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This paper introduces a new statistical ap- 
proach to partitioning text automatically 
into coherent segments. Our approach en- 
lists both short-range and long-range lan- 
guage models to help it sniff out likely sites 
of topic changes in text. To aid its search, 
the system consults a set of simple lexical 
hints it has learned to associate with the 
presence of boundaries through inspection 
of a large corpus of annotated data. We 
also propose a new probabilistically mo- 
t ivated error metric for use by the natu- 
ral language processing and information re- 
trieval communities, intended to supersede 
precision and recall for appraising segmen- 
tation algorithms. Qualitative assessment 
of our algorithm as well as evaluation using 
this new metric demonstrate the effective- 
ness of our approach in two very different 
domains, Wall Street Journal articles and 
the T D T  Corpus, a collection of newswire 
articles and broadcast news transcripts. 

1 I n t r o d u c t i o n  

The task we address in this paper might seem on the 
face of it rather elementary: identify where one re- 
gion of text ends and another begins. This work was 
motivated by the observations that  such a seemingly 
simple problem can actually prove quite difficult to 
automate,  and that  a tool for partitioning a stream 
of undifferentiated text (or multimedia) into coher- 
ent regions would be of great benefit to a number of 
existing applications. 

The task itself is ill-defined: what exactly is meant 
by a "region" of text? We confront this issue by 
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adopting an empirical definition of segment. At our 
disposal is a collection of online data  (38 million 
words of Wall Street Journal archives and another 
150 million words from selected news broadcasts) 
annotated with the boundaries between regions--  
articles or news reports, respectively. Given this in- 
put, the task of constructing a segmenter may be 
cast as a problem in machine learning: glean from 
the data  a set of hints about where boundaries occur, 
and use these hints to inform a decision on where to 
place breaks in unsegmented data. 

A general-purpose tool for partitioning expository 
text or multimedia data  into coherent regions would 
have a number of immediate practical uses. In fact, 
this research was inspired by a problem in informa- 
tion retrieval: given a large unpartit ioned collection 
of expository text and a user's query, return a collec- 
tion of coherent segments matching the query. Lack- 
ing a segmenting tool, an II:t application may be able 
to locate positions in its database which are strong 
matches with the user's query, but  be unable to de- 
termine how much of the surrounding data  to pro- 
vide to the user. This can manifest itself in quite 
unfortunate ways. For example, a video-on-demand 
application (such as the one described in (Christel 
et al., 1995)) responding to a query about a recent 
news event may provide the user with a news clip 
related to the event, followed or preceded by part of 
an unrelated story or even a commercial. 

Document summarization is another fertile area 
for an automatic segmenter. Summarization tools 
often work by breaking the input into "topics" and 
then summarizing each topic independently. A seg- 
mentation tool has obvious applications to the first 
of these tasks. 

The output of a segmenter could also serve as 
input to various language-modeling tools. For in- 
stance, one could envision segmenting a corpus, clas- 
sifying the segments by topic, and then construct- 
ing topic-dependent language models from the gen- 
erated classes. 

The paper will proceed as follows. In Section 2 we 
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very briefly review some previous approaches to the 
text segmentation problem. In Section 3 we describe 
our model, including the type of linguistic clues it 
looks for in deciding when placing a partition is ap- 
propriate. In Section 4 we describe a feature induc- 
tion algorithm that automatically constructs a set of 
the most informative clues. Section 5 shows exam- 
ples of the feature induction algorithm in action. In 
Section 6 we introduce a new, probabilistically mo- 
tivated way to evaluate a text segmenter. Finally, in 
Section 7 we demonstrate our model's effectiveness 
on two distinct domains. 

2 Some Previous  Work 

In this section we very briefly discuss some previous 
approaches to the text segmentation problem. 

2.1 Text t i l ing 

The Te~ctTiling algorithm, introduced by Hearst 
(Hearst, 1994), segments expository texts into mul- 
tiple paragraphs of coherent discourse units. A co- 
sine measure is used to gauge the similarity between 
constant-size blocks of morphologically analyzed to- 
kens. First-order rates of change of this measure are 
then calculated to decide the placement of bound- 
aries between blocks, which are then adjusted to co- 
incide with the paragraph segmentation, provided 
as input to the algorithm. This approach leverages 
the observation that text segments are dense with 
repeated content words. Relying on this fact, how- 
ever, may limit precision because the repetition of 
concepts within a document is more subtle than can 
be recognized by only a "bag of words" tokenizer 
and morphological filter. 

Word pairs other than "self-triggers," for exam- 
ple, can be discovered automatically from train- 
ing data using the techniques of mutual informa- 
tion employed by our language model. Furthermore, 
Hearst's approach segments at the paragraph level, 
which may be too coarse for applications like in- 
formation retrieval on transcribed or automatically 
recognized spoken documents, in which paragraph 
boundaries are not known. 

2.2 Lexical cohesion 

(Kozima, 1993) employs a "lexical cohesion profile" 
to keep track of the semantic cohesiveness of words 
in a text within a fixed-length window. In con- 
trast to Hearst's focus on strict repetition, Kozima 
uses a semantic network to provide knowledge about 
related word pairs. Lexical cohesiveness between 
two words is calculated in the network by "acti- 
vating" the node for one word and observing the 
"activity value" at the other word after some num- 
ber of iterations of "spreading activation" between 
nodes. The network is trained automatically using a 

language-specific knowledge source (a dictionary of 
definitions). Kozima generalizes lexical cohesiveness 
to apply to a window of text, and plots the cohe- 
siveness of successive text windows in a document, 
identifying the valleys in the measure as segment 
boundaries. 

A graphically motivated segmentation technique 
called dotplotting is offered in (Reynar, 1994). This 
technique uses a simplified notion of lexical cohe- 
sion, depending exclusively on word repetition to 
find tight regions of topic similarity. 

2.3 Decision t rees  

(Litman and Passonneau, 1995) presents an algo- 
rithm that uses decision trees to combine multiple 
linguistic features extracted from corpora of spoken 
text, including prosodic and lexical cues. The deci- 
sion tree algorithm, like ours, chooses from a space 
of candidate features, some of which are similar to 
our vocabulary questions. The set of candidate ques- 
tions in Litman and Passonneu's approach, however, 
is lacking in features related to "lexical cohesion." 
In our work we incorporate such features by using a 
pair of language models, as described below. 

3 A Feature-Based Approach 

Our attack on the segmentation problem is based on 
a statistical framework that we call feature induction 
for random fields and exponential models (Berger, 
Della Pietra, and Della Pietra, 1996; Della Pietra, 
Della Pietra, and Lafferty, 1997). The idea is to 
construct a model which assigns to each position in 
the data stream a probability that a boundary be- 
longs at that position. This probability distribution 
arises by incrementally building a log-linear model 
that weighs different "features" of the data. For sim- 
plicity, we assume that the features are binary ques- 
tions. 

To illustrate (and to show that our approach is 
in no way restricted to text), consider the task of 
partitioning a stream of multimedia data containing 
audio, text and video. In this setting, the features 
might include questions such as: 

• Does the phrase COMING UP appear in the last ut- 
terance of the decoded speech? 

• Is there a sharp change in the video stream in the 
last 20 frames? 

• Does the language model degrade in performance in 
the next two utterances? 

• Is there a "match" between the spectrum of the 
current image and an image near the last segment 
boundary? 

• Are there blank video frames nearby? 

• Is there a sharp change in the audio stream in the 
next utterance? 
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The idea of using features is a natural one, and 
indeed other recent work on segmentation, such as 
(Litman and Passonneau, 1995), adopts this ap- 
proach. We take a unique approach to incorporat- 
ing the information inherent in various features, us- 
ing the statistical framework of exponential models 
to choose the best features and combine them in a 
principled manner. 

3.1 A s h o r t - r a n g e  m o d e l  o f  l a n g u a g e  

Central to our approach to segmenting is a pair of 
tools: a short- and long-range model of language. 
Monitoring the relative behavior of these two mod- 
els goes a long way towards helping our segmenter 
sniff out natural breaks in the text. In this section 
and the next, we describe these language models and 
explain their utility in identifying segments. 

The trigram models Ptri(W ]w-2, W-l) we em- 
ploy use the Katz backoff scheme (Katz, 19877) for 
smoothing. We trained trigram models on two differ- 
ent corpora. The Wall Street Journal corpus (WSJ)  
is a 38-million word corpus of articles from the news- 
paper. The model was constructed using a set },V of 
the approximately 20,000 most frequently occurring 
words in the corpus. Another model was constructed 
on the Broadcast News corpus (BN), made up of ap- 
proximately 150 million words (four and a half years) 
of transcripts of various news broadcasts, including 
CNN news, political roundtables, NPR broadcasts, 
and interviews. 

By restricting the conditioning information to the 
previous two words, the trigram model is making the 
simplifying assumption--clearly false--that the use 
of language one finds in television, radio, and news- 
paper can be modeled by a second-order Markov pro- 
cess. Although words prior to w-2 certainly bear on 
the identity of w, higher-order models are impracti- 
cal: the number of parameters in an n-gram model 
is O([ W ]~), and finding the resources to compute 
and store all these parameters becomes a hopeless 
task for n > 3. Usually the lexical myopia of the 
trigram model is a hindrance; however, we will see 
how a segmenter can in fact make positive use of this 
shortsightedness. 

3.2 A l o n g - r a n g e  m o d e l  o f  l anguage  

One of the fundamental characteristics of language, 
viewed as a stochastic process, is that  it is highly 
nonstationary. Throughout a written document 
and during the course of spoken'conversation, the 
topic evolves, affecting local statistics on word oc- 
currences. A model which could adapt to its recent 
context would seem to offer much over a stationary 
model such as the trigram model. For example, an 
adaptive model might, for some period of time after 
seeing a word like HOMERUN, boost the probabilities 

of the words {HOMERUN, PITCHER, FIELDER, ER- 
ROR, BATTER, TRIPLE, OUT}. For an empirically- 
driven example, we provide an excerpt from the 
B N  corpus. Emphasized words mark where a long- 
range language model might reasonably be expected 
to outperform (assign higher probabilities than) a 
short-range model: 

Some doctors are more sk i l led  at doing 
the p r o c e d u r e  than others so it 's r ecom-  
m e n d e d  that  p a t i e n t s  ask d o c t o r s  about 
their track record. People at high r i sk  of 
s t roke  include those over age 55 with a 
family h i s t o r y  or high b l o o d  p res su re ,  
diabetes and smokers. We urge them to 
be evaluated by their family physicians 
and this can be done by a very simple pro-  
c e d u r e  simply by having them t e s t  with a 
s t e t h o s c o p e  for s y m p t o m s  of blockage. 

One means of injecting long-range awareness into 
a language model is by retaining a cache of the 
most recently seen n-grams which is smoothed to- 
gether (typically by linear interpolation) with the 
static model; see for example (Jelinek et al., 1991; 
Kuhn and de Mori, 1990). Another approach, using 
maximum entropy methods, introduces a parameter 
for trigger pairs of mutually informative words, so 
that the occurrence of certain words in recent con- 
text boosts the probability of the words that  they 
trigger (Lau, Rosenfeld, and Roukos, 1993). 

The method we use here, described in (Beefer- 
man, Berger, and Lafferty, 1997), employs a static 
trigram model as a "prior," or default distribution, 
and adds certain features to a family of conditional 
exponential models to capture some of the nonsta- 
tionary features of text. The features are simple 
trigger pairs of words chosen on the basis of mutual 
information. Figure 1 provides a small sample of the 
(s,t) trigger pairs used in most of the experiments 
we will describe. 

To incorporate triggers into a long-range lan- 
guage model, we begin by constructing a standard, 
static backoff trigram model Ptri (w ] w_ 2, w_ 1 ) as de- 
scribed in 3.1. We then build a family of conditional 
exponential models of the general form 

pexp(W I H) = 

Z(H) exp Aifi(H,w) Ptri(W I w-2, w-1) 

where H ~  W-N,W-N+l,.. . ,w-x is the word his- 
tory (the N words preceding w in the text), and 
Z(H) is the normalization constant 

Z(H) = 

w EI,'V 
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($, t) e A 

RESIDUES, CARCINOGENS 2.3 
CHARLESTON, SHIPYARDS 4.0 
MICROSCOPIC, CUTICLE 4.1 
DEFENSE, DEFENSE 8.4 
TAX, TAX 10.5 
KURDS, ANKARA 14.8 
VLADIMIR, GENNADY 19.6 
STEVE, STEVE 20.7 
EDUCATION, EDUCATION 22.2 
MUSIC, MUSIC 22.4 
INSURANCE, INSURANCE 23.0 
PULITZER, PRIZEWINNING 23.6 
YELTSIN, YELTSIN 23.7 
RUSSIAN, RUSSIAN 26. I 
SAUCE, TEASPOON 27.1 
FLOWER, PETALS 32.3 
CASINOS, HARRAH'S 42.8 
DRUG, DRUG 47.7 
CLAIRE, CLAIRE 80.9 
PICKET, SCAB 103.1 

Table 1: A sample of the 84,694 word pairs from 
the BN domain. Roughly speaking, after seeing an 
"s" word, the empirical probability of witnessing the 
corresponding "t" in the next N words is boosted by 
the factor in the third column. In the experiments 
described herein, N = 500. A separate set of (s, t) 
pairs were extracted from the WSJ  corpus. 

The functions fi,  which depend both on the word 
history H and the word being predicted, are the fea- 
tures; each fl is assigned a weight A£. In the models 
that  we built, feature fi is an indicator function, 
testing for the occurrence of a trigger pair (si,tl): 

1 i f s i E H a n d w = t i  
f i (H,w)= 0 otherwise. 

The above equations reveal that  the probability of 
a word t involves a sum over all words s such that  
s E H (s appeared in the past 500 words) and (s, t) 
is a trigger pair. One propitious manner of view- 
ing this model is to imagine that,  when assigning 
probability to a word w following a history of words 
H, the model "consults" a cache of words which ap- 
peared in H and which are the left half of some (s, t) 
trigger pair. In general, the cache consists of con- 
tent words s which promote the probability of their 
mate t, and correspondingly demote the probability 
of other words. As described in (Beeferman, Berger, 
and Lafferty, 1997), for each (s,t) trigger pair there 
corresponds a real-valued parameter A; the proba- 
bility of t is boosted by a factor of e x for W words 
following the occurrence of si. 

The training algorithm we use for estimating the 
A values is the Improved Iterative Scaling algorithm 
of (Della Pietra, Della Pietra, and Lafferty, 1997), 

which is a scheme for solving the maximum like- 
lihood problem that  is "dual" to a corresponding 
maximum entropy problem. Assuming robust esti- 
mates for the A parameters, the resulting model is 
essentially guaranteed to be superior to the trigram 
model. 

For a concrete example, if si-~-VLADIMIR and 
ti =GENNADY, then fi = 1 if and only if VLADIMIR 
appeared in the past N words and the current word 
w is GENNADY. Consulting Table 1, we see that  in 
the B N  corpus, the presence of VLADIMIR will boost 
the probability of GENNADY by a factor of 19.6 for 
the next N = 500 words. 

3.3 Language model "relevance" features 

A long-range language model such as that described 
in Section 3.2 uses selected words from the past ten, 
twenty or more sentences to inform its decision on 
the possible identity of the next word. This is likely 
to help if all of these sentences are in the same docu- 
ment as the current word, for in that case the model 
has presumably begun to adapt to the idiosyncra- 
cies of the current document. In the case of the trig- 
ger model described above, the cache will be filled 
with "relevant" words. In this setting, one would ex- 
pect a long-range model to outperform a trigram (or 
other short-range) model, which doesn't avail itself 
of long-range information. 

On the other hand, if the present document has 
just recently begun, the long-range model is wrongly 
conditioning its decision on information from a 
different--and presumably unrelated--document. A 
soap commercial, for instance, doesn't benefit a 
long-range model in assigning probabilities to the 
words in the news segment following the commercial. 
Often a long-range model will actually be misled by 
such irrelevant context; in this case, the myopia of 
the trigram model is actually helpful. 

By monitoring the long- and short-range mod- 
els, one might be more inclined towards a parti- 
tion when the long-range model suddenly shows a 
dip in performance--a lower assigned probability to 
the observed words--compared to the short-range 
model. Conversely, when the long-range model is 
consistently assigning higher probabilities to the ob- 
served words, a partition is less likely. 

This motivates a quantitative measure of "rele- 
vance," which we define as the logarithm of the ratio 
of the probability the exponential model assigns to 
the next word (or sentence) to that  assigned by the 
short-range trigram model: 

a(H,w)=-log(  Pexp(wlH) 
~kPtri(W I W - 2 W - 1 ) J  " 

When the exponential model outperforms the tri- 
gram model, R > 0. 
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If  we observe the behavior of R as a function of 
the position of the word within a segment, we find 
tha t  on average R slowly increases from below zero 
to well above zero. Figure 1 gives a striking graphi- 
cal illustration of this phenomenon. The figure plots 
the average value of R as a function of relative po- 
sition in the segment, with position zero indicating 
the beginning of a segment. This plot shows that  
when a segment boundary is crossed the predictions 
of the adaptive model undergo a dramat ic  and sud- 
den degradation, and then steadily become more ac- 
curate as relevant content words for the new segment 
are encountered and added to the cache. (The few 
very high points to the left of a segment boundary 
are primarily a consequence of the word CNN--which 
is a trigger word and often appears at the beginning 
and end of a broadcast news segment.) 

This observed behavior is consistent with our ear- 
lier intuition: the cache of the long-range model is 
destructive early in a document,  when the new con- 
tent words bear little in common with the content 
words from the previous article. Gradually, as the 
cache fills with words drawn from the current article, 
the long-range model gains s team and R improves. 
While Figure 1 shows that  this behavior is very pro- 
nounced as a "law of large numbers," our feature in- 
duction results indicate that  relevance is also a very 
good predictor of boundaries for individual events. 

In the experiments we report in this paper, we as- 
sume that  sentence boundaries are provided in the 
annotation, and so the questions we ask are actu- 
ally about  the relevance score assigned to entire sen- 
tences normalized by sentence length, a geometric 
mean of language model ratios. 

3.4 V o c a b u l a r y  f e a t u r e s  

In addition to the est imate of "topicality" that  rele- 
vance features provide, we included features pertain- 
ing to the identity of words before and after potential 
segment boundaries as candidates in our exponential 
model. The set of candidate word-based features we 
use are simple questions of the form 

• Does the word appear up to 1 sentence in thefuture? 
2 sentences? 3? 5? 

• Does the word appear up to 1 sentence in the past? 
sentences ? 3? 5? 

• Does the word appear up to 5 sentences in the past 
but not 5 sentences in the future? 

• Does the word appear up to 5 sentences in the future 
but not 5 sentences in the past? 

• Does the word appear up to 1 word in the future? 5 
words ? 

• Does the word appear up to 1 word in the past? 5 
words ? 

• Does the word begin the preceding sentence? 

0.3 I • • 

0.25 r 

0, ,  • 

0.05 

I " 

I I I I I 
~ -400  - ~  ~ 8 0 0  1 0 0 0  

Figure 1: Near the beginning of a segment, an adap- 
tive, long-range language model is on average less ac- 
curate than a static trigram model. The figure plots 
the average value of the logarithm of the ratio of the 
adaptive language model to the static trigram model 
as a function of relative position in the segment, with 
position zero indicating the beginning of a segment. 
The statistics were collected over the roughly seven 
million words of mixed broadcast news and Reuters 
data comprising the T D T  corpus (see Section 5). 

4 F e a t u r e  I n d u c t i o n  

To cast the problem of determining segment bound- 
aries in statistical terms, we set as our goal the con- 
struction of a probabili ty distribution q(b i w), where 
b E {YES, NO} is a random variable describing the 
presence of a segment boundary in context w. We 
consider distributions in the linear exponential fam-  
ily Q ( f  , qo) given by 

{ 1 } 
Q( f ,  qo)--  q ( b l o J ) -  Zx~w)e x't('°) q0(blw) 

where q0(blw ) is a prior or default distribution on 
the presence of a boundary, and A- f(w) is a linear 
combination of binary features f i (w)  E {0, 1} with 
real-valued feature parameters )ti: 

)t. f(w) = )t lf l(w) + )t2f2 (w) -I-. .  ")tnfn(w) • 

The normalization constants 

Zx(w) = 1 + e x'f(°~) 

insure that  this is indeed a family of conditional 
probability distributions. (This family of models is 
closely related to the class of sigmoidal belief net- 
works (Neal, 1992).) 

Our judgment  of the merit  of a model q E Q ( f ,  qo) 
relative to a reference distribution p ~ Q ( f ,  qo) dur- 
ing training is made in terms of the Kullback-Leibler 
divergence 

,~ea be{YES,NO} qL° I w) " 
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Thus, when p is chosen to be the empirical distribu- 
tion of a sample of training events { (w, b)}, we are 
using the maximum likelihood criterion for model 
selection. Under certain mild regularity conditions, 
the maximum likelihood solution 

q* = argmin D(pll q) 
qE ~(],qo ) 

exists and is unique. To find this solution, we 
use the iterative scaling algorithm presented in 
(Della Pietra, Della Pietra, and Lafferty, 1997). 

This explains how a model is chosen once we know 
the features f l , - . . ,  fn, but how are these features to 
be found? The procedure that  we follow is a greedy 
algorithm akin to growing a decision tree. Given an 
initial distribution q and a set of candidate features 
C, we consider the one-parameter family of distribu- 
tions {q~,g}aeR = Q(g' q) for each g E C. The gain 
of the candidate feature g is defined to be 

Cq(g) = argmaxa (D(~ II q) - D(~ II qc,,.f)) • 

This is the improvement to the model that  would 
result from adding the feature g and adjusting its 
weight to the best value. After calculating the gain 
of each candidate feature, the one with the largest 
gain is chosen to be added to the model, and all of 
the model's parameters are then adjusted using iter- 
ative scaling. In this manner, an exponential model 
is incrementally built up using the most informative 
features. 

Having concluded our discussion of our overall ap- 
proach, we present in Figure 2 a schematic view of 
the steps involved in building a segmenter using this 
approach. 

D~a 

Trldniag~ 

Tta ia ing~ 

T r ~ g ~  

I p(w I w aw. i  ) ~ w  I H)  

1 ! lI'  I 

Figure 2: Data flow in training the exponential seg- 
mentation model 

5 Feature  Induc t ion  in A c t i o n  

This section provides a peek at the construction of 
segmenters for two different domains. Inspecting the 

40 

sequence of features selected by the induction algo- 
ri thm reveals much about feature induction in gen- 
eral, and how it applies to the segmenting task in 
particular. We emphasize that  the process of fea- 
ture selection is completely automatic once the set 
of candidate features has been selected. 

The first segmenter was built on the W S J  cor- 
pus. The second was built on the Topic Detection 
and Tracking Corpus (Allan, to appear). The T D T  
corpus is a mixed collection of newswire articles and 
broadcast news transcripts adapted from text cor- 
pora previously released by the Linguistic Data  Con- 
sortium; in particular, portions of data  were ex- 
tracted from the 1995 and 1996 Language Model 
text collections published by the LDC in support  of 
the DARPA Continuous Speech Recognition project. 
The extracts used for T D T  include material  from 
the Reuters newswire service, and from the Pr imary 
Source Media CD-ROM publications of transcripts 
for news programs that  appeared on the ABC, CNN, 
NPR and PBS broadcast networks; the size of the 
corpus is roughly 7.5 million words. The T D T  cor- 
pus was constructed as part  of a DARPA-sponsored 
project intended to study methods for detecting new 
topics or events and tracking their reappearance and 
evolution over time. 

5.1 W S J  f e a t u r e s  

For the W S J  experiments, which we describe first, 
a total of 300,000 candidate features were available 
to the induction program. Though the tr igram prior 
was trained on 38 million words, the trigger param- 
eters were only trained on a one million word subset 
of this data. 

Figure 3 shows the first several features tha t  were 
selected by the feature induction algorithm. This 
shows the word or relevance score for each feature 
together with the value of e x for the feature af- 
ter iterative scaling is complete for the final model. 
The ~-- -~ figures indicate features that  are ac- 
tive over a range of sentences. Thus, the symbol 

MR. +1 
I, 0.07 ,t represents the feature "Does the word 
MR. appear in the next sentence?" which, if true, 
contributes a factor of e x = 0.07 to the exponen- 
tial model. Similarly, the ~ ~ figures represent 
features that  are active over a range of words. For 

HE + 5  
example, the figure • 0.08 • represents the 
question "Does the word HE appear in the next five 
words?" which is assigned a weight of 0.08. The 
symbol ]5 -~ SAm +5 SAID :'.= 2 7 ,I stands for a 
feature which asks "Does the" word SAID appear in 
the previous five sentences but  not in the next five 
sentences?" and contributes a factor of 2.7 if the 
answer is "yes." 

Most of the features in Figure 3 make a good deal 
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SAID 
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POSITION +1 +2 +'3 +'4 +'5 

INCORPORATED 
~-" 4.5 

-0.50 < R~..~0 
5.3 

CORPORATION 
" 31.6 " 

SAYS 
" 0.39 " 

MR. 
~-  0.07 "-~ 

CLOSED 
~-" 27.6 "~  

SEE 

"94.8 

SAID 
~-  2.9 -'~ 

F E D E R A L  
~-" 6.8 

SAID 
" 2.7 

THE 
• 0.36 

POINT 
~-  4.5 
,, , Ri _ ~ 0 ~, 

4.5 
NAMED 

~'- 14.2 --~ 

HE 
• 0.082 
~.< Ri < 0.05 

6.1 
MAY 
2.0 -~  

ALSO 
~-- 0.07 "-~ 

Figure 3: First several features induced for the W S J  
corpus, presented in order of selection, with e x fac- 
tors underneath. The length of the bars indicate 
active range of the feature, in words or sentences, 
relative to the current word. 

of sense. The first selected feature, for instance, is a 
strong hint that  an article may  have just begun; ar- 
ticles in the W S J  corpus often concern companies, 
and typically the full name of the company (ACME 
INCORPORATED, for  instance) only appears once at 
the beginning of the article, and subsequently in ab- 
breviated form (ACME). Thus the appearance of 
INCORPORATED is a strong indication that  a new 
article may  have recently begun. 

The second feature uses the relevance statistic t. 

1 For  the  W S J  exper iments ,  we modified the  language  
model  re levance s ta t i s t i c  by  add ing  a weight  to  each word 
pos i t ion  depend ing  only on  i ts  t r ig ram his tory  w-2 ,  w-1 .  
A l t h o u g h  our  resul t s  require  f u r t h e r  analysis,  we do no t  
believe t h a t  th is  makes  a significant difference in the  fea- 

If  the trigger model performs poorly relative to the 
t r igram model in the following sentence, this feature 
(roughly speaking) boosts the probabil i ty of a seg- 
ment at this location by a factor of 5.3. 

The fifth feature concerns the presence of the word 
MR. In hindsight, we can explain this feature by 
noting that  in W S J  da ta  the style is to introduce a 
person in the beginning of an article by writing, for 
example, W I L E  E .  COYOTE, PRESIDENT OF ACME 
INCORPORATED... and then later in the article us- 
ing a shortened form of the name: MR. COYOTE 
CITED A LACK OF EXPLOSIVES...  Thus, the pres- 
ence of MR. in the following sentence discounts the 
probabili ty of an article boundary by 0.07, a factor 
of roughly 14. 

The sixth feature which boosts the probabil i ty 
of a segment if the previous sentence contained the 
word CLOSED--is another artifact of the W S J  do- 
main, where articles often end with a s ta tement  of 
a company 's  performance on the stock market  dur- 
ing the day of the story of interest. Similarly, the 
end of an article is often made with an invitation to 
visit a related story; hence a sentence beginning with 
SEE boosts the probabili ty of a segment boundary 
by a large factor of 94.8. Since a personal pronoun 
typically requires an antecedent, the presence of HE 
among the first words is a sign that  the current posi- 
tion is not near an article boundary, and this feature 
therefore has a discounting factor of 0.082. 

5.2 T D T  f e a t u r e s  

For the T D T  experiments, a larger vocabulary and 
roughly 800,000 candidate features were available to 
the induction program. Though the t r igram prior 
was trained on approximately 150 million words, the 
trigger parameters  were trained on a 10 million word 
subset of the B N  corpus. 

Figure 4 reveals the first several features chosen 
by the induction algorithm. The  letter c .  appears  
among several of the first features. This is because 
of the fact that  the da ta  is tokenized for speech pro- 
cessing (whence c. N. N. rather than CNN), and 
the network identification information is often given 
at the end and beginning of news segments (c. N. 
N.'S RICHARD BLYSTONE IS HERE TO TELL US.. . ) .  

The first feature asks if the letter c.  appears  in the 
previous five words; if so, the probabil i ty of a seg- 
ment boundary is boosted by a factor of 9.0. The 
personal pronoun I appears as the second feature; if 
this word appears in the following three sentences 
then the probabili ty of a segment boundary is dis- 
counted. 

The language model relevance statistic appears  
for the first t ime in the sixth feature. The word 

turps chosen by the algorithm, or the quantitative per- 
formance of the resulting segmenter. 
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Figure 4: First several features induced for the T D T  
corpus, presented in order of selection, with e ~ fac- 
tors underneath. 

J. that  the seventh and fifteenth features ask about  
can be at t r ibuted to the large number of news sto- 
ries in the da ta  having to do with the O.J. Simp- 
son trial. The nineteenth feature asks if the term 
FROM appears among the previous five words, and 
if the answer is "yes" raises the probabili ty of a 
segment boundary by more than a factor of two. 
This feature makes sense in light of the "sign-off" 
conventions tha t  news reporters and anchors follow 
( T H I S  IS W O L F  B L IT Z E R  REPORTING LIVE FROM 

THE WHITE HOUSE). Similar explanations of many 
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of the remaining features are easy to guess from a 
perusal of Figure 4. 

6 A P r o b a b i l i s t i c  E r r o r  M e t r i c  

Precision and recall statistics are commonly  used 
in natural  language processing and information re- 
trieval to assess the quality of algorithms. For the 
segmentation task they might  be used to gauge how 
frequently boundaries actually occur when they are 
hypothesized and vice versa. Although they have 
snuck into the literature in this disguise, we believe 
they are unwelcome guests. 

A useful error metric should somehow correlate 
with the utility of the instrumented procedure in a 
reM application. In almost  any conceivable appli- 
cation, a segmenting tool tha t  consistently comes 
close--off by a sentence, say- - i s  preferable to one 
that  places boundaries willy-nilly. Yet an algori thm 
that  places a boundary a sentence away from the 
actual boundary every t ime actually receives w o r s e  

precision and recall scores than  an algori thm tha t  
hypothesizes a boundary at every position. It  is 
natural  to expect tha t  in a segmenter,  close should 
count for something. 

A useful metric should Mso be robust with respect 
to the scale (words, sentences, paragraphs,  for in- 
stance) at which boundaries are determined. How- 
ever, precision and recall are scale-dependent quan- 
tities. (Reynar, 1994) uses an error window tha t  
redefines "correct" to mean hypothesized within 
some constant window of units away from a refer- 
ence boundary, but  this approach still suffers from 
overdiscretizing error, drawing all-or-nothing lines 
insensitive to gradations of correctness. 

Finally, for many  purposes it is useful to have 
a metric that  is a single number.  A commonly  
cited flaw of the precision/recall figures is their com- 
plementary nature: hypothesizing more boundaries 
raises precision at the expense of recall, allowing an 
algorithm designer to tweak parameters  to t rade pre- 
cision for recall. One proposed work-around is to 
employ dynamic t ime warping to come up with an 
explicit al ignment between the segments proposed 
by the algorithm and the reference segments, and 
then to combine insertion, deletion, and substi tut ion 
errors into an overall penalty. This error metric,  in 
common use in speech recognition, can be achieved 
by a similar Viterbi search. A string edit distance 
such as this is useful and reasonable for applications 
like speech or spelling correction par t ly  because it 
measures how much work a user would have to do to 
correct the output  of the machine. For many  of the 
applications we envision for segmentation,  however, 
the user will not correct the output  but  will rather  
browse the returned text to extract  information.  



Our proposed metric satisfies the listed desiderata. 
It  formalizes in a probabilistic manner  the effect of 
document  co-occurrence on goodness, in which it is 
deemed desirable for related units of information to 
appear  in the same document  and unrelated units to 
appear  in separate documents.  

6.1 T h e  n e w  m e t r i c  

Segmentation, whether at the word or sentence level, 
is about  identifying boundaries between successive 
units of information in a text corpus. Two such 
units are either related or unrelated by the intent 
of the document  author. A natural  way to reason 
about  developing a segmentation algorithm is there- 
fore to optimize the likelihood that  two such units 
are correctly labeled as being related or being unre- 
lated. Our error metric P~, is simply the probability 
that two sentences drawn randomly f rom the corpus 
are correctly identified as belonging to the same doc- 
ument  or not belonging to the same document.  More 
formally, given two segmentations r e f  and hyp for a 
corpus n sentences long, 

P , ( r e f , hyp )  = ~ D ~ ( i , j )  Sref ( i , j )  ~ $ h y p ( i , j )  
l<i<j<n 

Here ~ref is an indicator function which is 1 if the 
two corpus indices specified by its parameters  belong 
in the same document,  and 0 otherwise; similarly, 
~hyp is 1 if the two indices are hypothesized to be- 
long in the same document,  and 0 otherwise. The 

operator is the XNOR function ("both or neither") 
on its two operands. The function D ,  is a distance 
probability distribution over the set of possible dis- 
tances between sentences chosen randomly from the 
corpus, and will in general depend on certain pa- 
rameters # such as the average spacing between sen- 
tences. If  D~ is uniform over the length of the text, 
then the metric represents the probabili ty that  any 
two sentences drawn from the corpus are correctly 
identified as being in the same document or not. 

Consider the implications of this for information 
retrieval. Suppose there is precisely one sentence 
in a target  corpus that  satisfies our information de- 
mands. For some applications it may be sufficient 
for the system to return only that  sentence, but in 
general we desire that  it return as many  sentences 
directly related to the target sentence as possible, 
without returning too many  unrelated sentences. If  
we assume "related" to mean "contained in the same 
document" ,  then our error metric judges algorithms 
based on how often this happens. 

In practice letting D~, be the uniform distribu- 
tion is unreasonable, since for large corpora most 
randomly drawn pairs of sentences are in different 
documents and are correctly identified as such by 
even the most  naive algorithms. We instead adopt 

a distribution that  focuses on small distances. In 
particular, we choose D~ to be an exponential dis- 
tribution with mean l / p ,  a parameter  tha t  we fix 
at the approximate  mean document  length for the 
domain: 

Dt~(i, J) = 7t~ e -~ l i - j l  . 

In the above, 7t, is a normalization chosen so that  
D~, is a probabili ty distribution over the range of 
distances it can accept. 

There are several sanity checks that  validate the 
use of our metric. The measure is a probabil i ty and 
therefore a real number  between 0 and 1. We ex- 
pect 1 to represent perfection; indeed, an algorithm 
scores 1 with respect to some da ta  if and only if it 
predicts its segmentation exactly. It  captures the 
notion of nearness in a principled way, gently penal- 
izing algorithms that  hypothesize boundaries that  
aren ' t  quite right, and scaling down with the algo- 
r i thm's  degradation. Furthermore, it is not possible 
to "cheat" and obtain a high score with this met-  
ric: spurious behavior such as never hypothesizing 
boundaries and hypothesizing nothing but bound- 
aries are penalized. We refer to Section 7 for sample 
results on how these trivial algorithms score. 

One weakness of the metric as we have presented 
it here is that  there is no principled way of specify- 
ing the distance distribution Du. We plan to give a 
more detailed analysis of this problem and present 
a method for choosing the parameters  ~ in a future 
paper. 

7 E x p e r i m e n t a l  R e s u l t s  

7.1 Q u a n t i t a t i v e  r e s u l t s  

After feature induction was carried out (as de- 
scribed in Section 5), a simple decision procedure 
was used for actually placing boundaries: a segment 
boundary was placed at each position for which the 
model probabili ty was above a fixed threshold or, 
with boundaries required to be separated by a mini- 
mum number of sentences e. The threshold and min- 
imum separation were determined on heldout da ta  
in order to maximize the probabili ty P~, and turned 
out to be a = 0.20 and e = 2 for the W S J  model, 
and ot = 0.14 and e = 5 for the T D T  models. 

The quantiative results for the W S J  and T D T  
models are collected in Tables 5 and 6 respectively. 
For the W S J  model, the probabilistic metric P~, was 
0.83 when evaluated on 325K words of test data,  
and the precision and recall for exact matches of 
boundaries were 56% and 54%, for an F-measure 
of 55. As a simple baseline we compared this per- 
formance to that  obtained by four simple default 
methods for assigning boundaries: choosing bound- 
aries randomly, assigning every possible boundary, 
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model 

f e a t u r e  i n d u c t i o n  

r a n d o m  

all  

reference hypoth. 
segments segments P~ precision 

757 792 83% 56% 

757 757 67% 17% 

757 13540 53% 5% 

n o n e  757 0 52% 0% 

e v e n  757 753 68% 17% 

recall F.measure 

54% 55 

16% 17 

100% 10 

0% 

17% 17 

Table 5: Quantitat ive results for W S J  segmentation. The W S J  model was trained on 325K words of data, 
and tested on a similarly sized portion of unseen text. The top 70 features were selected. The mean segment 
length in the training and test data  was 1/p = 18 sentences. As a basis of comparison, the figures for several 
baseline models are given. The figures in the r a n d o m  row were calculated by randomly generating a number 
of segments equal to the number appearing in the test data. The all  and n o n e  rows include the figures for 
models which hypothesize all possible segment boundaries and no boundaries, respectively. The e v e n  row 
shows the results of simply hypothesizing a segment boundary every 18 sentences. 

reference hypoth. 
model segments segments P~ precision 

f e a t u r e  i n d u c t i o n  
(Model  B) 9984 9543 88% 60% 

f e a t u r e  i n d u c t i o n  
(Model  A) 9984 9449 82% 47% 

r a n d o m  9984 9984 68% 12% 

all  9984 219,099 59% 5% 

n o n e  9984 0 43% 0% 

e v e n  9984 9980 74% 14% 

recall F-measure 

57% 58 

45% 46 

12% 12 

100% 9 

0% 

12% 13 

Table 6: Quantitat ive results for T D T  segmentation. The T D T  models were trained on 2M words and 
tested on 4.3M words of previously unseen T D T  data. Model A was trained on 2M words of broadcast news 
data  from 1992-1993, not included in T D T  corpus, and the top 100 features were selected. Model B was 
trained on the first 2M words of T D T  corpus which is made up of a mix of CNN transcripts and Reuters 
newswire, and again the top 100 features were selected. The mean document length was 1 /p  = 25 sentences. 

assigning no boundaries, and deterministically plac- 
ing a segment boundary every 1 /p  sentences. It is 
instructive to compare the values of P ,  with preci- 
sion and recall for these default algorithms in order 
to obtain some intuition for the new error metric. 

Two separate models were built to segment the 
T D T  corpus. The first, which we shall refer to sim- 
ply as Model A, was trained using two million words 
from the B N  corpus from the 1992-1993 time pe- 
riod. This da ta  contains CNN transcripts, but no 
Reuters newswire data. Model B was trained on the 
first two million words of the T D T  corpus. Both 
models were tested on the last 4.3 million words of 
the T D T  corpus. We expect Model A to be infe- 
rior to Model B for two reasons: the lack of Reuters 
data  in it's training set and the difference of between 
one and two years in the dates of the stories in the 
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training and test sets. The difference is quantifiied 
in Table 6, which shows that  P~, = 0.82 for Model A 
while P ,  = 0.88 for Model B. 

7.2 Q u a l i t a t i v e  r e s u l t s  

We now present graphical examples of the segmen- 
tation algorithm at work on previously unseen test 
data. Figure 7 shows the performance of the W S J  
segmenter on a typical collection of test data,  in 
blocks of 300 contiguous sentences. In these figures 
the reference segmentation is shown below the hori- 
zontal line as a vertical line at the position between 
sentences where the article boundary occurred. The 
decision made by the automatic  segmenter is shown 
as a verticle line above the horzontal line at the 
appropriate position. The fluctuating curve is the 
probability assigned by the exponential model con- 
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Figure 7: Typical segmentations of WSJ  test data. 
The lower verticle lines indicate reference segmenta- 
tions ("truth"). The upper verticle lines are bound- 
aries placed by the algorithm. The fluctuating curve 
is the probability of a segment boundary according 
to the exponential model after 70 features were in- 
duced. 

structed using feature induction. Notice that  in 
this domain many of the segments are quite short, 
adding special difficulties for the segmentation prob- 
lem. Figure 8 shows the performance of the T D T  
segmenter (Model B) on five randomly chosen blocks 
of 200 sentences from the T D T  test data. 

We hasten to add that  these results were obtained 

Figure 8: Randomly chosen segmentations of T D T  
test data, in 200 sentence blocks, using Model B. 

with no smoothing or pruning of any kind, and with 
no more than 100 features induced from the candi- 
date set of several hundred thousand. Unlike many 
other machine learning methods, feature induction 
for exponential models is quite robust to overfitting 
since the features act in concert to assign probabil- 
ity to events rather than splitting the event space 
and assigning probability using relative counts. We 
expect that  significantly better  results can be ob- 
tained by simply training on much more data,  and 
by allowing a more sophisticated set of features. 
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8 Conclusions 

We have presented and evaluated a new statistical 
model for segmenting unpartitioned text into coher- 
ent fragments. We leverage long- and short-range 
language models, as well as automatic feature induc- 
tion techniques, in the design of this model. In this 
work we rely exclusively on simple lexical features, 
including a topicality measure called relevance and 
a number of vocabulary features that are induced 
from a large space of candidate features. 

We have proposed a new probabilistically moti- 
vated error metric for the assessment of segmenta- 
tion algorithms. Qualitative assessment as well as 
the evaluation of our algorithm with this new metric 
demonstrates its effectiveness in two very different 
domains, Wall Street Journal articles and broadcast 
news transcripts. 

Our immediate application of this model will be to 
the video-on-demand application called Informedia 
(Christel et al., 1995). We intend to mix simple au- 
dio and video features such as statistics from pauses, 
black frames, and color histograms with our lexical 
features in order to segment news broadcasts into 
component stories. Other applications that we have 
not explored in this paper include automatic infer- 
ence of subtopic structure for information retrieval, 
document summarization, and improved language 
modeling. 
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