
Approximate Generation
from Non-Hierarchical Representations

Nicolas Nicolov,* Chris Mellish, Graeme Ritchie
Dept of AI, Univ. of Edinburgh

80 South Bridge, Edinburgh EH1 1HN
{nicolas, chrism, graeme}@aisb.ed.ac.uk

Abstract

This paper presents a technique for sentence genera-

tion. We argue that the input to generators should

have a non-hierarchical nature. This allows us to in-

vestigate a more general version of the sentence gen-

eration problem where one is not pre-committed to a

choice of the syntactically prominent elements in the

initial semantics. We also consider that a generator

can happen to convey more (or less) information than

is originally specified in its semantic input. In order

to constrain this approximate matching of the input

we impose additional restrictions on the semantics of

the generated sentence. Our technique provides flex-

ibility to address cases where the entire input cannot

be precisely expressed in a single sentence. Thus the

generator does not rely on the strategic component

having linguistic knowledge. We show clearly how

the semantic structure is declaratively related to lin-

guistically motivated syntactic representation.

1 I n t r o d u c t i o n

Natural language generation is the process of
realising communicative intentions as text (or
speech). The generation task is standardly
broken down into the following processes: con-
tent determination (what is the meaning to
be conveyed), sentence planning 1 (chunking
the meaning into sentence sized units, choos-
ing words), surface realisation (determining the
syntactic structure), morphology (inflection of
words), synthesising speech or formatting the
text output.

In this paper we address aspects of sentence
planning (how content words are chosen but not
how the sem.untics is chunked in units realisable

"Supported by Faculty of Science and Engineering
Scholarship 343 EE06006 at the University of Edinburgh.

1Note that this does not involve planning mechanisms!

as sentences) and surface realisation (how syn-
tactic structures are computed). We thus dis-
cuss what in the literature is sometimes referred
to as tactical generation, that is "how to say
i t"--as opposed to strategic generation--"what
to say". We look at ways of realising a non-
hierarchical semantic representation as a sen-
tence, and explore the interactions between syn-
tax and semantics.

Before giving a more detailed description
of our proposals first we motivate the non-
hierarchical nature of the input for sentence
generators and review some approaches to gen-
eration from non-hierarchical representations--
semantic networks (Section 2). We proceed
with some background about the grammatical
framework we will employ--D-Tree Grammars
(Section 3) and after describing the knowledge
sources available to the generator (Section 4)
we present the generation algorithm (Section 5).
This is followed by a step by step illustration
of the generation of one sentence (Section 6).
We then discuss further semantic aspects of the
generation (Section 7) and the implementation
(Section 8). We conclude with a discussion of
some issues related to the proposed technique
(Section 9).

2 G e n e r a t i o n f rom Non-
Hie ra rch ica l R e p r e s e n t a t i o n s

The input for generation systems varies radic-
ally from system to system. Many generators
expect their input to be cast in a tree-like nota-
tion which enables the actual systems to assume
that nodes higher in the semantic structure are
more prominent than lower nodes. The semantic
representations used are variations of a predic-
ate with its arguments. The predicate is real-
ised as the main verb of the sentence and the

31

arguments are realised as complements of the
main verb--thus the control information is to
a large extent encoded in the tree-like semantic
structure. Unfortunately, such dominance rela-
tionships between nodes in the semantics often
stem from language considerations and are not
always preserved across languages. Moreover,
if the semantic input comes from other applic-
ations, it is hard for these applications to de-
termine the most prominent concepts because
linguistic knowledge is crucial for this task. The
tree-like semantics assumption leads to simplific-
ations which reduce the paraphrasing power of
the generator (especially in the context of mul-
tilingual generation). 2 In contrast, the use of a
non-hierarchical representation for the underly-
ing semantics allows the input to contain as few
language commitments as possible and makes it
possible to address the generation strategy from
an unbiased position. We have chosen a partic-
ular type of a non-hierarchical knowledge rep-
resentation formalism, conceptual graphs [24],
to represent the input to our generator. This
has the added advantage that the representa-
tion has well defined deductive mechanisms. A
graph is a set of concepts connected with rela-
tions. The types of the concepts and the rela-
tions form generalisation lattices which also help
define a subsumption relation between graphs.
Graphs can also be embedded within one an-
other. The counterpart of the unification op-
eration for conceptual graphs is maximal join
(which is non-deterministic). Figure 1 shows a
simple conceptual graph which does not have
cycles. The arrows of the conceptual relations
indicate the domain and range of the relation
and do not impose a dominance relationship.

Figure 1: A simple conceptual graph

The use of semantic networks in generation
is not new [21, 18]. Two main approaches have
been employed for generation from semantic net-
works: utterance path traversal and incremental

2The tree-like semantics imposes some restrictions
which the language may not support.

consumption. An utterance path is the sequence
of nodes and arcs that are traversed in the pro-
cess of mapping a graph to a sentence. Gener-
ation is performed by finding a cyclic path in
the graph which visits each node at least once.
If a node is visited more than once, grammar
rules determine when and how much of its con-
tent will be uttered [23]. Under the second ap-
proach, that of incremental consumption, gen-
eration is done by gradually relating (consum-
ing) pieces of the input semantics to linguistic
structure [3, 13]. Such covering of the semantic
structure avoids some of the limitations of the
utterance path approach and is also the general
mechanism we have adopted (we do not rely on
the directionality of the conceptual relations per
se-- the primitive operation that we use when
consuming pieces of the input semantics is max-
imal join which is akin to pattern matching).
The borderline between the two paradigms is
not clear-cut. Some researchers [22] are look-
ing at finding an appropriate sequence of ex-
pansions of concepts and reductions of subparts
of the semantic network until all concepts have
realisations in the language. Others assume all
concepts are expressible and try to substitute
syntactic relations for conceptual relations [2].

Other work addressing surface realisation
from semantic networks includes: generation us-
ing Meaning-Text Theory [6], generation using
the SNePS representation formalism [19], gener-
ation from conceptual dependency graphs [26].
Among those that have looked at generation
with conceptual graphs are: generation using
Lexical Conceptual Grammar [15], and gener-
ating from CGs using categorial grammar in the
domain of technical documentation [25].

This work improves on existing generation ap-
proaches in the following respects: (i) Unlike
the majority of generators this one takes a non-
hierarchical (logically well defined) semantic rep-
resentation as its input. This allows us to look
at a more general version of the realisation prob-
lem which in turn has direct ramifications for
the increased paraphrasing power and usability
of the generator; (ii) Following Nogier & Zock
[14], we take the view that lexical choice is es-
sentially (pattern) matching, but unlike them we
assume that the meaning representation may not
be entirely consumed at the end of the gener-
ation process. Our generator uses a notion of
approximate matching and can happen to con-

32

vey more (or less) information than is origin-
ally specified in its semantic input. We have a
principled way to constrain this. We build the
corresponding semantics of the generated sen-
tence and aim for it to be as close as possible
to the input semantics. (i) and (ii) thus allow
for the input to come from a module that need
not have linguistic knowledge. (iii) We show
how the semantics is systematically related to
syntactic s tructures in a declarative framework.
Alternative processing strategies using the same
knowledge sources can therefore be envisaged.

3 D-Tree G r a m m a r s

Our generator uses a particular syntactic
theory- -D-Tree Grammar (DIG) which we
briefly introduce because the generation strategy
is influenced by the linguistic structures and the
operations on them.

D-Tree Grammar (DTG) [16] is a new gram-
mar formalism which arises from work on Tree-
Adjoining Grammars (TAG) [7]. In the context
of generation, TAGS have been used in a num-
ber of systems MUMBLE [10], SPOKESMAN [11],
Wm [27], the system reported in [9], the first
version of PROTECTOR [12], and recently SPUD

(by Stone & Doran). In the area of grammar
development TAG has been the basis of one of
the largest grammars developed for English [4].
Unlike TAGs, DTGs provide a uniform treatment
of complementat ion and modification at the syn-
tactic level. DTGs are seen as attractive for gen-
eration because a close match between semantic
and syntactic operations leads to simplifications
in the overall generation architecture. DTGS try
to overcome the problems associated with T A G S

while remaining faithful to what is seen as the
key advantages of TAGs [7]: the extended domain
of locality over which syntactic dependencies are
s tated and function argument structure is cap-
tured.

DTG assumes the existence of elementary
structures and uses two operations to form lar-
ger s tructures from smaller ones. The element-
ary structures are tree descriptions 3 which are
trees in which nodes are linked with two types of
links: dominat ion links (d-links) and immediate
domination links (i-links) expressing (reflexive)
dominat ion and immediate domination relations

3called d-trees hence the name of the formalism.

between nodes. Graphically we will use a dashed
line to indicate a d-link (see Figure 2). D-trees
allow us to view the operations for composing
trees as monotonic. The two combination oper-
ations that DTG uses are subsertion and sister-
adjunetion.

substitution node

Figure 2: Subsertion

S u b s e r t i o n . When a d-tree a is subserted
into another d-tree fl, a component 4 of a is sub-
s t i tuted at a frontier nonterminal node (a sub-
st i tut ion node) of j3 and all components of a
that are above the subst i tu ted component are
inserted into d-links above the subst i tu ted node
or placed above the root node of ft. It is pos-
sible for components above the subst i tu ted node
to drift arbitrarily far up the d-tree and distrib-
ute themselves within domination links, or above
the root, in any way that is compatible with the
domination relationships present in the substi-
tu ted d-tree. In order to constrain the way in
which the non-subst i tuted components can be
interspersed D T G uses subsertion-insertion con-
straints which explicitly specify what compon-
ents from what trees can appear within a certain
d-links. Subsertion as it is defined as a non-
deterministic operation. Subsertion can model
both adjunction and subst i tut ion in T A G .

Figure 3: Sister-adjunction

S i s t e r - a d j u n c t i o n . When a d-tree a is
sister-adjoined at a node ~7 in a d-tree/3 the corn-

4& subtree which contains only i-links.

33

posed d-tree 7 results from the addition to j3 of
v~ as a new leftmost or rightmost sub-d-tree be-
low 7/. Sister-adjunction involves the addition of
exactly one new immediate domination link. In
addition several sister-adjunctions can occur at
the same node. Sister-adjoining constraints as-
sociated with nodes in the d-trees specify which
other d-trees can be sister-adjoined at this node
and whether they will be right- or left-sister-
adjoined.

For more details on DTGS see [16].

4 Knowledge Sources

The generator assumes it is given as input
an input semantics (InputSem) and 'bound-
ary' constraints for the semantics of the gen-
erated sentence (BuiltSem which in general
is different from InputSemh). The bound-
ary constraints are two graphs (UpperSem
and LowerSem) which convey the notion of
the least and the most that should be ex-
pressed. So we want BuiltSem to satisfy:
LowerSern < BuiltSem <_ UpperSern. ¢ If
the generator happens to introduce more se-
mantic information by choosing a particular ex-
pression, LowerSem is the place where such ad-
ditions can be checked for consistency. Such
constraints on BuiltSem are useful because in
general InputSem and BuiltSem can happen
to be incomparable (neither one subsumes the
other). In a practical scenario LowerSem can be
the knowledge base to which the generator has
access minus any contentious bits. UpperSem
can be the minimum information that necessar-
ily has to be conveyed in order for the generator
to achieve the initial communicative intentions.

The goal of the generator is to produce a sen-
tence whose corresponding semantics is as close
as possible to the input semantics, i.e., the real-
isation adds as little as possible extra material
and misses as little as possible of the original in-
put. In generation similar constraints have been
used in the generation of referring expressions
where the expressions should not be too general

5This can come about from a mismatch between the
input and the semantic structures expressible by the
generator.

6The notat ion G1 <_ G2 means that G1 is subsumed
by G2. We consider UpperSem to be a generalisation of
BuiltSem and LowerSem a specialisation of BuiltSem
(in terms of the conceptual graphs that represent them).

so that discriminatory power is not lost and not
too specific so that the referring expression is in
a sense minimal. Our model is a generalisation
of the paradigm presented in [17] where issues
of mismatch in lexical choice are discussed. We
return to how UpperSem and LowerSem are
actually used in Section 7.

4 .1 M a p p i n g r u l e s

Mapping rules s tate how the semantics is related
to the syntactic representation. We do not im-
pose any intrinsic directionality on the mapping
rules and view them as declarative statements.
In our generator a mapping rule is represented
as a d-tree in which certain nodes are annot-
ated with semantic information. Mapping rules
are a mixed syntactic-semantic representation.
The nodes in the syntactic s t ructure will be fea-
ture structures and we use unification to com-
bine two syntactic nodes. The semantic annota-
tions of the syntactic nodes are either conceptual
graphs or instructions indicating how to com-
pute the semantics of the syntactic node from
the semantics of the daughter syntactic nodes.
Graphically we use dot ted lines to show the
coreference between graphs (or concepts). Each
graph appearing in the rule has a single node
("the semantic head") which acts as a root (in-
dicated by an arrow in Figure 4). This hierarch-
ical s tructure is imposed by the rule, and is not
part of the semantic input. Every mapping rule
has associated applicability semantics which is
used to license its application. The applicabil-
ity semantics can be viewed as an evaluation of
the semantic instruction associated with the top
syntactic node in the tree description.

Figure 4 shows an example of a mapping rule.
The applicability semantics of this mapping rule
is: I AN'MATE ACT,ON
If this s tructure matches part of the input se-
mantics (we explain more precisely what we
mean by matching later on) then this rule can
be triggered (if it is syntactically appropriate---
see Section 5). The internal generation goals
(shaded areas) express the following: (1) gen-
erate [ACTION[as a verb and subsert (substi-
tute,at tach) the verb's syntactic s t ructure at the
Vo node; (2) generate [ANIMATE] as a noun
phrase and subsert the newly built s t ructure
at NPO; and (3) generate I EI~ITITY[aS another
noun phrase and subsert the newly built struc-

34

Applicability semantics:

Internal generation goals

Figure 4: A mapping rule for transitive constructions

ture at NP1. The newly built structures are also
mixed syntactic-semantic representations (an-
notated d-trees) and they are incorporated in
the mixed structure corresponding to the cur-
rent status of the generated sentence.

5 S e n t e n c e G e n e r a t i o n

In this section we informally describe the gener-
ation algorithm. In Figure 5 and later in Fig-
ure 8, which illustrate some semantic aspects of
the processing, we use a diagrammatic notation
to describe semantic structures which are actu-
ally encoded using conceptual graphs.

The input to the generator is InputSem,
LowerSem, UpperSem and a mixed structure,
Partial, which contains a syntactic part (usually
just one node but possibly something more com-
plex) and a semantic part which takes the form
of semantic annotations on the syntactic nodes
in the syntactic part. Initially Partial rep-
resents the syntactic-semantic correspondences
which are imposed on the generator. 7 It has the
format of a mixed structure like the represent-
ation used to express mapping rules (Figure 4).
Later during the generation Partial is enriched
and at any stage of processing it represents the
current syntactic-semantic correspondences.

We have augmented the DTG formalism so

7In dialogue and question answering, for example,
the syntactic form of the generated sentence may be
constrained.

that the semantic structures associated with
syntactic nodes will be updated appropriately
during the subsertion and sister-adjunction op-
erations. The stages of generation are: (1) build-
ing an initial skeletal structure; (2) attempting
to consume as much as possible of the semantics
uncovered in the previous stage; and (3) convert-
ing the partial syntactic structure into a com-
plete syntactic tree.

5.1 B u i l d i n g a s k e l e t a l s t r u c t u r e

Generation starts by first trying to find a map-
ping rule whose semantic structure matches s
part of the initial graph and whose syntactic
structure is compatible with the goal syntax (the
syntactic part of Partial). If the initial goal
has a more elaborate syntactic structure and re-
quires parts of the semantics to be expressed as
certain syntactic structures this has to be re-
spected by the mapping rule. Such an initial
mapping rule will have a syntactic structure that
will provide the skeleton syntax for the sentence.
If Lexicalised DTGiS used as the base syntactic
formalism at this stage the mapping rule will
introduce the head of the sentence structure
the main verb. If the rule has internal gener-
ation goals then these are explored recursively
(possibly via an agenda--we will ignore here the

Svia the maximal join operation. Also note that
the arcs to/from the conceptual relations do not reflect
any directionality of the processing--they can be 'tra-
versed'/accessed from any of the nodes they connect.

35

LOWE" .L.O N

• = . . " A,N,NG j SEMANT, CS

INITIAL ~ ".

~'.~ EXTRAS . ~'
.......... ~ "SEMANTICS.0F NEW MAPP,NG RULE

Figure 5: Covering the remaining semantics with mapping rules

issue of the order in which internal generation
goals are executed). Because of the minimality
of the mapping rule, the syntactic structure that
is produced by this initial stage is very basic--for
ex:mple only obligatory complements are con-
sidered. Any mapping rule can introduce addi-
tional semantics and such additions are checked
against the lower semantic bound. When ap-
plying a mapping rule the generator keeps track
of how much of the initial semantic structure
has been covered/consumed. Thus at the point
when all internal generation goals of the first
(skeletal) mapping rule have been exhausted the
generator knows how much of the initial graph
remains to be expressed.

5.2 C o v e r i n g t h e r e m a i n i n g s e m a n t i c s

In the second stage the generator aims to find
mapping rules in order to cover most of the re-
maining semantics (see Figure 5) . The choice
of mapping rules is influenced by the following
criteria:

C o n n e c t i v i t y : The semantics of the mapping
rule has to match (cover) part of the covered
semantics and part of the remaining se-
mantics.

I n t e g r a t i o n : It should be possible to incor-
porate the semantics of the mapping rule
into the semantics of the current structure
being built by the generator.

Rea l i sab i l i ty : It should be possible to incor-
porate the partial syntactic structure of
the mapping rule into the current syntactic
structure being built by the generator.

Note that the connectivity condition restricts
the choice of mapping rules so that a rule that
matches part of the remaining semantics and

the extra semantics added by previous mapping
rules cannot be chosen (e.g., the "bad mapping"
in Figure 5). While in the stage of fleshing out
the skeleton sentence structure (Section 5.1) the
syntactic integration involves subsertion, in the
stage of covering the remaining semantics it is
sister-adjunction that is used. When incorporat-
ing semantic structures the semantic head has to
be preserved--for example when sister-adjoining
the d-tree for an adverbial construction the se-
mantic head of the top syntactic node has to
be the same as the semantic head of the node
at which sister-adjunction is done. This explicit
marking of the semantic head concepts differs
from [20] where the semantic head is a PROLOG
term with exactly the same structure as the in-
put semantics.

5.3 C o m p l e t i n g a d e r i v a t i o n

In the preceding stages of building the skeletal
sentence structure and covering the remaining
semantics, the generator is mainly concerned
with consuming the initial semantic structure.
In those processes, parts of the semantics are
mapped onto partial syntactic structures which
are integrated and the result is still a partial
syntactic structure. That is why a final step
of "closing off" the derivation is needed. The
generator tries to convert the partial syntactic
structure into a complete syntactic tree. A mor-
phological post-processor reads the leaves of the
final syntactic tree and inflects the words.

6 Example

In this section we illustrate how the algorithm
works by means of a simple example. Suppose

36

Inte al ge eratlon g v ~

i i . A P ~

. \

I.IMP

Figure 6: Mapping rules

we start with an initial semantics as given in
Figure 1. This semantics can be expressed in a
number of ways: Fred limped quickly, Fred hur-
ried with a limp, Fred's limping was quick, The
quickness of Fred's limping . . . , etc. Here we
show how the first paraphrase is generated.

In the stage of building the skeletal structure
the mapping rule (i) in Figure 6 is used. Its
internal generation goals are to realise the in-
stantiation of [ACTION] (which is [MOVEMENT
as a verb and similarly[PERSON:FRED f as a noun
phrase. The generation of the subject noun
phrase is not discussed here. The main verb
is generated using the terminal mapping rule 9
(iii) in Figure 6. l° The skeletal structure thus
generated is Fred limp(ed). (see (i) in Figure 7).

An interesting point is that although the in-
ternal generation goal for the verb referred only
to the concept [MOVEMENT] in the initial se-
mantics, all of the information suggested by the
terminal mapping rule (iii) in Figure 6 is con-
sumed. We will say more about how this is done
in Section 7.

At this stage the only concept that remains
to be consumed is [~ K ~ . This is done in the
stage of covering the remaining semantics when
the mapping rule (ii) is used. This rule has an
internal generation goal to generate the instan-
t i a t i o n Of[MANNER] as an adverb, which yields
quickly. The structure suggested by this rule
has to be integrated in the skeletal structure.

°Terminal mapping rules are mapping rules which
have no internal generation goals and in which all ter-
minal nodes of the syntactic structure are labelled with
terminal symbols (lexemes).

1°In Lexicalised DTGS the main verbs would be already
present in the initial trees.

On the syntactic side this is done using sister-
adjunction. The final mixed syntactic-semantic
structure is shown on the right in Figure 7. In
the syntactic part of this structure we have no
domination links. Also all of the input semantics
has been consumed. The semantic annotations
of the S and V P nodes are instructions about
how the graphs/concepts of their daughters are
to be combined. If we evaluate in a bottom up
fashion the semantics of the S node, we will
get the same result as the input semantics in
Figure 1. After morphological post-processing
the result is Fred limped quickly. An alternative
paraphrase like Fred hurried with a limp ll can
be generated using a lexical mapping rule for
the verb hurry which g r o u p s IMOVEMENTI a n d

[~ together and a another mapping rule ex-
pressing [LIMPING] as a PP. To get both para-
phrases would be hard for generators relying on
hierarchical representations.

7 Matching the applicability
semantics of mapping rules

Matching of the applicability semantics of map-
ping rules against other semantic structures oc-
curs in the following cases: when looking for
a skeletal structure; when exploring an internal
generation goal; and when looking for mapping
rules in the phase of covering the remaining se-
mantics. During the exploration of internal gen-
eration goals the applicability semantics of a
mapping rule is matched against the semantics
of an internal generation goal. We assume that

11 Our example is based on Iordanskaja e~ al.'s notion of
maximal reductions of a semantic net (see [6, page 300]).
It is also similar to the example in [14].

37

LIMP

I P

Vo I ' I ~ V ~ T M~_~ U~P~
LIMP

Figure 7: Skeletal structure and final s tructure

IN LOWER SEM. BOUND
SEMANTICS OF THE I ~ .~ -, ,,~.~'~.~
GENERATION GOAL ~ ~"'~'~"'~ I X

\
APPLICABILITY SEMANTICS
OF NEW MAPPING RULE

INITIAL GRA

Figure 8: Interactions involving the applicability semantics of a mapping rule

the following conditions hold:

1. The applicability semantics of the mapping rule
can be maximally joined with the goal se-
mantics.

2. Any information introduced by the mapping
rule that is more specialised than the goal se-
mantics (additional concepts/relations, further
type instantiation, etc.) must be within the
lower semantic bound (LowerSem). If this
additional information is within the input se-
mantics, then information can propagate from
the input semantics to the mapping rule (the
shaded area 2 in Figure 8). If the mapping rule's
semantic additions are merely in LowerSem,
then information cannot flow from LowerSem
to the mapping rule (area 1 in Figure 8).

Similar conditions hold when in the phase of cov-
ering the remaining ~emantics the applicability
semantics of a mapping rule is matched against
the initial semantics. This way of matching al-
lows the generator to convey only the informa-
tion in the original semantics and what the lan-
guage forces one to convey even though more in-
formation might be known about the particular

situation.
In the same spirit after the generator has

consumed/expressed a concept in the input se-
mantics the system checks that the lexical se-
mantics of the generated word is more specific
than the corresponding concept (if there is one)
in the upper semantic bound.

8 Implementation

We have developed a sentence generator
called PROTECTOR (approximate PROduc t ion of
TExts from Conceptual graphs in a declaraT-
ive framewORk). PROTECTOR is implemented
in LIFE [1]. The syntactic coverage of the gener-
ator is influenced by the XTAG system (the first
version of PROTECTOR in fact used TAGS). By
using DTGs we can use most of the analysis of
XTAG while the generation algorithm is simpler.
W~ are in a position to express subpar ts of the
input semantics as different syntactic categories
as appropriate for the current generation goxl
(e.g., VPs and nominalisations). The syntactic

38

coverage of PROTECTOR includes: intransitive,
transitive, and ditransitive verbs, topicalisation,
verb particles, passive, sentential complements,
control constructions, relative clauses, nominal-
isations and a variety of idioms. On backtrack-
ing PROTECTOR returns all solutions. We are
also looking at the advantages that our approach
offers for multilingual generation.

9 D i s c u s s i o n

During generation it is necessary to find appro-
priate mapping rules. However, at each stage
a number of rules might be applicable. Due to
possible interactions between some rules the gen-
erator may have to explore different choices be-
fore actually being able to produce a sentence.
Thus, generation is in essence a search problem.
In order to guide the search a number of heurist-
ics can be used. In [14] the number of matching
nodes has been used to rate different matches,
which is similar to finding maximal reductions in
[6]. Alternatively a notion of semantic distance
[5] might be employed. In PROTECTOR we will
use a much more sophisticated notion of what
it is for a conceptual graph to match bet ter the
initial semantics than another graph. This cap-
tures the intuition that the generator should try
to express as much as possible from the input
while adding as little as possible extra material.

We use instructions showing how the se-
mantics of a mother syntactic node is computed
because we want to be able to correctly up-
date the semantics of nodes higher than the
place where subst i tu t ion or adjunction has taken
placc i.e., we want to be able to propagate
the subst i tut ion or adjunction semantics up the
mixed structure whose backbone is the syntactic
tree.

We also use a notion of headed conceptual
graphs, i.e., graphs that have a certain node
chosen as the semantic head. The initial se-
mantics need not be marked for its semantic
head. This allows the generator to choose an
appropriate (for the natural language) perspect-
ive. The notion of semantic head and their con-
nectivity is a way to introduce a hierarchical
view on the :emantic s tructure which is depend-
ent on the language. When matching two con-
ceptual graphs we require that their heads be the
same. This reduces the search space and speeds

up the generation process.

Our generator is not coherent or complete
(i.e., it can produce sentences with more
general/specific semanticJ than the input se-
mantics). We try to generate sentences whose
semantics is as close as possible to the input in
the sense that they introduce little extra mater-
ial and leave uncovered a small part of the input
semantics. We keep track of more structures as
the generation proceeds and are in a position
to make finer distinctions than was done in pre-
vious research. The generator never produces
sentences with semantics which is more specific
than the lower semantic bound which gives some
degree of coherence. Our generation technique
provides flexibility to address cases where the
entire input cannot be expressed in a single sen-
tence by first generating a "best match" sentence
and allowing the remaining semantics to be gen-
erated in a follow-up sentence.

Our approach can be seen as a generalisa-
tion of semantic head-driven generation [20]--
we deal with a non-hierarchical input and non-
concatenative grammars. The use of Lexicalised
DTG means that the algorithm in effect looks
first for a syntactic head. This aspect is similar
to syntax-driven generation [8].

The algorithm has to be checked against more
linguistic data and we intend to do more work on
additional control mechanisms and also using al-
ternative generation strategies using knowledge
sources free from control information. To this
end we have explored aspects of a new semantic-
indexed chart generation which also allows us to
rate intermediate results using syntactic as well
as semantic preferences. Syntactic/stylist ic pref-
erences are helpful in cases where the semantics
of two paraphrases are the same. One such in-
stance of use of syntactic preferences is avoid-
ing (giving lower rating to) heavy constituents
in split verb particle constructions. Thus, the
generator finds all possible solutions producing
the "best" first.

10 C o n c l u s i o n

We have presented a technique for sentence
generation from conceptual graphs. The use
of a non-hierarchical representation for the se-
mantics and approximate semantic matching in-
creases the paraphrasing power of the generator

39

and enables the production of sentences with
radically different syntactic structure due to al-
ternative ways of grouping concepts into words.
This is particularly useful for multilingual gen-
eration and in practical generators which are fed
input from non linguistic applications. The use
of a syntactic theory (D-Tree Grammars) allows
for the production of linguistically motivated
syntactic structures which will pay off in terms
of better coverage of the language and overall
maintainability of the generator. The syntactic
theory also affects the processing--we have aug-
mented the syntactic operations to account for
the integration of the semantics. The generation
architecture makes explicit the decisions that
have to be taken and allows for experiments with
different generation strategies using the same de-
clarative knowledge sources.

References

[1] H. A[t-Kaci and A. Podelski. Towards a meaning of
LIFE. Journal of Logic Programming, 16(3&4):195-
234, 1993.

[2] F. Antonacci et al. Analysis and Generation of
Italian Sentences. In T. Nagle, J. Nagle, L. Ger-
holz, and P. Eklund, editors, Conceptual Structures:
Current research and Practice, pages 437-460. Ellis
Horwood, 1992.

[3] M. Boyer and G. Lapalme. Generating paraphrases
from meaning-text semantic networks. Computa-
tional Intelligence, 1(1):103-117, 1985.

[4] C. Doran et al. XTAG--A Wide Coverage Grammar
for English. In COLING'94, pages 922-928, 1994.

[5] N. Foo et al. Semantic distance in conceptual
graphs. In J. Nagle and T. Nagle, editors, Fourth
Annual Workshop on Conceptual Structures, 1989.

[6] L. Iordanskaja et al. Lexical Selection and Para-
phrase in a Meaning-Text Generation Model. In
C.Paris, W.Swartout, and W.Mann, editors, Natural
Language Generation in Artificial Intelligence and
Computational Linguistics, pages 293-312. Kluwer
Academic, 1991.

[7] A. Joshi. The Relevance of Tree Adjoining Gram-
mar to Generation. In G. Kempen, editor, Natural
Language Generation, pages 233-252. Kluwer Aca-
demic, 1987.

[8] E. KSnig. Syntactic head-driven generation. In
COLING'94, 475-481, Kyoto, 1994.

[9] K. F. McCoy, K. Vijay-Shanker, and G. Yang. A
functional approach to generation with tag. In 30th
Annual Meeting of ACL, pages 48-55, 1992.

[10] D. McDonald and J. Pustejovsky. TAGs as a gram-
matical formalism for generation. In 23rd Annual
Meeting of the ACL, pages 94-103, 1985.

[11] M. Meteer. The "Generation Gap": The Problem of
Expressibility in Text Planning. PhD thesis, Univ of
Massachusetts, 1990. COINS TR 90-04.

[12] N. Nicolov, C. Mellish, and ,3. Ritchie. Sentence
Generation from Conceptual Graphs. In G.Ellis,
R.Levinson, W.Rich, and J.Sowa, editors, Concep-
tual Structures: Applications, Implementation and
Theory, pages 74-88. LNAI 954, Springer, 1995.
3rd Int. Conf. on Conceptual Structures (ICCS'95),
Santa Cruz, CA, USA.

[13] J.-F. Nogier. Gdndration automatique de langage et
graphs conceptuels. Hermes, Paris, 1991.

[14] J.-F. Nogier and M. Zock. Lexical Choice as Pat-
tern Matching. In T. Nagle, J. Nagle, L. Gerholz,
and P. Eklund, editors, Conceptual Structures: Cur-
rent research and Practice, pages 413-436. Ellis Hor-
wood, 1992.

[15] J. Oh et al. NLP: Natural Language Parsers and
Generators. In 1st Int. Workshop on PEIRCE: A
Conceptual Graph Workbench, pages 48-55, 1992.

[16] O. Rainbow, K. Vijay-Shanker, and D. Weir. D-tree
grammars. In ACL, 1995.

[17] E. Reiter. A new model of lexical choice for
nouns. Computational Intelligence, 7(4):240-251,
1991. Special issue on Natural Language Genera-
tion.

[18] S. Shapiro. Generalized augmented transition net-
work grammars for generation from semantic net-
works. Computational Linguistics, 2(8):12-25, 1982.

[19] S. Shapiro. The CASSIE projects: An approach to
NL Competence. In 4th Portugese Conference on AI
(EPIA-89). LNAI 390: 362-380, Springer, 1989.

[20] S. Shieber, G. van Noord, R. Moore, and F. Pereira.
A semantic head-driven generation algorithm for
unification-based formalisms. Computational Lin-
guistics, 16(1):30-42, 1990.

[21] R. Simmons and J. Slocum. Generating Eng-
lish Discourse from Semantic Networks. CACM,
15(10):891-905, 1972.

[22] M. Smith, R. Garigliano, and R. Morgan. Gener-
ation in the LOLITA system: an engineering ap-
proach. In 7th Int. Workshop on Natural Language
Generation, pages 241-244, 1994.

[23] J. Sown. Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley,
1984.

[24] J. F. Sowa. Conceptual graphs summary. In T. E.
Nagle et al., editors, Conceptual Structures: Current
Research and Practice, pages 3-51. Ellis Horwood,
1992.

[25] S. Svenberg. Representing Conceptual and Lin-
guistic Knowledge for Multilingual Generation in a
Technical Domain. In 7th Int. Workshop on Natural
Language Generation, pages 245-248, 1994.

[26] A. van Rijn. Natural Language Communication
between Man and Machine. PhD thesis, Technical
University Delft, 1991.

[27] W. Wahlster et al. WIP: the coordinated genera-
tion of multimodal presentations fro m a common
representation. RR 91-08, DFKI, 1991.

40

