms, the recall measure is defines as
Pl/Pl+P2, and the precision is defined as pl/pl÷n2.
Performance was further summarized by a break-
even point - a hypothetical point, obtained by in-
terpolation, in which precision equals recall.

3 O n - L i n e l e a r n i n g a l g o r i t h m s

In this section we present the basic versions of the
learning algorithms we use. The algorithms are used
to learn a classifier Fc for each category c. These
algorithms use the training data, where each docu-
ment is labeled by zero or more categories, to learn
a weight vector which is used later on, in the test
phase, to classify new text documents. A document
is considered as a positive example for all categories
with which it is labeled, and as a negative exam-
ple to all others• The algorithms are on-line and
mistake-driven. In the on-line learning model, learn-
ing takes place in a sequence of trials. On each trial,
the learner first makes a prediction and then receives
feedback which may be used to update the current
hypothesis (the vector of weights). A mistake-driven
algorithm updates its hypothesis only when a mis-
take is made. In the training phase, given a collec-
tion of examples, we may repeat this process a few
times, by iterating on the data. In the testing phase,
the same process is repeated on the test collection,
only that the hypothesis is not updated.

Let n be the number of features of the current
category. For the remainder of this section we de-
note a training document with rn active features

5 7

by d = (s i l , s i~ , . . . s i , ,) , where sij stands for the
strength of the ij feature. The label of the document
is denoted by y; y takes the value 1 if the document
is relevant to the category and 0 otherwise. Notice,
that we care only about the active features in the do-
main, following (Blum, 1992). The algorithms have
three parameters: a threshold/9, and two update pa-
rameters, a promotion parameter o~ and a demotion
parameter ft.

P o s i t i v e W i n n o w (L i t t l e s t o n e , 1988):
The algorithm keeps an n-dimensional weight vec-

tor w = (w l ,w2 , . . .Wn) , wi being the weight of the
ith feature, which it updates whenever a mistake is
made. Initially, the weight vector is typically set to
assign equal positive weight to all features. (We use
the value/9/d, where d is the average number of ac-
tive features in a document; in this way initial scores
are close to/9.) The promotion parameter is a > 1
and the demotion is 0 < ~ < 1.

For a given instance (Sil,Sia... , 8ira) the algo-
r i thm predicts 1 iff

m

~ Wijaij ~ O,
j = l

where wit is the weight corresponding to the active
feature indexed by ij. The algorithm updates its
hypothesis only when a mistake is made, as follows:
(1) If the algorithm predicts 0 and the label is 1
(positive example) then the weights of all the active
features are promoted - - the weight wit is multiplied
by o~. (2) If the algorithm predicts 1 and the received
label is 0 (negative example) then the weights of all
the active features are demoted - - the weight wit is
multiplied by ft. In both cases, weights of inactive
features maintain the same value.

P e r c e p t r o n (R o s e n b l a t t , 1958)
As in PositiveWinnow, in Perceptron we also keep

an n-dimensional weight vector w = (wl, w2 , . . , wn)
whose entries correspond to the set of potential fea-
tures, which is updated whenever a mistake is made.
As above, the initial weight vector is typically set to
assign equal weight to all features. The only dif-
ference between the algorithms is that in this case
the weights are updated in an additive fashion. A
single update parameter c~ > 0 is used, and a weight
is promoted by adding c~ to its previous value, and
is demoted by subtracting o~ from it. In both cases,
all other weights maintain the same value.

B a l a n c e d W i n n o w (L i t t l e s t o n e , 1988):
In this case, the algorithm keeps two weights,

w +, w- , for each feature. The overall weight of a
feature is the difference between these two weights,
thus allowing for negative weights. For a given in-
stance (si~, sis . . . , si~) the algorithm predicts 1 iff

m

- > / 9 , (1)
j = l

where w~, wi- ~ correspond to the active feature in-
dexed by ij. In our implementation, the weights w +
are initialized to 20/d and the weights w- are set to
0/d, where d is the average number of active features
in a document in the collection.

The algorithm updates the weights of active fea-
tures only when a mistake is made, as follows: (1) In
the promotion step, following a mistake on a positive
example, the positive part of the weight is promoted,
w~ ~ a • w~ while the negative part of the weight

is demoted, wi~ ~-- ft. wij. Overall, the coefficient of
sij in Eq. 1 increases after a promotion. (2) In the
demotion step, following a mistake on a negative ex-
ample, the coefficient ofsi j in Eq. 1 is decreased: the
positive part of the weight is demoted, w~ ~ j3. w~
while the negative part of the weight is promoted,

m wij *- a . w~. In both cases, all other weights main-
tain the same value.

In this algorithm (see in Eq. 1) the coefficient of
the ith feature can take negative values, unlike the
representation used in PositiveWinnow. There are
other versions of the Winnow algorithm that allow
the use of negative features: (1) Littlestone, when
introducing the Balanced version, introduced also a
simpler version - a version of PositiveWinnow with
a duplication of the number of features. (2) A ver-
sion of the Winnow algorithm with negative features
is used in (Cohen and Singer, 1996). In both cases,
however, whenever there is a need to update the
weights, all the weights are being updated (actually,
n out of the 2n). In the version we use, only weights
of active features are being updated; this gives a sig-
nificant computational advantage when working in
a sparse high dimensional space.

3.1 P r o p e r t i e s o f t h e A l g o r i t h m s

Winnow and its variations were introduced in Little-
stone's seminal paper (Littlestone, 1988); the the-
oretical behavior of multiplicative weight-updating
algorithms for learning linear functions has been
studied since then extensively. In particular, Win-
now has been shown to learn efficiently any linear
threshold function (Littlestone, 1988). These are
functions F : {0, 1} n ---~ {0, 1} for which there ex-
ist real weights w l , . . . , w n and a real threshold /9
such that F (s l , . . . , s n) = 1 iff ~i"=1 wisi > /9. In
particular, these functions include Boolean disjunc-
tions and conjunctions on k _< n variables and r-of-k
threshold functions (1 < r < k _< n). While Win-
now is guaranteed to find a perfect separator if one
exists, it also appears to be fairly successful when
there is no perfect separator. The algorithm makes
no independence or ~tny other assumptions on the
features, in contrast to other parametric estimation
techniques (typically, Bayesian predictors) which are
commonly used in statistical NLP.

Theoretical analysis has shown that the algorithm
has exceptionally good behavior in the presence of

58

irrelevant features, noise, and even a target func-
tion changing in time (Littlestone, 1988; Littlestone,
1991; Littlestone and Warmuth, 1994; Herbster and
Warmuth, 1995), and there is already some empiri-
cal support for these claims (Littlestone, 1995; Gold-
ing and Roth, 1996; Blum, 1995). The key feature
of Winnow is that its mistake bound grows linearly
with the number of relevant features and only log-
arithmically with the total number of features. A
second important property is being mistake driven.
Intuitively, this makes the algorithm more sensitive
to the relationships among the features - - relation-
ships that may go unnoticed by an algorithm that
is based on counts accumulated separately for each
attribute. This is crucial in the analysis of the algo-
r i thm as well as empirically (Littlestone, 1995; Gold-
ing and Roth, 1996).

The discussion above holds for both versions of
Winnow studied here, PositiveWinnow and Bal-
ancedWinnow. The theoretical results differ only
slightly in the mistake bounds, but have the same
flavor. However, the major difference between the
two algorithms, one using only positive weights and
the other allowing also negative weights, plays a sig-
nificant role when applied in the current domain, as
discussed in Section 4.

Winnow is closely related, and has served
as the motivation for a collection of recent
works on combining the "advice" of different
"experts"(Littlestone and Warmuth, 1994; Cesa-
Bianchi et al., 1995; Cesa-Bianchi et al., 1994). The
features used are the "experts" and the learning al-
gorithm can be viewed as an algorithm that learns
how to combine the classifications of the different
experts in an optimal way.

The additive-update algorithm that we evaluate
here, the Perceptron, goes back to (Rosenblatt,
1958). While this algorithm is also known to learn
the target linear function when it exists, the bounds
given by the Perceptron convergence theorem (Duda
and Hart, 1973) may be exponential in the opti-
mal mistake bound, even for fairly simple functions
(Kivinen and Warmuth, 1995b). We refer to (Kivi-
nen and Warmuth, 1995a) for a thorough analysis
of multiplicative update algorithms versus additive
update algorithms. In particular, it is shown that
the number of mistakes the additive and multiplica-
tive update algorithms make, depend differently on
the domain characteristics. Informally speaking, it
is shown that the multiplicative update algorithms
have advantages in high dimensional problems (i.e.,
when the number of features is large) and when the
target weight vector is sparse (i.e., contain many
weights that are close to 0). This explains the re-
cent success in using these methods on high dimen-
sional problems (Golding and Roth, 1996) and sug-
gests that multiplicative-update algorithms might
do well on IR applications, provided that a good
set of features is selected. On the other hand, it is

shown that additive-update algorithms have advan-
tages when the examples are sparse in the feature
space, another typical characteristics of the IR do-
main, which motivates us to study experimentally
an additive-update algorithm as well.

3.2 Evaluat ing the Basic Versions

We started by evaluating the basic versions of the
three algorithms. The features we use throughout
the experiments are single words, at the lemma level,
for nouns and verbs only, with minimal frequency of
3 occurrences in the corpus. In the basic versions
the strength of the feature is taken to indicate only
the presence or absence of f in the document, that
is, it is either 1 or 0. The training algorithm was run
iteratively on the training set, until no mistakes were
made on the training collection or until some upper
bound (50) on the number of iterations was reached.
The results for the basic versions are shown in the
first column of Table 1.

4 E x t e n s i o n s t o t h e B a s i c a l g o r i t h m s

4.1 Length Variat ion and Negat ive features
Text documents vary widely in their length and a
text classifier needs to tolerate this variation. This
issue is a potential problem for a linear classifier
which scores a document by summing the weights
of all its active features: a long document may have
a better chance of exceeding the threshold merely by
its length.

This problem has been identified earlier on and
attracted a lot of work in the classical work on IR
(Salton and Buckley, 1983), as we have indicated
in Section 2.2. The treatment described there ad-
dresses at the same time at least two different con-
cerns: length variation of documents and feature
repetition. In this section we consider the first of
those, and discuss how it applies to the algorithms
we investigate. The second concern is discussed in
Section 4.3.

Algorithms that allow the use of negative features,
such as BalancedWinnow and Perceptron, tolerate
variation in the documents length naturally, and
thus have a significant advantage in this respect.
In these cases, it can be expected that the cumu-
lative contribution of the weights and, in particular,
those that are not indicative to the current cate-
gory, does not count towards exceeding the thresh-
old, but rather averages out to 0. Indeed, as we
found out, no special normalization is required when
using these algorithms. Their significant advantage
over the unnormalized version of PositiveWinnow is
readily seen in Table 1.

In addition, using negative weights gives the text
classifier more flexibility in capturing "truly nega-
tive" features, where the presence of a feature is in-
dicative for the irrelevance of the document to the
category. However, we found that this phenomenon

5 9

Algorithm Version
Basic Norm 0-range Linear Freq.

BalancedWinnow 64.87 NA 69.66 72.11
PositiveWinnow 55.56 63.56 65.80 67.20
Perceptron 65.91 NA 63.05 66.72

Sqrt. Freq Discard

71.56 73.2
69.67 70.0
68.29 70.8

Table 1: Recall/precision break-even point (in percentages) for different versions of the algorithm. Each
figure is an average result for two pairs of training and testing sets, each containing 2000 training documents
and 1000 test documents.

only rarely occurs in text categorization and thus
the main use of the negative features is to tolerate
the length variation of the documents.

When using PositiveWinnow, which uses only pos-
itive weights, we no longer have this advantage and
we seek a modification that tolerates the variation in
length. As in the standard IR solution, we suggest
to modify s(f, d), the strength of the feature f in d,
by using a quantity that is normalized with respect
to the document size.

Formally, we replace the strength s(f ,d) (which
may be determined in several ways according to fea-
ture frequency, as explained below) by a normalized
strenglh,

s(f, d)
sn(f, d) = E fEd s(f, d)"

In this case (which applies, as discussed above,
only for PositiveWinnow), we also change the initial
weight vector and initialize all the weights to 0.

Using normalization gives an effect that is similar
to the use of negative weights, but to a lesser degree.
The reason is that it is used uniformly; in long doc-
uments, the number of indicative features does not
increase significantly, but their strength, neverthe-
less, is reduced proportionally to the total number
of features in the document. In the long version of
the paper we present a more thorough analysis of
this issue.

The results presented in Table 1 (second column)
show the significant improvements achieved in Pos-
itiveWinnow performance, when normalization is
used. In all the results presented from this point on,
positive winnow is normalized.

4.2 U s i n g T h r e s h o l d r a n g e

Training a linear text classifier is a search for a
weight vector in the feature space. The search is for a
linear separator that best separates documents that
are relevant to the category from those that are not.
In general, there is no guarantee that a weight vec-
tor of this sort exists, even in the training data, but
a good selection of features make this more likely.
While the basic versions of our algorithms search
for linear separators, we have modified those so that
our search for a linear classifier is biased to look for
"thick" classifiers. To understand this, consider, for

the moment, the case in which all the data is per-
fectly linearly separable. Then there will generally
be many linear classifiers that separate the training
data we actually see. Among these, it seems plau-
sible that we have a better chance of doing well on
the unseen test data if we choose a linear separator
that separates the positive and negative training ex-
amples as "widely" as possible. The idea of having
a wide separation is less clear when there is no per-
fect separator, but we can still appeal to the basic
intuition.

Using a "thick" separator is even more impor-
tant when documents are ranked rather than sim-
ply classified; that is, when the actual score pro-
duced by the classifier is used in the decision process.
The reason is that if Fc(d) is the score produced by
the classifier Fc when evaluated on the document d
then, under some assumptions on the dependencies
among the features, the probability that the doc-
ument d is relevant to the category c is given by
Prob(d E c) _ l+e=~;r~7 This function, known as
the sigmoid function, "flattens" the decision region
in a way that only scores that are far apart from the
threshold value indicate that the decision is made
with significant probability.

Formally, among those weight vectors we would
like to choose the hyper-plane with the largest "sep-
arating parameter", where the separating parameter
r is defined as the largest value for which there exists
a classifier F¢ (defined by a weight vector w) such
that for all positive examples d, F¢(d) > 0 + r/2 and
for all negative d, Fc(d) < 0 - r/2.

In this implementation we do not try to find the
optimal r (as is done in (Cortes and Vapnik, 1995),
but rather determine it heuristically. In order to
find a "thick" separator, we modify, in all three al-
gorithms, the update rule used during the training
phase as follows: Rather than using a single thresh-
old we use two separate thresholds, 0 + and 0-, such
that 0 + - 0- = 7-. During training, we say that the
algorithm predicts 0 (and makes a mistake, if the ex-
ample is labeled positive) when the score it assigns
an example is below 0 - . Similarly, we say that the
algorithm predicts 1 when the score exceeds 0 +. All
examples with scores in the range [0-, 0 +] are con-
sidered mistakes. 'Parameters used: 0 -=0 .9 , 0 + =
1.1, 0 = 1).

6 0

The results presented in the third column of Ta-
ble 1 show the improvements obtained when the
threshold range is used. In all the results presented
from this point on, all the algorithms use the thresh-
old range modification.

4.3 F e a t u r e R e p e t i t i o n

Due to the bursty nature of term occurrence in doc-
uments, as well as the variation in document length,
a feature may occur in a document more than once.
It is therefore important to consider the frequency
of a feature when determining its strength. On one
hand, there are cases where a feature is more indica-
tive to the relevance of the document to a category
when it appears several times in a document. On
the other hand, in any long document, there may
be some random feature that is not significantly in-
dicative to the current category although it repeats
many times. While the weight of f in the weight
vector of the category, w(f, c), may be fairly small,
its cumulative contribution might be too large if we
increase its strength, s(f, d), in proportion to its fre-
quency in the document.

As mentioned in Section 2.2, the classical IR liter-
ature has addressed this problem using the i f and idf
factors. We note that the standard treatment in IR
suggests a solution to this problem that suits batch
algorithms - algorithms that determine the weight
of a feature after seeing all the examples. We, on
the other hand, seek a solution that can be used in
an on-line algorithm. Thus, the frequency of a fea-
ture throughout the data set, for example, cannot be
taken into account and we take into account only the
if term. We have experimented with three alterna-
tive ways of adjusting the value of s(f, d) according
to the frequency of the feature in the document: (1)
Our default is to let the strength indicate only the
activity of the feature. Tha t is, s(f, d) = 1, if the fea-
ture is present in the document (active feature) and
s(f, d) = 0 otherwise. (2) s(f,d) = n(f,d), where
n(f, d) is the number of occurrences of f in d; and
(3) s(f, d) = ~ d) (as in (Wiener, Pedersen, and
Weigend, 1995)). These three alternatives examine
the tradeoff between the positive and negative im-
pacts of assigning a strength in proportion to feature
frequency. In most of our experiments, on different
data sets, the choice of using ~/n(f, d) performed
best. The results of the comparative evaluation ap-
pear in columns 3, 4, and 5 of Table 1, corresponding
to the three alternatives above.

4.4 D i s c a r d i n g f e a t u r e s

Multiplicative update algorithm are known to tol-
erate a very large number of features. However, it
seems plausible that most categories depend only on
fairly small subsets of indicative features and not on
all the features that occur in documents that belong
to this class. Efficiency reasons, as well as the occa-
sional need to generate comprehensible explanations

to the classifications, suggest that discarding irrele-
vant features is a desirable goal in IR applications.
If done correctly, discarding irrelevant features may
also improve the accuracy of the classifier, since irrel-
evant features contribute noise to the classification
score.

An important property of the algorithms investi-
gated here is that they do not require a feature se-
lection pre-processing stage. Instead, they can run
in the presence of a large number of features, and
allow for discarding features "on the fly", based on
their contribution to an accurate classification. This
property is especially important if one is considering
enriching the set of features, as is done in (Golding
and Roth, 1996; Cohen and Singer, 1996); in these
cases it is important to allow the algorithm to de-
cide for itself which of the features contribute to the
accuracy of the classification.

We filter features that are irrelevant for the cate-
gory based on the weights they were assigned in the
first few training rounds.

The algorithm is given as input a range of weight
value which we call the filtering range. First, the
training algorithm is run for several iterations, until
the number of mistakes on the training data drops
below a certain threshold. After this initial training,
we filter out all the features whose weight lie in this
filtering range. Training then continues as usual.

There are various ways to determine the filtering
range. The obvious one may be to filter out all fea-
tures whose weight is very close to 0, but there are
a few subtle issues involved due to the normaliza-
tion done in the PositiveWinnow algorithm. In the
results presented here we have used, instead, a dif-
ferent filtering range: Our filtering range is centered
around the initial value assigned to the weights (as
specified earlier for each algorithm), and is bounded
above and below by the values obtained after one
promotion or demotion step relative to the initial
value. Thus, with high likelihood, we discard fea-
tures which have not contributed to many mistakes
- those that were promoted or demoted at most once
(possibly, with additional promotions and demotions
which canceled each other, though).

The results of classification with feature filtering
appear in the last column of Table 1. We hypothe-
size that the improved results are due to reduction
in the noise introduced by irrelevant features. Fur-
ther investigation of this issue will be presented in
the long version of this paper. Typically, about two
thirds of the features were filtered for each category,
significantly reducing the output representation size.

5 S u m m a r y o f E x p e r i m e n t a l R e s u l t s

The study described in Section 3.2 was used to
determined the version that performs best, out
of those we have experimented with. Eventually,
we have selected the version of the BalancedWin-

61

Algorithm

B a l a n c e d W i n n o w +
Experts unigram (Cohen and Singer, 1996)
Neural Network (Wiener, Pedersen, and Weigend, 1995)
Rocchio (Rocchio, 1971)
Ripper (Cohen and Singer, 1996)
Decision trees (Lewis and Ringuette, 1994)
Bayes (Lewis and Ringuette, 1994)
SWAP (Apte, Damerau, and Weiss, 1994)

Apte's split

83 .3
64.7

Lewis's split

74.7
65.6

77.5 NA
74.5 66.0
79.6 71.9
NA 67.0
NA
78.9

65.0
NA

Table 2: Break-even points comparison. The data is split into training set and test set based on Lewis's
split - (Lewis, 1992), 14704 documents for training, 6746 for testing, and Apte's split - (Apte, Damerau,
and Weiss, 1994), 10645 training, 3672 testing, omitting documents with no topical category.

now algorithm, which incorporates the 0-range mod-
ification, a square-root of occurrences as the fea-
ture strength and the discard features modification
(BalancedWinnow + in Table 2).

We have compared this version with a few other
algorithms which have appeared in the literature
on the complete Reuters corpus. Table 2 presents
break-even points for BalancedWinnow + and the
other algorithms, as defined in Section 2.3.

The results are reported for two splits of the com-
plete Reuters corpus as explained in Section 2.3. The
algorithm was run with iterations, threshold range,
feature filtering, and frequency-square-root feature
strength.

The first two rows in Table 2 compare the per-
formance of BalancedWinnow + with the two algo-
rithms that most resemble our approach, the Ex-
perts algorithm from (Cohen and Singer, 1996) and a
neural network approach presented in (Wiener, Ped-
ersen, and Weigend, 1995). (see Section 2.2).

Rocchio's algorithm is one of the classical algo-
rithms for this tasks, and it still performs very
good compared to newly developed techniques (e.g,
(Lewis et al., 1996)). We also compared with the
Ripper algorithm presented in(Cohen and Singer,
1996) (we present the best results for this task, with
negative tests), a simple decision tree learning sys-
tem and a Bayesian classifier. The last two figure are
taken from (Lewis and Ringuette, 1994) where they
were evaluated only on Lewis's split. The last com-
parison is with the learning system used by (Apte,
Damerau, and Weiss, 1994), SWAP, which was eval-
uated only on Apte's split.

Our results significantly outperform (by at least 2-
4%) all results which appear in that table and use the
same set of features (based on single words). Of the
results we know of in the literature, only a version of
the Experts algorithm of (Cohen and Singer, 1996)
which uses a richer feature set - sparse word trigrams
- outperforms our result on the Lewis split, with
a break-even point of 75.3%, compared with 74.6%
for the unigram-based BalancedWinnow + . However,

this version achieves only 75.9% on the Apte split
(compared with 83.3% of BalancedWinnow+). In
the long version of this paper we plan to present the
results of our algorithm on a richer feature set as
well.

6 C o n c l u s i o n s

Theoretical analyses of the Winnow family of algo-
rithms have predicted an exceptional ability to deal
with large numbers of features and to adapt to new
trends not seen during training. Until recently, these
properties have remained largely undemonstrated.

We have shown that while these algorithms have
many advantages there is still a lot of room to ex-
plore when applying them to a real-world problem.
In particular, we have demonstrated (1) how vari-
ation in document length can be tolerated through
either normalization or negative weights, (2) the pos-
itive effect of applying a threshold range in training,
(3) alternatives in considering feature frequency, and
(4) the benefits of discarding irrelevant features as
part of the training algorithm. The main contri-
bution of this work, however, is that we have pre-
sented an algorithm, BalancedWinnow +, which per-
forms significantly better than any other algorithm
tested on these tasks using unigram features.

We have exhibited that, as expected,
multiplicative-update algorithms have exceptionally
good behavior in high dimensional feature spaces,
even in the presence of irrelevant features. One ad-
vantage this important property has is that is allows
one to decompose the learning problem from the fea-
ture selection problem. Using this family of algo-
rithms frees the designer from the need to choose the
appropriate set of features ahead of time: A large set
of features can be used and the algorithm will even-
tually discard those that do not contribute to the
accuracy of the classifier. While we have chosen in
this study to use a fairly simple set of features, it is
straight forward to plug in instead a richer set of fea-
tures. We expect that this will further improve the
results of the algorithm, although further research is

6 2

needed on policies of d i sca rd ing fea tures and avoid-
ance of over-f i t t ing. In conclusion, we suggest t ha t
the d e m o n s t r a t e d advan tages of the Winnow - fa mi ly
of a lgo r i thms make i t an appea l ing cand ida t e for fur-
ther use in th is doma in .

A c k n o w l e d g m e n t s

T h a n k to Michal L a n d a u for her help in runn ing the
exper iments .

References

Apte, C., F. Damerau, and S. Weiss. 1994. Towards lan-
guage independent automated learning of text catego-
rization models. In Proceedings of ACM-SIGIR Con-
ference on Information Retrieval.

Blum, A. 1992. Learning boolean functions in an infi-
nite at t r ibute space. Machine Learning, 9(4):373-386,
October.

Blum, A. 1995. Empirical support for Winnow and
weighted-majority based algorithms: results on a cal-
endar scheduling domain. In Proc. 12th International
Conference on Machine Learning, pages 64-72. Mor-
gan Kaufmann.

Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, D. Haus-
sler, and R. E. Schapire a n d M. K. Warmuth. 1995.
How to use expert advice, pages 382-391.

Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, and
M. Warmuth. 1994. On-line prediction and conver-
sion strategies. In Computational Learning Theory:
Eurocolt '93, volume New Series Number 53 of The
Institute of Mathematics arid its Applications Confer-
ence Series, pages 205-216, Oxford. Oxford University
Press.

Cohen, W. W. and Y. Singer. 1996. Context-sensitive
learning methods for text categorization. In Proc. of
the 19th Annual Int. ACM Conference on Research
and Development in Information Retrieval.

Cortes, Corinna and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273-297.

Duda, R. O. and P. E. Hart. 1973. Pattern Classification
and Scene Analysis. Wiley.

Golding, A. R. and D. Roth. 1996. Applying winnow to
context-sensitive spelling correction. In Proc. of the
International Conference on Machine Learning.

Herbster, M. and M. Warmuth. 1995. Tracking the
best expert. In Proc. 12th International Conference
on Machine Learning, pages 286-294. Morgan Kanf-
mann.

Kivinen, J. and M. K. Warmuth. 1995a. Exponentiated
gradient versus gradient descent for linear predictors.
In Proc. of STOC. Tech Report UCSC-CRL-94-16.

Kivinen, J. and M. K. Warmuth. 1995b. The perceptron
algorithm vs. Winnow: linear vs. logarithmic mistake
bounds when few input variables are relevant. In Proc.
8th Annu. Conf. on Comput. Learning Theory, pages
289-296. ACM Press, New York, NY.

Lewis, D. 1992. An evaluation of phrasal and clustered
representations on a text categorization problem. In
Proc. of the 15th Int. ACM-SIGIR Conference on In-
formation Retrieval.

Lewis, D. and M. Ringuette. 1994. A comparison of two
learning algorithms for text categorization. In Proc.
of Symposium on Document Analysis and Information
Retrieval.

Lewis, D., R. E. Schapire, J. P. Callan, and R. Papka.
1996. Training algorithms for linear text classifiers.
In SIGIR '96: Proc. of the 19th Int. Conference on
Research and Development in Information Retrieval,
1996.

Littlestone, N. 1988. Learning quickly when irrelevant
at t r ibutes abound: A new finear-threshold algorithm.
Machine Learning, 2:285-318.

Littlestone, N. 1991. Redundant noisy attributes, at-
tr ibute errors, and linear threshold learning using
Winnow. In Proc. $th Annu. Workshop on Corn-
put. Learning Theory, pages 147-156, San Mateo, CA.
Morgan Kanfmann.

Littlestone, N. 1995. Comparing severallinear-threshold
learning algorithms on tasks involving superfluous
attr ibutes. In Proc. 12th International Conference
on Machine Learning, pages 353-361. Morgan Kauf-
m a n n .

Littlestone, N. and M. K. Warmuth. 1994. The weighted
majori ty algorithm. Information and Computation,
108(2):212-261.

Rocchio, 3. 1971. Relevance feedback information re-
trieval. In G. Salton, editor, The SMART retrieval
system - experiments in automatic document process-
ing. Prentice-Hall, pages 313-323.

Rosenblatt, F. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65:386-407. (Reprinted
in Neurocomputing (MIT Press, 1988).).

Salton, G. and C. Buckley. 1983. Introduction to Modern
Information Retrieval. McGraw-Hill.

Tzeras, K. and S. Hartmann. 1993. Automatic index-
ing based on bayesian inference networks. In Proc.
of 16th Int. ACM SIGIR Conference on Research and
Development in Information Retrieval.

Wiener, E., J. Pedersen, and A. Weigend. 1995. A neu-
ral network approach to topic spotting. In Symposium
on Document Analysis and Information Retrieval.

63

