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Abstract  

Although Minimum Distance Parsing 
(MDP) offers a theoretically attractive so- 
lution to the problem of extragrammat-  
icality, it is often computationally infea- 
sible in large scale practical applications. 
In this paper we present an alternative ap- 
proach where the labor is distributed be- 
tween a more restrictive partial parser and 
a repair module. Though two stage ap- 
proaches have grown in popularity in re- 
cent years because of their efficiency, they 
have done so at the cost of requiring hand 
coded repair heuristics (Ehrlich and Han- 
rieder, 1996; Danieli and Gerbino, 1995). 
In contrast, our two stage approach does 
not require any hand coded knowledge 
sources dedicated to repair, thus making 
it possible to achieve a similar run t ime 
advantage over MDP without losing the 
quality of domain independence. 

1 Introduct ion 

The correct interpretation of spontaneous spoken 
language poses challenges that  continue to fall out- 
side of the reach of state-of-the-art technology. The 
first essential task of a natural language interface is 
to map the user's utterance onto some meaning rep- 
resentation which can then be used for further pro- 
cessing. The three biggest challenges that  continue 
to stand in the way of accomplishing even this most 
basic task are extragrammaticality,  ambiguity, and 
speech recognition errors. In this paper we address 
the issue of how to handle the problem of extra- 
grammaticali ty efficiently, where extragrammatical-  
ity is defined as any deviation of an input string from 
the coverage of a given system's parsing grammar.  
We demonstrate the superiority of our approach by 
comparing performance between it and a set of alter- 
native approaches in terms of parse time and parse 
quality over the same previously unseen test corpus. 

The approach presented in this paper is the c o m -  
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pletely automatic portion of the ROSE 1 approach. 
ROSE, RObustness with Structural Evolution, re- 
pairs extragrammatical  input in two phases. The 
first phase, Repair Hypothesis Formation, is re- 
sponsible for assembling a set of hypotheses about  
the meaning of the ungrammatical  utterance. This 
phase is itself divided into two stages, Partial  Pars- 
ing and Combination. A restricted version of Lavie's 
GLR* parser (Lavie, 1995; Lavie and Tomita,  1993) 
is used to obtain an analysis of islands of the 
speaker's sentence in cases where it is not possible 
to obtain an analysis for the entire sentence. In the 
Combination stage, the fragments from the partial 
parse are assembled into a set of alternative meaning 
representation hypotheses. A genetic programming 
approach is used to search for different ways to com- 
bine the fragments in order to avoid requiring any 
hand-crafted repair rules. In ROSE's second phase, 
Interaction with the User, the system generates a 
set of queries, negotiating with the speaker in order 
to narrow down to a single best meaning representa- 
tion hypothesis. In this paper, only the Hypothesis 
Formation phase is described and evaluated. Since 
repairs beyond those made possible by the partial 
parser are performed during the Combination stage, 
we refer to the implementation of the Combination 
stage as the repair module. Though a set of hypothe- 
ses are produced by during the Combination stage, 
in the evaluation presented in this paper, only the re- 
pair hypothesis scored by the repair module as best 
is returned. 

The ROSE approach was developed in the con- 
text of the JANUS large-scale multi-lingual machine 
translation system (Lavie et al., 1996; Woszcyna et 
al., 1993; Woszcyna et al., 1994). Currently, the 
JANUS system deals with the scheduling domain 
where two speakers a t tempt  to schedule a meeting 
together over the phone. The system is composed 
of four language independent and domain indepen- 
dent modules including speech-recognition, parsing, 
discourse processing, and generation. The repair 
module described in this paper is similarly language 
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independent and domain independent, requiring no 
hand-coded knowledge dedicated to repair. The 
evaluations described in this paper were conducted 
using a grammar with approximately 1000 rules and 
a lexicon with approximately 1000 lexical items. 

2 A l t e r n a t i v e  A v e n u e s  T o w a r d s  

R o b u s t n e s s  

There are a wide range of different approaches to 
handling the problem of extragrammaticality, but 
which way is best? Three basic avenues exist 
whereby the coverage of a natural language under- 
standing system can be expanded: further develop- 
ment of the parsing grammar,  addition of flexibil- 
ity to the parsing algorithm, or addition of a post- 
processing repair stage after the parsing stage. 

It is always possible to add additional rules to a 
parsing grammar in order to expand the coverage, 
but this approach is both time intensive in terms of 
development and ultimately computationally expen- 
sive at run time since large, cumbersome grammars 
generate excessive amounts of ambiguity. Adding 
flexibility to the parsing algorithm is preferable in 
some respects, particularly in that  it reduces the 
grammar development burden. However, it lends it- 
self to the same weakness in terms of computational 
expense. In the extreme case, in a Minimum Dis- 
tance Parser (MDP) (Lehman, 1989; Hipp, 1992), 
any ungrammatical sentence can be mapped onto 
a sentence inside of the coverage of the grammar 
through a series of insertions, deletions, and in some 
cases substitutions or transpositions. 

The more flexibility, the better  the coverage in 
theory, but in realistic large scale systems this ap- 
proach becomes computationally intractable. Cur- 
rent efforts towards robust interpretation have fo- 
cused on less powerful partial parsers (Abney, 1996; 
Nord, 1996; Srinivas et al., 1996; Federici, Mon- 
temagni, and Pirrelli, 1996) and repair approaches 
where the labor is distributed between two or more 
stages (Ehrlich and Hanrieder, 1996; Danieli and 
Gerbino, 1995). The purpose of the second stage 
is to assemble the pieces of the partial parse pro- 
duced in the first stage. In this paper we present 
a two stage approach composed of a partial parser 
followed by a completely automatic repair module. 

Though two stage approaches have grown in 
popularity in recent years because of their effi- 
ciency, they have done so at the cost of requiring 
hand coded repair heuristics (Ehrlich and Hanrieder, 
1996; Danieli and Gerbino, 1995). In contrast, the 
ROSE approach does not require any hand coded 
knowledge sources dedicated to repair, thus making 
it possible to achieve the benefits of repair without 
losing the quality of domain independence. 

In this paper, we compare the performance of the 
two stage ROSE approach with MDP. A parameter- 
ized version of Lavie's GLR* parser (Lavie, 1995) 

is used which has been extended to perform a lim- 
ited version of MDP in which insertions and dele- 
tions are possible, but not transpositions or substi- 
tutions. We refer to this parameterized MDP parser 
as LR MDP. We run LR MDP over the same test 
corpus in different settings, demonstrating the flex- 
ibil i ty/quali ty/parse time trade off. With this we 
demonstrate that the two stage ROSE approach, 
coupling the restricted version of the GLR* parser 
with a post-processing repair stage, achieves better 
translation quality far more efficiently than any flex- 
ibility setting of LR MDP over the same corpus. 

3 M D P  v e r s u s  T w o  Stage 
I n t e r p r e t a t i o n  

Efforts towards solving the problem of extragram- 
maticality have primarily been in the direction of 
building flexible parsers. In principle, Minimum Dis- 
tance Parsers (Lehman, 1989; Hipp, 1992) have the 
greatest flexibility. They fit an extragrammatical  
sentence to the parsing grammar through a series of 
insertions, deletions, and transpositions. Since any 
string can be mapped onto any other string through 
a series of insertions, deletions, and transpositions, 
this approach makes it possible to repair any sen- 
tence. The underlying assumption behind the MDP 
approach is that the analysis of the string that  de- 
viates the least from the input string is most likely 
to be the best analysis. Thus, Minimum Distance 
Parsing appears to be a reasonable approach. 

In practice, however, Minimum Distance Parsing 
has only been used successfully in very small and 
limited domains. Lehman's core grammar,  described 
in (Lehman, 1989), has on the order of 300 rules, 
and all of the inputs to her system can be assumed 
to be commands to a calendar program. Hipp's Cir- 
cuit Fix-It Shop system, described in (Hipp, 1992), 
has a vocabulary of only 125 words and a grammar 
size of only 500 rules. Flexible parsing algorithms 
introduce a great deal of extra ambiguity. This in 
turn may deem certain approaches impractical for 
systems of realistic scale. Therefore, an important  
question one must ask is whether the MDP approach 
can scale up to a larger system and/or  domain. 

An example of a more restrictive parsing algo- 
r i thm is Lavie's GLR* skipping parser described in 
(Lavie, 1995). GLR* is a parsing system based on 
Tomita 's  Generalized LR parsing algorithm which 
was designed to be robust to two particular types of 
extra-grammaticality: noise in the input, and lim- 
ited grammar coverage. GLR* at tempts  to overcome 
these forms of extra-grammaticality by ignoring the 
unparsable words and fragments and conducting a 
search for the maximal subset of the original input 
that  is covered by the grammar.  

The GLR* parser is capable of skipping over any 
portion of an input utterance that  cannot be incor- 
porated into a grammatical analysis and recover the 
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analysis of the largest grammatical subset of the ut- 
terance. Partial analyses for skipped portions of the 
utterance can also be returned by the parser. Thus, 
whereas MDP considers insertions and transposi- 
tions in addition to deletions, GLR* only considers 
deletions. GLR* can be viewed as a restricted form 
of MDP applied to an efficient non-robust general 
parsing method. GLR* can, in most cases, achieve 
most of the robustness of the more general MDP 
approach while maintaining feasibility, due to effi- 
ciency properties of the GLR approach and an effec- 
tive well:guided search. In the evaluation presented 
in this paper, GLR* has been restricted to skip only 
initial segments so that  the partial analyses returned 
are always for contiguous portions of the sentence. 

Because GLR* was designed as an enhancement 
to the widely used standard GLR context-free pars- 
ing algorithm, grammars,  lexicons and other tools 
developed for the standard GLR parser can be used 
without modification. GLR* uses the standard 
SLR(0) parsing tables which are compiled in advance 
from the grammar.  It inherits the benefits of GLR 
in terms of ease of grammar development, and, to 
a large extent, efficiency properties of the parser it- 
self. In the case that  an input sentence is completely 
grammatical, GLR* will normally return the exact 
same parse as the GLR parser. 

The weakness of this and other partial parsing ap- 
proaches (Abney, 1996; Nord, 1996; Srinivas et al., 
1996; Federici, Montemagni, and Pirrelli, 1996) is 
that  part of the original meaning of the utterance 
may be thrown away with the portion(s) of the ut- 
terance that  are skipped if only the analysis for the 
largest subset is returned, or part  of the analysis 
will be missing if the parser only at tempts  to build 
a partial parse. These less powerful algorithms trade 
coverage for speed. The idea is to introduce enough 
flexibility to gain an acceptable level of coverage at 
an acceptable computat ional  expense. 

The goal behind the two stage approach (Ehrlich 
and Hanrieder, 1996; Danieli and Gerbino, 1995) 
is to increase the coverage possible at a reasonable 
computational cost by introducing a post-processing 
repair stage, which constructs a complete mean- 
ing representation out of the fragments of a partial 
parse. Since the input to the second stage is a collec- 
tion of partial parses, the additional flexibility that  
is introduced at this second stage can be channeled 
just to the part of the analysis that  the parser does 
not have enough knowledge to handle straightfor- 
wardly. This is unlike the MDP approach, where the 
full amount of flexibility is unnecessarily applied to 
every part of the analysis, even in completely gram- 
matical sentences. Therefore, this two stage process 
is a more efficient distribution of labor since the first 
stage is highly constrained by the grammar and the 
results of this first stage are then used to constrain 
the search in the second stage. Additionally, in cases 
where the limited flexibility parser is sufficient, the 

second stage can be entirely bypassed, yielding an 
even greater savings in time. 

4 T h e  T w o  S t a g e  I n t e r p r e t a t i o n  

P r o c e s s  

The main goal of the two stage ROSE approach is to 
achieve the ability to robustly interpret spontaneous 
natural language efficiently in a system at least as 
large and complex as the JANUS multi-lingual ma- 
chine translation system, which provides the context 
for this work. In this section we describe the divi- 
sion of labor between the Partial Parsing stage and 
the Combination stage in the ROSE approach. 

4.1 T h e  P a r t i a l  Parsing Stage 

Sentence:  That wipes out my mornings. 

Partial Analyses: 

Ch u n k l :  that 

((ROOT THAT) 
(TYPE PRONOUN) 
(FRAME *THAT)) 

Chunk2:  out 

((TYPE NEGATIVE) 
(DEGREE NORMAL) 
(FRAME *RESPOND)) 

Chunk3:  my 

((ROOT I) 
(TYPE PERSON-POSS) 
(FRAME *I)) 

Chunk4:  mornings 

((TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(FRAME *SIMPLE-TIME) 
(SIMPLE-UNIT-NAME TOD)) 

Figure 1: Parse Example 

The first stage in our approach is the Partial  Pars- 
ing stage where the goal is to obtain an analysis for 
islands of the speaker's utterance if it is not possible 
to obtain an analysis for the whole utterance. This 
is accomplished with a restricted version of Lavie's 
GLR* parser (Lavie, 1995; Lavie and Tomita,  1993) 
that  produces an analysis for contiguous portions of 
the input sentence. See Figure 1 for an example 
parse. Here the GLR* parser a t tempts  to handle 
the sentence "That  wipes out my mornings." The 
expression "wipes out" does not match anything in 
the parsing grammar. The grammar also does not 
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allow time expressions to be modified by possessive 
pronouns. So "my mornings" also does not parse. 
Although the grammar recognizes "out" as a way of 
expressing a rejection, as in "Tuesdays are out," it 
does not allow the time being rejected to follow the 
"out". However, although the parser was not able 
to obtain a complete parse for this sentence, it was 
able to extract four chunks. 

The chunks are feature structures in which the 
parser encodes the meaning of portions of the user's 
sentence. This frame based meaning representation 
is called an interlingua because it is language inde- 
pendent. It is defined by an interlingua specification, 
which serves as the primary symbolic knowledge 
source used during the Combination stage. Each 
frame encodes a concept in the domain. The set of 
frames in the meaning representation are arranged 
into subsets that are assigned a particular type. 
Each frame is associated with a set of slots. The 
slots represent relationships between feature struc- 
tures. Each slot is associated with a type which 
determines the set of possible frames which can be 
fillers of that  slot. Though this meaning representa- 
tion specification is knowledge that  must be encoded 
by hand, it is knowledge that  can be used by all as- 
pects of the system, not only the repair module as 
is the case with repair rules. Arguably, any well 
designed system would have such a specification to 
describe its meaning representation. 

The four chunks extracted by the parser each en- 
code a different part of the meaning of the sentence 
"That  wipes out my mornings." The first chunk rep- 
resents the meaning of "that".  The second one rep- 
resents the meaning of "out". Since "out" is gener- 
ally a way of rejecting a meeting time in this domain, 
the associated feature structure represents the con- 
cept of a response that  is a rejection. Since "wipes" 
does not match anything in the grammar,  this token 
is left without any representation among the frag- 
ments returned by the parser. The last two chunks 
represent the meaning of "my" and "mornings" re- 
spectively. 

The disadvantage of this skipping parser over the 
MDP approach is that  it does not have the abil- 
ity to perform some necessary repairs that  the more 
complicated approach can make. In this case, for 
example, it is unable to determine how these pieces 
fit together into one coherent parse. The goal of the 
Combination stage is to overcome this limitation ef- 
ficiently. Thus, the second stage of the interpreta- 
tion process is responsible for making the remaining 
types of repairs. More flexibility can be introduced 
in the second stage efficiently since the search space 
has already been reduced with the addition of the 
knowledge obtained from the partial parse. 

4.2 T h e  C o m b i n a t i o n  S t a g e  

The purpose of the Combination stage is to make 
the remainder of the types of repairs that  could in 

principle be done with a minimum distance parser 
using insertions, deletions, and transpositions, but 
that cannot be performed with the skipping parser. 
The Combination stage takes as input the partial 
analyses returned by the skipping parser. These 
chunks are combined into a set of best repair hy- 
potheses. The hypotheses built during this combina- 
tion process specify how to build meaning represen- 
tations out of the partial analyses produced by the 
parser that  are meant to represent the meaning of 
the speaker's whole sentence, rather than just parts. 
Since the meaning representation is compositional, 
a single, more complete meaning representation can 
be built by assembling the meaning representations 
for the parts of the sentence. 

Ideal Repair Hypothesis: 

(MY-COMB 
((FRAME *RESPOND) 
(DEGREE NORMAL) 
(TYPE NEGATIVE)) ; argl 

((TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(FRAME *SIMPLE-TIME) 
(SIMPLE-UNIT-NAME TOD)) ; arg2 

WHEN) ; slot 

;insert arg2 into argl in slot 

Ideal St ruc tu re :  

((FRAME *RESPOND) 
(DEGREE NORMAL) 
(TYPE NEGATIVE) 
(WHEN ((FRAME *SIMPLE-TIME) 

(TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(SIMPLE-UNIT-NAME TOD)))) 

Gloss: Mornings are out. 

Figure 2: Combination Example 

In this Combination stage, a genetic programming 
(Koza, 1992; Koza, 1994) approach is used to evolve 
a population of programs that specify how to build 
complete meaning representations from the chunks 
returned from the parser. The repair module must 
determine not only which subset of chunks returned 
by the parser to include in the final result, but  also 
how to put them together. For example, the ideal 
repair hypothesis for the example in Figure 2 is one 
that  specifies that the temporal expression should be 
inserted into the NI-IEN slot in the *RESPOND frame. 
The repair process is analogous in some ways to fit- 
ting pieces of a puzzle into a mold that contains 
receptacles for particular shapes. In this analogy, 
the meaning representation specification acts as the 
mold with receptacles of different shapes, making it 
possible to compute all of the ways partial analyses 
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can fit together in order to create a structure that is 
legal in this frame based meaning representation. 

Both the skipping parsing algorithm and the ge- 
netic programming combination algorithm are com- 
pletely domain independent. Therefore, the ROSE 
approach maintains the positive quality of domain 
independence that  the minimum distance parsing 
approach has while avoiding some of the computa- 
tional expense. 

5 The  Genet ic  P r o g r a m m i n g  
Combinat ion  Process  In -Depth  

Recovery from parser failure is a natural applica- 
tion for genetic programming (Koza, 1992; Koza, 
1994). One can easily conceptualize the process of 
constructing a meaning representation hypothesis as 
the execution of a computer program that  assembles 
the set of chunks returned from the parser. This 
program would specify the operations required for 
building larger chunks out of smaller chunks and 
then even larger ones from those. Because the pro- 
grams generated by the genetic search are hierar- 
chical, they naturally represent the compositional 
nature of the repair process. 

5.1 Constructing Alternative Hypotheses 

See Figure 2 for an example repair hypotheses. 
I4Y-COMB is a simple function that  a t tempts  to insert 
the second feature structure into some slot in the 
first feature structure. It selects a slot, if a suitable 
one can be found, and then instantiates the third 
parameter  to this slot. In this case, the WHEN slot 
is selected. So the feature structure corresponding 
to "mornings" is inserted into the WHEN slot in t h e  
feature structure corresponding to "out". The re- 
sult is a feature structure indicating that  "Mornings 
are out." Though this is not an exact representa- 
tion of the speaker's meaning, it is the best that  can 
be done with the available feature structures ~. No- 
tice that  since the expression "wipes out" is foreign 
to the parsing grammar,  and no similar expression is 
associated with the same meaning in it, the MDP ap- 
proach would also not be able to do better  than this 
since it can only insert and delete in order to fit the 
current sentence to the rules in its parsing grammar.  
Additionally, since the time expression follows "out" 
rather than preceding it as the grammar  expects, 
only MDP with transpositions in addition to inser- 
tions and deletions would be able to arrive at the 

2Note that part of the expression "wipes out" matches 
a rule in the grammar that happens to have a similar 
meaning since "out" can be used as a rejection as in 
"Tuesday is out." If the expression had been "out of 
sight", which is positive, both the ROSE approach and 
MDP would construct the opposite meaning from the 
intended meaning. Problems like this can only be dealt 
with through interaction with the user to confirm that 
repaired meanings reflect the speaker's true intention. 
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same result. Note that  the feature structures corre- 
sponding to "my" and "that" are not included in this 
hypothesis. The job of the Combination Mechanism 
is both to determine which fragments to include as 
well as how to combine the selected ones. 

In the genetic programming approach, a popula- 
tion of programs are evolved that  specify how to 
build complete meaning representations from the 
chunks returned from the parser. A complete mean- 
ing representation is one that  is meant to represent 
the meaning of the speaker's whole utterance, rather 
than just part. Partial  solutions are evolved through 
the genetic search specifying how to build parts of 
the full meaning representation. Because in the same 
population there can be programs that  specify how 
to build different parts of the meaning representa- 
tion, different parts of the full solution are evolved 
in parallel, making it possible to evolve a complete 
solution quickly. 

Hypothesisl: 

(MY-COMB 
(MY-COMB 

((FRAME *RESPOND)) 
((FRAME *SIMPLE-TIME) 
(TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(SIMPLE-UNIT-NAME TOD)) 
WHEN) 

((FRAME *THAT) 
(ROOT THAT) (TYPE PRONOUN)) 
WHEN) 

Resul t l :  Mornings and that are out. 

((FRAME *RESPOND) 
(DEGREE NORMAL) 
(TYPE NEGATIVE) 
(WHEN (*MULTIPLE* 

((FRAME *SIMPLE-TIME) 
(TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(SIMPLE-UNIT-NAME TOD)) 

((FRAME *THAT) 
(ROOT THAT) 
(TYPE PRONOUN))))) 

Figure 3: Alternative Repair Hypothesis 1 

Since a set of alternative meaning representation 
hypotheses are constructed during the Combination 
stage, the result is similar to an ambiguous parse. 
See Figure 3 and Figure 4 for two alternative repair 
hypotheses produced during the Combination stage 
for the example in Figure 1. The result of each of the 
hypotheses is an alternative representation for the 
sentence. The first hypothesis, displayed in Figure 



Hypothes i s2 :  

(MY-COMB 
((TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(FRAME *SIMPLE-TIME) 
(SIMPLE-UNIT-NAME TOD)) 

((FRAME *RESPOND) 
(DEGREE NORMAL) 
(TYPE NEGATIVE)) 

??) 

Resul t2:  Mornings. 

((FRAME *SIMPLE-TIME) 
(TIME-OF-DAY MORNING) 
(NUMBER PLURAL) 
(SIMPLE-UNIT-NAME TOD)) 

Figure 4: A l t e r n a t i v e  R e p a i r  H y p o t h e s i s  2 

3, corresponds to the interpretation, "Mornings and 
tha t  are out." The problem with this hypothesis is 
that  it includes the chunk "that" ,  which in this case 
should be left out. 

In the second hypothesis, displayed in Figure 4, 
the repair module a t tempts  to insert the rejection 
chunk into the t ime expression chunk, the opposite 
of the ideal order. No slot could be found in the 
t ime expression chunk in which to insert the rejec- 
tion expression chunk. In this case, the slot remains 
uninstantiated and the largest chunk, in this case 
the t ime expression chunk, is returned. This hy- 
potheses produces a feature structure that  is indeed 
a port ion of the correct structure, though not the 
complete structure. 

5.2 A p p l y i n g  t h e  G e n e t i c  P r o g r a m m i n g  
P a r a d i g m  t o  R e p a i r  

There are five steps involved in applying the genetic 
programming paradigm to a particular problem: de- 
termining a set of terminals, determining a set of 
functions, determining a fitness measure, determin- 
ing the parameters  and variables to control the run, 
and determining the method for deciding when to 
stop the evolution process. The first two constrain 
the range of repairs that  the Repair process is capa- 
ble of making. The fitness measure determines how 
alternative repair hypotheses are ranked, and thus 
whether it is possible that  the search will converge on 
the correct hypothesis rather than on a sub-optimal  
compet ing hypothesis. The last two factors deter- 
mine how quickly it will converge and how long it is 
given to converge. 

The set of terminals for this problem is most  nat- 
urally a chunk from the parser. Each operation in- 
volved in the repair process takes chunks as input 

and returns an augmented chunk as output .  The 
single operator,  called my-comb, takes two chunks as 
input. It  inserts the second chunk into a slot in the 
first chunk. If  it is not possible to insert the sec- 
ond chunk into the first one, it a t t empts  to merge 
them. If  this too is not possible, the largest chunk 
is returned. 

The fitness measure is trained from repair exam- 
ples from a separate corpus and is discussed in more 
detail below. The parameters  for the run, such as 
the size of the population of programs on each gener- 
ation, are determined experimentally from the train- 
ing corpus. 

5.3 T r a i n i n g  a F i t n e s s  F u n c t i o n  

The purpose of the trained fitness function is to rank 
the repair hypotheses that  are produced in each gen- 
eration. Since survival of the fittest is the key to the 
evolutionary process, the determinat ion of which hy- 
potheses are more fit is absolutely crucial. Since the 
purpose of the repair module is to evolve a hypoth- 
esis that  generates the ideal meaning representation 
structure, hypotheses that  produce meaning repre- 
sentation structures closer to the ideal representa- 
tion should be ranked as bet ter  than others that  pro- 
duce structures that  are more different. Of course, 
the repair module does not have access to that  ideal 
structure while it is searching for the best combina- 
tion of chunks. So a fitness function is trained that  
must est imate how close the result of a particular 
repair hypothesis is to the ideal structure by consid- 
ering secondary evidence. 

The first step in training a fitness function is to 
decide which pieces of information to make available 
to the fitness function for it to use in making its de- 
cision. The fitness function, once it is trained, com- 
bines these pieces of information into a single score 
that  can be used for ranking the hypotheses. In the 
current version of the ranking function, three pieces 
of information are given: the number  of operations 
in the repair hypothesis, the number  of frames and 
atomic slot fillers in the resulting meaning represen- 
tation structure, and the average of the statistical 
scores for the set of repairs that  were made. The 
statistical score of a repair corresponds to the mu- 
tual information between a slot and the type of filler 
that  was inserted into it. This statistical information 
is trained on a training corpus of meaning represen- 
tation structures. 

Each piece of information provided to the fitness 
function is represented as a numerical score. The 
number of operations in the repair hypothesis is a 
measure of how complex the hypothesis is. The pur- 
pose of this score is to allow the fitness function to 
prefer simpler solutions. The number  of frames and 
atomic slot fillers is a measure of how complete a 
repair hypothesis is. It allows the fitness function 
to prefer more complete solutions over less complete 
ones. The statistical scores are a rough measure of 
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the quality of the decisions that  were made in formu- 
lating the hypothesis, such as the decision of which 
slot in one structure to insert another structure into. 

The fitness function that  combines these three 
pieces of information is trained over a training cor- 
pus of sentences than need repair coupled with ideal 
meaning representation structures. The purpose of 
the training process is to learn a function that  can 
make wise decisions about  the trade offs between 
these three different factors. Sometimes these three 
factors make conflicting predictions about  which hy- 
potheses are better.  For example,  a structure with 
a large number  of frames that  was constructed by 
making a lot of statistically unlikely decisions may  
be less good than a smaller structure made with de- 
cisions that  were more likely to be correct. The 
factor tha t  only considers the completeness of the 
solution would predict that  the hypothesis produc- 
ing the larger s tructure is better.  On the other hand, 
the factor considering only the statistical predictions 
would choose the other hypothesis. Neither factor 
will be correct in all circumstances. Simple repair 
hypotheses tend to be bet ter  in general, but  this 
goal can conflict with the goal of having a large re- 
sulting structure. The goal of the training process 
is to learn a function that  can make these trade-offs 
successfully. 

The trained fitness function combines the three 
given numerical scores using addition, subtraction, 
multiplication, and division. It  is trained using a 
genetic p rogramming  technique. A successful fit- 
ness function ranks hypotheses the same way as an 
ideal fitness function tha t  can compare  the result- 
ing structures with the ideal one. Before a fitness 
function can be trained, there must  first be training 
data.  Appropria te  training da ta  for the fitness func- 
tion is a set of ranked lists of scores, e.g., the three 
scores mentioned above. Each set of three scores cor- 
responds to the repair hypothesis it was extracted 
from. These sets of scores in the training examples 
are ranked the way the ideal fitness function would 
rank the associated hypotheses. The purpose of the 
training process is to find a function tha t  combines 
the three scores into a single score such tha t  when 
the set of single scores are sorted, the ordering is the 
same as in the training example.  Correctly sorting 
the sets of scores is equivalent to ranking the hy- 
potheses themselves. Therefore, a function that  can 
successfully sort the scores in the training examples 
will be correspondingly good at ranking repair hy- 
potheses. 

6 A C o m p a r a t i v e  A n a l y s i s  i n  a 

L a r g e  S c a l e  P r a c t i c a l  S e t t i n g  

In order to compare  the two stage repair approach 
with the single stage MDP approach in a practi- 
cal, large-scale scenario, we conducted a compara-  
tive evaluation. As mentioned above, we make use 
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of a version of Lavie's GLR* parser (Lavie, 1995) 
extended to be able to perform both skipping and 
inserting which we refer to as LR MDP. This makes 
it possible to compare the two stage ROSE approach 
to MDP keeping all other factors constant.  

The parser uses a semantic g r a m m a r  with approx- 
imately 1000 rules which maps  the input sentence 
onto an interlingua representation (ILT) which rep- 
resents the meaning of the sentence in a language- 
independent manner.  This ILT is then passed to 
a generation component  which generates a sentence 
in the target language which is then graded by a 
human judge as Bad, Partial,  Okay, or Perfect in 
terms of translation quality. Part ial  indicates that  
the result communicated par t  of the content of the 
original sentence while not containing any incorrect 
information. Okay indicates that  the generated sen- 
tence communicated all of the relevant information 
in the original sentence but not in the ideal way. Per- 
fect indicates both tha t  the result communicated  the 
relevant information and that  it did so in a smooth,  
high quality manner.  The corpus used in this evalu- 
ation contains 500 sentences from a corpus of spon- 
taneous scheduling dialogues collected in English. 

In a previous experiment we determined tha t  the 
two stage approach performs about  two orders of 
magni tude faster than LR MDP. For the purpose 
of the evaluation presented in this paper  we tested 
the effect of imposing a m a x i m u m  deviation penalty 
on the min imum distance parser in order to deter- 
mine how much flexibility could be allowed before 
the computat ional  cost would become unreasonable. 

A full, unconstrained implementat ion of MDP can 
find an analysis for any sentence using a combinat ion 
of insertions, deletions, and transpositions. How- 
ever, in order to make it viable to test the MDP 
approach in a system as large as the one which pro- 
vides the context for this work, we make use of a 
more restricted version of MDP. While the full MDP 
algori thm allows insertions, deletions, and transpo- 
sitions, our more constrained version of MDP allows 
only insertions and deletions. Although this still al- 
lows the MDP parser to repair any sentence, in some 
cases the result will not be as complete as it would 
have been with the unconstrained version of MDP 
or with the two stage repair process. Additionally, 
with a lexicon on the order of 1000 lexical items, 
it is not practical to do insertions on the level of 
the lexical i tems themselves. Instead, we allow only 
non-terminals to be inserted. An insertion penalty 
equivalent to the min imum number  of words it would 
take to generate a given non-terminal  is assigned to 
a parse for each inserted non-terminal.  

In order to test the effect of imposing a m a x i m u m  
deviation penalty, we used a parameter ized version 
of LR MDP, where the deviation penalty of a parse 
is the total  number  of words skipped plus the parse 's  
associated insertion penalty as described above. 

The avenues of exploration made available here 
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Figure 5: P a r s e  T i m e s  f o r  A l t e r n a t i v e  S t r a t e g i e s  

NIL Bad Partial  Okay Perfect 
MDP 1 21.4% 3.4% 3.4% 18.4% 53.4% 
MDP 3 16.2% 4.2% 5.0% 19.6% 55.0% 
MDP 5 8.4% 8.2% 6.0% 21.0% 56.4% 
GLR* with Restarts 9.2% 6.4% 12.8% 19.4% 52.2% 
GLR* with Restarts + Repair 0.4% 9.6% 11.8% 23.4% 54.8% 

Figure 6: Translation Quality of Alternative Strategies 

are far from exhaustive. Substitutions and transpo- 
sitions are not allowed in this version of the parser, 
nor is it possible to set a separate max imum penalty 
for skipping and for inserting. Additionally, inser- 
tions and deletions are weighted equally, where some 
researchers have weighted them differently (Hipp, 
1992). These and other possibilities are left for fu- 
ture inquiry. 

7 E v a l u a t i o n  

The LR MDP parser was run over the corpus at 
three different flexibility settings. The first setting, 
M D P  1, is Minimum Distance Parsing with max-  
imum deviation penalty of 1. Similarly, M D P  3 
and M D P  5 are MDP with m ax i m um  devaition 
penalty of 3 and 5 respectively. We also ran the 
version of GLR* where only initial segments can be 
skipped which we refer to as G L R *  w i t h  R e s t a r t s .  
Thus, while the parser can restart from each word in 
the sentence, analyses produced are always for con- 
tiguous segments of the sentence. We ran G L R *  

w i t h  R e s t a r t s  both with and without  repair. Tim-  
ings for all five of these iterations over the corpus 
are displayed in Figure 5. Notice tha t  G L R *  w i t h  
R e s t a r t s  is significantly faster than even M D P  1. 
And since the repair stage is run only for sentences 
that  the repair module determines need repair, and 
since the repair process takes only seconds on aver- 
age to run, no significant difference in t ime can be 
seen in this graph between the case with repair and 
the case without repair. 

The translation quality ratings for the five differ- 
ent iterations over the corpus are found in Figure 
6. Predictably, M D P  5 is an improvement  over 
M D P  1 and M D P  3, with an associated significant 
cost in run time. Also, not surprisingly, the very re- 
stricted G L R *  w i t h  R e s t a r t s ,  while faster than ei- 
ther of the other two, has a correspondingly lower as- 
sociated translation quality. However, G L R *  w i t h  
R e s t a r t s  --{- R e p a i r  outperforms the other methods 
in terms of total number of acceptable translations, 
while not being significantly slower than G L R *  
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with  Res ta r t s  without repair. Though these re- 
sults display certain trends in the performance of 
these alternative approaches, the differences in gen- 
eral are very small. For example, the difference in 
number of acceptable translations between M D P  5 
and GLR* wi th  res ta r t s  + repai r  is only about 
1%. The largest difference between the two is that 
GLR* wi th  re s t a r t s  + repai r  has about 7% more 
sentences with translation quality of Partial or bet- 
ter, indicating that GLR* wi th  re s t a r t s  + repair  
produces analyses that are useful for furthering the 
conversation between the two speakers using the sys- 
tem 7% more often than M D P  5. 

While we have no doubt that increasingly more 
flexible versions of MDP would perform better than 
M D P  5, we have already demonstrated that even 
M D P  5 is impractical in terms of its run-time per- 
formance. Thus we conclude that the two stage 
ROSE approach, even with a very limited flexibil- 
ity parser, is a superior choice. We believe that by 
increasing the flexibility of the parser to include very 
limited skipping in addition to restarts would in- 
crease the performance of this two stage approach 
without incurring a significant increase in run time 
performance. Determining exactly how much skip- 
ping is ideal is a direction for future research. 

8 C o n c l u s i o n s  

In this paper we addressed the issue of how to ef- 
ficiently handle the problem of extragrammaticality 
in a large-scale spontaneous spoken language sys- 
tem. We argue that even though Minimum Dis- 
tance Parsing offers a theoretically attractive so- 
lution to the problem of extragrammaticality, it is 
computationally infeasible in large scale practical 
applications. Our analysis demonstrates that the 
ROSE approach, consisting of a skipping parser with 
limited flexibility coupled with a completely auto= 
matic post-processing repair module, performs sig- 
nificantly faster than even a version of MDP limited 
only to skipping and inserting and constrained to a 
maximum deviation penalty of 5, while producing 
analyses of superior quality. 
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