
The MODELEXPLAINER

B e n o i t Lavoie
CoGenTex, Inc.

840 Hanshaw Road
Ithaca, NY 14850, USA
b e n o i t © c o g e n t e x , com

O w e n R a m b o w
CoGenTex, Inc.

840 Hanshaw Road
Ithaca, NY 14850, USA

owen~cogentex , com

E h u d R e i t e r
D e p a r t m e n t of C o m p u t e r Science

Universi ty of Aberdeen
Aberdeen AB9 2UE, Scotland

e r e i t e r ~ c s d , abdn. ac. uk

1 I n t r o d u c t i o n : O b j e c t M o d e l s

With the emergence of object-oriented technol-
ogy and user-centered, evolutionary software
engineering paradigms, the requirements gath-
ering phase has become an iterative activity.
A requirements analyst builds a formal object-
oriented (OO) data model (modeling). A user
(domain expert) performs a validation of the
formal model. Then, the requirements model
undergoes subsequent evolution (modification
or adjustment) by a (perhaps different) analyst.

It is widely believed that graphical represen-
tations are easy to learn and use, both for mod-
eling and for communication among the engi-
neers and domain experts who together develop
the OO data model. This belief is reflected by
the large number of graphical OO data model-
ing tools currently in research labs and on the
market. However, this belief is a fallacy, as
some recent empirical studies show. For exam-
ple, Kim (1990) simulated a modeling task with
experienced analysts and a validation task with
sophisticated users not familiar with the par-
ticular graphical language. Both user groups
showed semantic error rates between 25% and
70% for the separately scored areas of entities,
attributes, and relations. Relations were partic-
ularly troublesome to both analysts and users.
Marian (1995) compares diagrams with textual
representations of nested conditional structures
(which can be compared to data modeling in
the complexity of the "paths" through the sys-
tem). He hnas that "'the mmnslc difficulty
of the graphics mode was the strongest effect
observed" (p.35). We therefore conclude that

graphics, in order to assure maximum commu-
nicative efficiency, needs to be complemented by
an alternate view of the data. We claim that the
alternate view should be provided by an expla-
nation tool that represents the data in the form
of a Standard English text. This paper presents
such a tool, the MODELEXPLAINER, or MoDEx
for short.

Automatically generating natural-language
descriptions of software models and specifica-
tions is not a new idea. The first such system
was Swartout's GIST Paraphraser (Swartout,
1982). More recent projects include the para-
phraser in ARIES (Johnson et al., 1992); the
GEMA data-flow diagram describer (Scott and
de Souza, 1989); and Gulla's paraphraser for the
PPP system (Gulla, 1993). MODEx certainly
belongs in the tradition of these specification
paraphrasers, but the combination of features
that we will describe in the next section is. to
our knowledge, unique.

2 F e a t u r e s o f M o D E x

Our design is based on initial interviews with
potential users, and on subsequent feedback
from actual users during an iterative prototyp-
ing approach.

• MoDEx includes examples in its texts: as
well as conventional descriptions. The need for
examples in documentat ion has been pointed
out in recent work by Paris and Mittal (see for
example (Mittal and Paris, 1'293) and the refer-
ences cited therein). However, none of the spec-
ification paraphrasers proposed to date have in-
cluded examples.

• M o D E x uses an interactive hypertext inter-
face to allow users to browse through the model.
Such interfaces have been used in other NLG
applications, (e.g., (Reiter e t a l . , 1995; Ram-
bow and Korelsky, 1992)), but ours is based on
(now) standard html-based W W W technology.

• M o D E x uses a simple modeling language,
which is based on the ODL standard developed
by the Object Database Management Group
(OMC) (Cattail, 1994). Some previous systems
have paraphrased complex modeling languages
that are not widely used outside the research
community (GIST, PPP) .

• M o D E x does not have access to knowledge
about the domain of the data model (beyond
the data model itself). At least one previous
system has used such knowledge (GEMA).

3 A M o D E x S c e n a r i o

Figure 1: The University O-O Diagram

Suppose that a university has hired a consul-
tant analyst to build an information system
for its administration. The analyst has de-
vised a data-model and shows it to a univer-
sity administrator for validation. The model
is shown in Figure 1; it is adapted from (Cat-
tell, 1994, p.56). It uses the "crow's foot" no-
tation of Martin and Odell (1992) for cardinal-
ity on relations. The administrator is not fa-
miliar with this notation and cannot easily un-
derstand it. He invokes M o D E x to generate a
textual description in English of a particular as-
pect of the model, namely of the SECTION class
(Figure 2). The text is viewed via a World-
Wide-Web browser such as Netscape or Mosaic.
The General Observations section paraphrases
the class definition, and the Ezamples section
gives a concrete example of an instance of this

Figure 2: Description of SECTION

class. Hyper text links are included (shown un-
derlined); for example, clicking on Professor will
produce a description of the PROFESSOR class.
Several control but tons give access to additional
texts.

The administrator thinks it is strange that a
SECTION may belong to zero or more COURSES.

He clicks on the word belong and obtains the
text shown in Figure 3 (top). This text, espe-
cially with its boundary-value examples, makes
it very clear that the model allows a SECTION tO
belong to no COURSES, and also allows a SEC-
TION to belong to more than one COURSE. In

l/)

D e s c r i p t i o n o f t h e r e l a t i o n ' Is s e c t i o n of '
G e n e r a l O b s e r v a t i o n s :

A section may belong, to zero or more Courses. For ex-

ample, S1 is a Sectioa and belongs to the Course CS100.

$2 is a Section and does not belong to any Courses.

$3 is a Section and belongs to three Courses, MathlG0,

Physicsl00, and Engl00.

D e s c r i p t i o n o f t h e r e l a t i o n ' Is s e c t i o n of '
G e n e r a l O b s e r v a t i o n s :
A section must belong to exactly one Course. For exam-
ple, $1 is a S e c t ~ " ~ d belongs to the Course CS100.
Ca rd ina l i t y :

It is illegal for a Section to belong to zero Courses. For

example, it would be illegal for the Section $2 not to

belong to any Courses. In addition, It is illegal for a

Section to belong to more than one Course. For example,

it would be illegal for the Section $3 to belong to two

Courses, Math100 and Physics100.

Figure 3: Two descriptions of is s e c t i o n of

his institution, each section belongs to exactly
one course. (We have observed such cardinal-
ity mistakes in many OO models.) The ana-
lyst fixes this and reruns M o D E x on this re-
lation, obtaining the description shown in Fig-
ure 3 (bottom). The text now contains a new
section with negative examples, which makes it
clear that it is no longer possible for a SECTION
to belong either to zero COURSES or to multiple
COURSES.

Several other types of text can be generated,
such as path descriptions and comparisons and
texts about several classes. We refer to (Lavoie
et al., 1996) for more detailed information.

4 H o w M O D E x W o r k s

MODEx is implemented using the now fairly
standard, modular pipeline architecture. Sev-
eral modules are part of COGENT, CoGenTex's
generator shell. M o D E x operates as a 'Web
server' which generates HTML files that can be
viewed by any Web browser. For lack of space
we refrain from giving details here and refer to
(Lavoie et al., 1996) for details.

5 R e s t r i c t i o n s o n t h e O b j e c t M o d e l

M o D E x is designed for use independent of the
domain of the OO data model that is being de-
scribed: it lacks domain knowledge. This means
that the system is fully portable between mod-
eling domains, and is not overly costly to use.
However, this also means that the system can-
not detect semantic modeling errors. Instead,
M o D E x works by providing the analyst or do-
main expert with a different representation of
the model, namely in English. Having a second
view in an easily accessible code allows him or
her to more easily detect semantic errors.

Furthermore, the lack of domain knowledge
also means that M o D E x cannot choose the cor-
rect paraphrase for an ambiguous part of a
model. For example, analysts usually label re-
lations with either nouns or verbs, giving rise
to paraphrases such as A commit tee determines

issues (verb) or A commit tee has an issue as its

topic (noun). However, suppose the analyst in-
troduces a relation called t o p between classes
GULFINKEL and WORROW. Since top can 'be
either a noun or a verb in English, the ana-
lyst could either mean that A gulfinkel tops a

worrow or that A gulfinkel has a worrow as its

top. The two statements are presumably incom-
patible, but the correct one can only be chosen
on the basis of knowledge about the (fictitious)
gulfinkel-worrow domain - which M o D E x lacks.

We deal with this problem by requiring the
M o D E x user to follow certain conventions with
respect to the labeling of relations and objects.
The MODEx expects classes to be labeled with
singular nouns, and relations to be labeled with
third person singular active verbs, passive verbs
with by, or nouns. Verbs and nouns can be fol-
lowed by a preposition, and there can be addi-
tional material (arguments, adjuncts) between
a verb and its preposition.

In fact, while such conventions appear to
be limiting at first, they serve a second pur-
pose, namely that of imposing discipline in
naming. In a da ta model, it is important
that names be used consistently for nam-
ing objects and relations, since otherwise the
model is difficult to understand whether or

11

not MoDEx is used. For example, a de-
signer, looking at a graphical representation
of a data model, .may well misunderstand the
gulfinkel-worrow relation above and interpret
it in the opposite manner from what the re-
quirements analyst (who devised the model) in-
tended. Larger object-oriented software engi-
neering projects therefore develop naming con-
ventions, and Martin and Odell (1992, p.134)
say (somwhat vaguely) that two classes con-
nected by a relation "ought to read like a se-
tence". Thus, MoDEx can serve the purpose of
enforcing such naming conventions, since if they
are not followed, the text will be nonsensical, or
even unreadable.

6 O u t l o o k

The MoDEx is implemented in C + + on both
UNIX and PC platforms. It has been inte-
grated with two object-oriented modeling en-
vironments, the ADM (Advanced Development
Model) of the KBSA (Knowledge-Based Soft-
ware Assistant) (DeBellis et al., 1992), and with
Ptech, a commercial off-the-shelf object model-
ing tool. MoBEx has been fielded at a software
engineering lab at Raytheon, Inc., with inter-
esting and encouraging initial feedback.

Currently, we are pursuing several develop-
ment directions. For example, we are extend-
ing the system to allow the user to enter free
text associated with particular objects in the
model (such as classes, attributes). This free
text can capture information not deducible from
the model (such as high-level descriptions of
purpose), and will be integrated with the au-
tomatically generated text. We are also devel-
oping a facility to direct the output of MoDEx
to commercial off-the-shelf publishing environ-
ments for the production of standard (paper-
based) documentation.

A c k n o w l e d g m e n t s

Initial development of MoDEx was funded
by USAF Rome Laboratory under contracts
F30602-92-C-0015 and F30602-92-C-0124. Cur-
rent work on MoDEx is supported by the
TRP-ROAD cooperative agreement F30602-95-

2-0005 with the sponsorship of DARPA and
Rome Laboratory. We thank F. Ahmed, K.
Benner, B. Bussi~re, M. DeBellis, J. Silver, and
S. Sparks for their comments and suggestions,
and T. Caldwell, R. Kittredge, T. Korelsky, D.
McCullough and M. White and two anonymous
reviewers for their comments and criticism of
MoDEx and the present paper.

R e f e r e n c e s

Cattell, R. G. G., editor (1994). The Object Database
Standard: ODMG-93. Morgan Kaufman Publishers,
San Mateo, CA.

DeBellis, M., Miriyala, K., Bhat, S., Sasso, B., and Ram-
bow, O. (1992). KBSA (Knowledge-Based Software
Assistant) Concept Demo final report. Technical re-
port, Rome Laboratory.

Gulla, J. (1993). Explanation Generation in Informa-
tion Systems Engineering. PhD thesis, Norwegian In-
stitute of Technology.

Johnson, W. L., Feather, M. S., and Harris, D. R.
(1992). Representation and presentation of require-
ments knowledge. IEEE Transactions on Software
Engineering, pages 853-869,

Kim, Y.-G. (1990). Effects of Conceptual Data Modeling
Formalisms on User Validation and Analyst Modeling
of Information Requirements. PhD thesis, University
of Minnesota.

Lavoie, B., Rainbow, O., and Reiter, E. (1996). The
MODELEXPLAINER. Technical Report CGT-TR-96-
01, CoGenTex, Inc.

Marian, P. (1995). Why looking isn't always seeing:
Readership skills and graphical programming. Com-
munications of the ACM, 38(6):33-42.

Martin, J. and Odell, J. (1992). Object-Oriented Analy-
sis and Design. Prentice Hall, Englewood Cliffs, NJ.

Mittal, V. and Paris, C. L. (1993). Automatic documen-
tation generation: The interaction of text and exam-
ples. In Proceedings of IJCAI-g& Chambery, France.

Rambow, O. and Korelsky, T. (1992). Applied text gen-
eration. In Third Conference on Applied Natural Lan-
guage Processing, pages 40-47, Trento, Italy.

Reiter, E., Mellish, C., and Levine, J. (1995). Automatic
generation of technical documentation. Applied Arti-
ficial Intelligence, 9(3):259-287.

Scott, D. and de Souza, C. (1989). C0unciliatory plan-
ning for extended descriptive texts. Technical Report
2822, Philips Research Laboratory, Redhill, UK.

Swartout, B. (1982). GIST English generator. In Pro-
ceedings of the National Conference on Artificial In-
telligence. AAAI.

12

