
Paraphrasing and Aggregating Argumentative Text
Using Text Structure

Xiaorong Huang Armin Fiedler
Fachbereich Informatik, Universit/it des Saarlandes
Postfach 15 11 50, D-66041 Saarbriicken, Germany

{huang I a f i e d l e r } O c s , u n i - s b , de

A b s t r a c t

We argue in this paper that sophisticated mi-
croplanning techniques are required even for
mathematical proofs, in contrast to the belief
that mathematical texts are only schematic
and mechanical. We demonstrate why para-
phrasing and aggregation significantly en-
hance the flexibility and the coherence of
the text produced. To this end, we adopted
the Text Structure of Meteer as our basic
representation. The type checking mecha-
nism of Text Structure allows us to achieve
paraphrasing by building comparable combi-
nations of linguistic resources. Specified in
terms of concepts in an uniform ontological
structure called the Upper Model, our se-
mantic aggregation rules are more compact
than similar rules reported in the literature.

1 I n t r o d u c t i o n

Many of the first NLG systems link their
information structure to the corresponding
linguistic resources either through predefined
templates or via careful engineering for a spe-
cific application. Therefore their expressive
power is restricted (see [12] for an extensive
discussion). An increasing interest in more
sophisticated microplanning techniques can
be clearly observed [12, 14], however. In
this paper, we first motivate the needs for
paraphrasing and aggregation for the gener-
ation of argumentative texts, in particular of
mathematical proofs, and then describe how
our microplanning operations can be formu-
lated in terms of Meteer's Text Structure.

The work reported here is part of a
fully implemented system called PRO VERB,
which produces natural language proofs from
proofs found by' automated reasoning sys-
tems [7]. First experiments with PRO VERB
resulted in very mechanical texts due to the
lack of microplanning techniques. According
to our analysis, there are at least two lin-
guistic phenomena that call for appropriate
microplanning techniques.

First, naturally occurring proofs contain
paraphrases with respect to both rhetorical
relations, as well as to logical functions or
predicates. For instance, the derivation of B
from A can be verbalized as:

"Since A, B." or as
"A leads to B."

The logic predicate para(C1, C2), also,
can be verbalized as:

"Line C1 parallels line C2." or as
"The parallelism of the lines C1 and
C2."

Second, without microplanning
PROVERB generates text structured ex-
actly mirroring the information structure of
the proof and the formulae. This means that
every step of derivation is translated into a
separate sentence, and formulae are recur-
sively verbalized. As an instance of the lat-
ter, the formula

Set(F) A Subset(F, G) (1)

is verbalized as

21

"F is a set. F is a subset of G."

although the following is much more natural:

"The set F is a subset of G."

Therefore, we came to the conclusion that
an intermediate level of representation is nec-
essary that allows flexible combinations of
linguistic resources. It is worth pointing out
that these techniques are required although
the input information chunks are of clause
size. Another requirement is that this in-
termediate representation is easy to control,
since a mathematical text must conform to
the syntactic rules of its sublanguage. In the
next section, we first give a brief overview of
PROVERB. Then we describe the architec-
ture of our microplanner, and illustrate how
Meteer's Text Structure can be adopted as
our central representation. In Sec. 5 and 6
we describe the handling of paraphrases and
aggregation rules, two of the major tasks of
our microplanner.

2 The Macroplanner of
P R 0 VERB

The macroplanner of PROVERB combines
hierarchical planning [13] with local organi-
zation [15] in a uniform planning framework
[6]. The hierarchical planning is realized
by so-called top-down presentation operators
that split the task of presenting a particular
proof into subtasks of presenting subproofs.
While the overall planning mechanism is sim-
ilar to the RST-based planning approach,
the plan operators resemble the schemata in
schema-based planning. The output of the
macroplanner is an ordered sequence of proof
communicative acts (PCAs).

PCAs are the primitive actions planned
during macroplanning to achieve commu-
nicative goals. Like speech acts, PCAs can
be defined in terms of the communicative
goals they fulfill as well as in terms of their
possible verbalizations. Based on an analysis
of proofs in mathematical textbooks, there
are mainly two types of goals:

Conveying derivation step: In terms of
rhetorical relations, PCAs in this category

represent a variation of the rhetorical rela-
tion derive [8]. Below we examine the simple
PCA called Der ive as an example.

(D e r i v e R e a s o n s : (a 6 F , F C G)
Method : d e f - s u b s e t
Conclusion: a 6G)

Depending on the reference choices, the
following is a possible verbalization:

"Since a is an element of F and F is a
subset of G, a is an element of G by the
definition of subset."

Updating the global attentional structure:
These PCAs either convey a partial plan for
the forthcoming discourse or signal the end
of a subproof. PCAs of this sort are also
called meta-comments [16].

The PCA

(B e g i n - C a s e s Goal : Formula
Assumptions: (A B))

produces the verbalization:

"To prove Formula, let us consider the
two cases by assuming A and B."

3 Text Structure in
P R 0 VERB

3.1 I n t r o d u c t i o n a n d G e n e r a l
S t r u c t u r e

Text Structure is first proposed by Meteer
[11, 12] in order to bridge the generation gap
between the representation in the application
program and the linguistic resources pro-
vided by the language. By abstract ing over
concrete linguistic resources, Text Structure
should supply the planner with basic vocab-
ularies, with which it chooses linguistic re-
sources. Meteer 's text s tructure is organized
as a tree, in which each node represents a
constituent of the text. In this form it con-
tains three types of linguistic information:
constituency, structural relations among con-
stituents, and in particular, the semantic cat-
egories the constituents express.

The main role of the semantic categories
is to provide vocabularies which specify type

22

restrictions for nodes. They define how sep-
arate Text Structures can be combined, and
ensure that the planner only builds express-
ible Text Structures. For instance if tree A
should be expanded at node n by tree B, the
resulting type of B must be compatible to
the type restriction at tached to n. Panaget
[14] argues, however, that Meteer's semantic
categories mix the ideational and the textual
dimension as argued in the systemic linguis-
tic theory [5]. Here is one of his examples:

"The ship sank" is an ideational event,
and it is textually presented from an EVENT-
PERSPECTIVE. "The sinking of the ship" is
still an ideational event, but now presented
from an OBJECT-PERSPECTIVE.

On account of this, Panaget split the type
restrictions into two orthogonal dimensions:
the ideational dimension in terms of the Up-
per Model [1], and the hierarchy of textual
semantic categories based on an analysis of
French and of English. In our work, we ba-
sically follow the approach of Panaget.

Technically speaking, the Text Structure
in PROVERB is a tree recursively composed
of kernel subtrees or composite subtrees:

An atomic kernel subtree has a head at the
root and arguments as children, representing
basically a predicate /argument structure.

Composite subtrees can be divided into two
subtypes: the first has a special matrix child
and zero or more adjunct children and rep-
resents linguistic hypotaxis, the second has
two or more coordinated children and stands
for parataxis.

3 .2 T y p e R e s t r i c t i o n s

Each node is typed both in terms of the
Upper Model and the hierarchy of textual
semantic categories. The Upper Model is
a domain-independent property inheritance
network of concepts that are hierarchically
organized according to how they can be lin-
guistically expressed. Figure 1 shows a frag-
ment of the Upper Model in PRO VERB. For
every domain of application, domain-specific
concepts must be identified and placed as an
extension of the Upper Model.

The hierarchy of textual semantic cate-
gories is also a domain-independent property
inheritance network. The concepts axe or-
ganized in a hierarchy based on their tex-
tual realization. For example, the concept
clause-modifier-rankingl t is realized as an ad-
verb, clause-modifier-rankingll as a preposi-
tional phrase, and clause-modifier-embedded
as an adverbial clause. Fig. 2 shows a frag-
ment of the hierarchy of textual semantic
categories.

3 .3 M a p p i n g A P O s t o U M O s

The mapping from the content to the linguis-
tic resources now happens in a two-staged
way. While Meteer associates the applica-
tion program objects (APOs) directly with
so-called resources trees, we map APOs into
Upper Model objects, which in turn are ex-
panded to the Text Structures. It is worth
noting that there is a practical advantage of
this two-staged process. Instead of having to
construct resource trees for APOs, the user
of our system only needs to define a map-
ping from the APOs to Upper Model objects
(UMOs).

When mapping APOs to UMOs, the mi-
croplanner must choose among available al-
ternatives. For example, the application
program object p a r a that stands for the log-
ical predicate denoting the parallelism rela-
tion between lines may map in five different
Upper Model concepts. In the 0-place case,
p a r a can be mapped into object leading to
the noun "parallelism," or quality, leading
to the adjective "parallel." In the binary
case, the choices are property-ascription that
may be verbalized as "x and y are parallel,"
quality-relation that allows the verbalization
as "x is parallel to y", or process-relation,
that is the formula "x II Y."

The mapping of Upper Model objects into
the Text Structure is defined by so-called
resource trees, i.e. reified instances of text
structure subtrees. The resource trees of an
Upper Model concept are assembled in its
realization class.

~Concepts of the hierarchy of textual semantic
categories are no ted in sans-serif text .

23

c o n c e p t

" m o d i f i e d - c o n c e p t

f - c o n s c i o u s - b e i n g
- o b j e c t ---q . .

t - non-conc ious -Uung

[- r e l a t i o n a l - p r o c e s s e s -
- p r o c e s s

t . m e n t a l - p r o c e s s e s

._~- m o d a l - q u a l i o '

q u a l i t y t . m a t e r i a l - w o r d - q u a l i t y

r " l og i ca l
- a r b i t r a t y - p l a c e - r e l a t i o n - ~

, - s e q u e n c e

- g e n e r a l i z e d - p o s s e s s i o n

- q u a n t i f i c a t i o n s . , .
d i s c r e t e - p l a c e - r e l a t i o n ~ . . r " t a e n t t t y r " p r o p e r t y - a s c r i p t i o n

t n t e n s t v e - - - ' 1 . .
t - ascr ip t ion -1_

c i r c u m s t a n t i a l c l a s s - a s c r i p t i o n

Figure 1: A Fragment of Upper Model in P R O V E R B

- text

- sen tence

- c lause

ca tego ry - vp

-np

m o d i f i e r -

c lause-mod i f ie r

vp -mod i f i e r

np-mod i f ie r

intensi f ier

_• c lause-mod i f i e r - rank ing l

c lause -mod i f i e r - rank ing l l

c l a u s e - m o d i f i e r - e m b e d d e d

Figure 2: A Fragment of the Hierarchy of Textual Semantic Categories in P R O V E R B

4 Arch i tec ture and Control

The main tasks of our microplanner in-
clude aggregation to remove redundancies,
insertion of cue words to increase coher-
ence, and reference choices, as well as lexical
choices. Apart from that, the microplanner
also handles sentence scoping and layout. An
overview of the microplanner's architecture
is provided in Figure 3.

Our microplanner takes as input an or-
dered sequence of PCAs, s tructured in an
attentional hierarchy. The first module,
the derivation reference choice component
(DRCC), suggests which parts of a PCA are
to be verbalized. This is done based on the
hierarchical discourse structure as well as on
the textual distance. PCAs annotated with
these decisions annotated are called preverbal
messages (PMs).

Start ing from a list of PMs as the initial

Text Structure, the microplanner progres-
sively maps application program concepts in
PMs into text s t ructure objects of some tex-
tual semantic type by referring to Upper
Model objects as an intermediate level. The
Text Structure evolves by the expansion of
leaves top-down and left to right. This pro-
cess is controlled by the main module of our
microplanner, the Text Structure Generator
(TSG), which carries out the following algo-
rithm:

• When the current node is an APO with
more than one son, apply ordering and ag-
gregation, in order to produce more con-
cise and more coherent text. The appli-
cation of an aggregating rule before the
expansion of a leaf node may trigger the
insertion of cue words.

• An APO is mapped into an UMO, which
is in turn expanded into a Text Structure
by choosing an appropriate resource tree.

24

Natural Deduction Proof

Macroplanner

. R) k: .

gregation rules.

5 Paraphrasing in PROVERB

With the help of a concrete example we
M~c'r~p]~e[. ~ . illustrate in this section how the Text Struc-

Text Structure
Expansion
Sentence Striping
Lexical Choice
Ordering
Aggregation
Cue Word
Insertion
Layout

F
~ [Realizatioa Closes

] Textual Semantic
I Categories

Text Structure

Transformer)
6

()

Figure 3: Architecture of the Microplanner

• A fully expanded Text Structure will be
traversed again:

- - to choose the appropriate lexical items.

- - to make sentence scoping decisions by
singling out one candidate textual se-
mantic category for each constituent.
This in turn may trigger the execution
of a cue word rule. For instance, the
choice of the category sentence for a
consti tuent may lead to the insertion of
the cue word "furthermore" in the next
sentence.

- - t o determine the layout parameters,
which will be realized later as ~TEX-
commands in the final output text.

A Text Structure constructed in this way
is the ou tpu t of our microplanner, and will
be transformed into the input formalism of
TAG-GEN [10], our linguistic realizer.

In the next two sections, we concentrate
on two major tasks of the Text Structure
generator: to choose compatible paraphrases
of application program concepts, and to im-
prove the textual structure by applying ag-

ture generator chooses among paraphrases
and avoids building inexpressible text struc-
tures via type checking.

E x a m p l e We examine a simple logic for-
mula derive(para(C1,C2),B). Note that B
stands for a conclusion which will not be ex-
amined here. We will also not follow the pro-
cedure in detail.

In the current implementation, the rhetor-
ical relation derive is only connected to one
Upper Model concept derive, a subconcept
of cause.relation. The realization class as-
sociated to the concept, however, contains
several alternative resource trees leading to
different pat terns of verbalization. We only
list two variations below:

• B, since A.
• Because of A, B.

The resource tree of the first alternative is
given in Fig. 4.

The logic predicate pa ra (C1 , C2) can be
mapped to one of the following Upper Model
concepts, where we always include one pos-
sible verbalization:

• quality-relation(para, C1, C2)
(line C1 is parallel to C2)

• process-relation(para, C1, C2)
(C1[[C2)

• property-ascription(para, Cl A C2)
(lines C1 and C2 are parallel)

Textually, the property-ascription version
can be realized in two forms, represented by
the two resource trees in Fig. 5.

Type checking during the construction of
the Text Structure must ensure, that the
realization be compatible along both the
ideational and the textual dimension. In this
example, the combination of the tree in Fig. 4
and the first tree in Fig. 5 is compatible and
will lead to the verbalization:

"B, since C1 and C2 are parallel."

25

(realization-class (derive :reason R :conclusion C)
(resource-tree (composite-tree :content nil

:tsc (sentence clause)
:matrix (leaf :content C

: t s c (clause))
:adjunct (composite-tree :content since

:tsc (clause)
:matrix (leaf :content R

: t s c (c l a u s e)))))

(.further resource trees . . .))

Figure 4: The Realization Class for derive

<lex be>
vp
head

a r g u r a e n t a r g u l n e n t
conj(C,, C~) Pa ra

no no

As a verb phrase

• nil

comproPsite [

matrix adjunct
Para conj(C,, CC~)
no modifier

As a nominal phrase

Figure 5: Textual Variations in form of Re-
source Trees

The second tree in Fig. 5, however, can
only be combined with another realization of
derive, resulting in:

"Because of the parallelism of line C1
and line C2, B."

In our current system we concentrat on
the mechanism and are therefore still exper-
imenting with heuristics which control the
choice of paraphrases. One interesting rule
is to distinguish between general rhetorical
relations and domain specific mathematical
concepts. While the former should be para-
phrased to increase the flexibility, continuity
of the latter helps the user to identify tech-
nical concepts.

6 Semantic Aggregation
Rules

Although the handling of paraphrase gen-
eration already increases the flexibility in
the text, the default verbalization strategy
will still expand the Text Structure by re-
cursively descending the proof and formula
structure, and thereby forced to keep these

structures. To achieve the second verbal-
ization of equation (1) in the introduction,
however, we have to combine Set(F) and
Subset(F, G) to form an embedded structure
Subset(Set(F), G). Clearly, al though still in
the same format, this is no more an Up-
per Model object, since Set(F) is an Upper
Model process, not an object. Actually, this
documents a textual decision that no mat-
ter how Subset and Set should be instanti-
ated, the argument F in Subset(F, G) will be
replaced by Set(F). This textual operation
eliminates one of the duplicates of F . This
section is devoted to various textual reorgan-
isations which eliminate such redundancies.
Following the tradition, we call them aggre-
gation rules.

As it will become clear when handling con-
crete aggregation rules, such rules may nar-
row the realization choices of APOs by im-
posing additional type restrictions. Further-
more, some realization choices block desir-
able textual reorganisation. On account of
this we carry out aggregations before con-
crete resources for the APOs like object and
class-ascription are chosen.

APOs, before they are mapped to UMOs,
can be viewed as variables for UMOs (for
convenience, we continue to refer to them as
APOs). In this sense, our rules work with
such variables at the semantic level of the
Upper Model, and therefore differ from those
more syntactic rules reported in the litera-
ture. For a comparison see Sec. 6.4.

So far, we have investigated three types of
aggregation which will be addressed in the
next two subsections. A categorization of the
aggregation rules is given in Fig. 6.

26

Grouping (5)

Logical Predicates (1)

Aggregation(l 1)

Embedding (2)

PMs (2) Logical Connectives (2)

Figure 6: Aggregation Rules in PROVERB

Pattern (4)

Chaining (3) Others (1)

6.1 S e m a n t i c G r o u p i n g

We use semantic grouping to characterize the
merge of two parallel Text Structure objects
with the same top-concept by grouping their
arguments. Two APOs are parallel in the
sense that they have the same parent node.
The general form of this type of rules can be
characterized by the pat tern as given below:

R u l e P a t t e r n A

P[a] + P[b]
P[aCb]

The syntax of our rules means that a text
s tructure of the form above the bar will be
transformed into one of the form below the
bar. Viewing Text Structure as a tree, P[a]
and P[b] are both sons of +, they are merged
together by grouping the arguments a and b
under another operator ~ . In the first rule
below, + and ~ are identical.

R u l e A.1 (P r e d i c a t e Group ing)

P[a] + P[b]
P[a + b]

where + can be either a logical A or a logical
V, and P stands for a logical predicate. The
following example illustrates the effect of this
rule.

Set(F) A Set(G)

"F is a set. G is a set."

are aggregated to:
Set(F A G)

"F and G are sets."
The rule covers the predicate grouping rule

reported in [3]. This is also the best place
to explain why we apply aggregation before

choosing concrete linguistic resources. If the
two occurrences of Set are instantiated dif-
ferently, this rule will be blocked.

Now let us examine another semantic
grouping rule, where + and ~ are no longer
identical.

Rule A.2 (I m p l i c a t i o n w i t h ident ica l
c o n c l u s i o n)

c) A (P2 c)
(& v P2) c

Here +, ~ , and P are instantiated to A,
V, and ~ , respectively. By instantiating +,
E[~ and P in pat tern A to different logical
connectives and derivation relations, we have
alltogether five rules in this category. The
correctness of the rules in this category with
respect to the information conveyed is guar-
anteed by the semantics of the Upper Model
concerned. In the case of rule A.2 for in-
stance, (PiVP2) ~ C is a logical consequence
of (P1 ~ C) A (P2 ~ C).

6.2 S e m a n t i c E m b e d d i n g

The next category of aggregation rules han-
dles parallel structures which are not identi-
cal. In this case, some of them may be con-
verted to embedded structures, as is done by
the following rule.

Rule B.1 (O b j e c t E m b e d d i n g)

P[T] A Q[T]
Q[P[T]]

where

• concepts(f,T) M concepts(P) # 0

27

• f is the innermost application program
concept.governing T in Q[T],

• concepts(f, T) denotes the Upper Model
concepts the argument T of f may take,

• concepts(P) denotes the Upper Model
concept P may result in.

We require also that PIT] is realized as an
object T with modifiers. It is this intuitive
explanation which guarantees the correctness
of this rule with respect to meaning.

The following example illustrates this rule,
in particular, how the decision made here
narrows the choices of linguistic resources for
both P and T as an argument of Q. We begin
with the two APOs in a conjunction below,
containing a common APO F.

Set(F) A Subset(F, G)

"F is a set. F is a subset of G."

Since F is directly governed by Subset,
f and Q in our rule above coincide here.
concepts(Subset, F) = {object), while
concepts(Set) = (class-ascription, object).
Therefore, their intersection is {object).
This not only guarantees the expressibility
of the new APO, but also restricts the choice
of linguistic resources for Set, now restricted
to object. The result as well as its verbaliza-
tion is given below:

Subset(Set(F), G)

"The set F is a subset of G."

Actually, for mathematical texts we have
only used two embedding rules, with the
other being the dual of rule B.1 where P and
Q change their places.

6 .3 P a t t e r n - b a s e d
r u l e s

O p t i m i z a t i o n

Rules in the third category involve more
complex changes of the textual structure in
a way which is neither a grouping nor an em-
bedding. They could be understood as some
domain-specific communicative conventions,
and must be explored in every domain of ap-
plication. In PRO VERB, currently four such
rules are integrated. Three of them build a

sequence of some transitive relations into a
chain.

Rule C. 1 below addresses the problem that
every step of derivation is mapped to a sepa-
rate sentence in the default verbalization. It
reflects the familiar phenomenon that when
several derivation steps form a chain, they
are verbalized in a more connected way. To
accommodate the phenomenon of a chain, we
have also added a slot called next in the do-
main model concept derive-chain. Now sup-
pose that we have two consecutive deriva-
tions with R1,M1,C1 and R2, M2, C2 as its
premises (called reasons), the rule of infer-
ence (called method), and the conclusion.
They form part of a chain if the conclusion
C1 is used as a premise in the second step,
namely C1 E R2. In this case, the following
rule combines them into a chain by putt ing
the second derivation into the next slot of the
chain. At the same time, C1 is removed from
R2 since it is redundant.

R u l e C.1 D e r i v a t i o n C h a i n 2

derive(R1, M1, C1), derive(R2, IVI2, C2)
derive-chain(R1, M1, C1, derive(R2 \ C1, M2, C2,))

The following example illustrates how this
rule works. We will only give the verbaliza-
tion and omit the Text Structure. Given a
sequence of two derivation steps which can
be verbalized as:

"0 C_ o'*, by the definition of transitive
closure." and
"Since (x, y) E a and o C o*, (x, y) E c*
by the definition of subset."

Rule C.1 will produce a chain which will be
verbalized as

"a C 0" by the definition of transitive
closure, thus establishing (x, y) E 0" by
the definition of subset, since (x,y) E
0."

Note that the rule above is only a simpli-
fication of a recursive definition, since chain-
ing is not restricted to two derivation steps.

2This is a simplified version of the original rule
defined recursively in [4]

28

Readers are referred to [4]. Although this
rule inserts the second derive into another
Text Structure, the resulting structure is now
a chain, no longer a plain derive. Therefore
it distinguishes clearly f;om the rules in Sec-
tion 6.2.

There are two more chaining rules for
the logical connectors implication and equiv-
alence. A further rule removes redundancies
in some case analyses (see [4]).

6.4 D i s c u s s i o n

While many systems have some. aggregation
rules implemented [9, 2], there are compar-
atively few detailed discussions in the liter-
ature. The most s t ructured categorization
we found is the work of Dalianis and Hovy
[3], where they define aggregation as a way
of avoiding redundancy. Some of their rules,
nevertheless, make decisions which we would
call reference choice. Since this is treated in
another module, we define our aggregation at
the semantic level. The following are several
significant features of our aggregation rules.

The first difference is that our aggregation
rules are defined in terms of manipulations
of the Upper Model. They remove redun-
dancies by combining the linguistic resources
of two adjacent APOs, which contain redun-
dant content. They cover the more syntactic
rules reported in the literature at a more ab-
stract level.

Second, Text Structure provides us
stronger means to specify textual operations.
While rules reported in the literature typ-
ically aggregate clauses, our rules operate
both above and beneath the level of clause
constituents.

Third, while most investigations have con-
centrated on general purpose microplanning
operations, we came to the conclusion that
microplanning needs domain-specific rules
and patterns as well.

7 A Running Example

The following example illustrates the mecha-
nism of aggregation and its effect on resulting

text. We start with the following sequence of
PMs:

assume(Set(F))
assume(Set(G))
assume(Subset(F, G))
assume(element(a, F))
assume(element(b, F))
derive((element(a, F) A Subset(F, G)),

e, element(a, G))
derive((element(b, F) A Subset(F, G)),

e, element(b, G))

Without aggregation, the system produces:

"Let F be a set. Let G be a set. Let F C G.
Let a E F. Let b E F. Since a E F and
F C G, a E G. Since b E F and F C G,
b E G."

Aggregation of the assume-PMs results in:

assume(Set(F) A Set(G) A Subset(F, G)
i element(a, F) i element(b, F))

whereas the application of the grouping rule
for independent derive-PMs provides:

derive((element(a, F) A element(b, F)
A Subset(F, G)), e,
(element(a, G) A element(b, G)))

After that, the predicate grouping rule A.1
is applied to the arguments of assume, which
are grouped to:

(Set(F A G) A Subset(F, G)
A element(a A B, F A F)))

Note that F A F is later reduced to F.
Predicate grouping applies to the arguments
of derive in a similar way. Finally, the system
produces the following output:

"Let F and G be sets, F C G, and a, b E F.
Then a, b E G."

8 Conclusion

We argued in this paper that sophisti-
cated microplanning techniques are required
even for mathematical proofs, in contrast
to the belief that mathematical texts are
only schematic and mechanical. We demon-
strated why paraphrasing and aggregation
will significantly enhance the flexibility and
the coherence of text produced. In order to

29

carry out appropriate textual rearrangement
we need a representation formalism which al-
lows flexible but principled manipulation of
linguistic resources. To this end, we basi-
cally adopted the Text Structure of Meteer,
but split her semantic categories into two di-
mensions following Panaget. The type check-
ing mechanism of Text Structure allows us to
achieve paraphrasing by building comparable
combinations of linguistic resources. Speci-
fied in terms of Upper Model concepts, our
semantic aggregation rules are more abstract
than similar rules reported in the literature.

One important feature of our work is the
integration of microplanning knowledge spe-
cific to our domain of application. This
body of knowledge must be refined to further
improve the quality of the text produced.
More experience is also required to formulate
strategies to choose among alternatives.

R e f e r e n c e s

[1] John Bateman, Bob Kasper, Johanna
Moore, and Richard Whitney. The pen-
man upper model. Technical Report ISI
research report, USC/Information Sci-
ence institute, 1990.

[2] Robert Dale. Generating Referring Ex-
pressions. ACL-MIT PressSeries in Nat-
ural Language Processing. MIT Press,
1992.

[3]

[4]

Hercules Dalianis and Eduard Hovy.
Aggregation in natural language gener-
ation. In Proc. 4th European Workshop
on Natural Language Generation, 1993.

Armin Fiedler. Mikroplanungstechniken
zur PrEsentation mathematischer Be-
weise. Master's thesis, Fachbereich In-
formatik, Universit£t des Saartandes,
1996.

[5]

[6]

M.A.K. Halliday. Introduction to func-
tional grammar. Edward Arnold, 1985.

Xiaorong Huang. Planning argumenta-
tive texts. In Proc. of 15th International

Conference on Computational Linguis-
tics, 1994.

[7] Xiaorong Huang. PROVERB: A sys-
tem explaining machine-found proofs.
In Proc. of 16th Annual Conference of
the Cognitive Science Society, 1994.

[8] Xiaorong Huang. Human Oriented
Proof Presentation: A Reconstructive
Approach. Infix, 1996.

[9] Gerard Kempen. Conjunction reduc-
tion and gapping in clause-level coordi-
nation: an inheritance-based approach.
Computational Intelligence, 7(4):357-
360, 1991.

[10] Anne Kilger and Wolfgang Finkler. In-
cremental generation for real-time ap-
plications. Research Report RR-95-11,
DFKI, Saarbriicken, 1995.

[11] Marie W. Meteer. Bridging the genera-
tion gap between text planning linguis-
tic realization. Computational Intelli-
gence, 7(4), 1991.

[12] Marie W. Meteer. Expressibility and the
Problem of Efficient Text Planning. Pin-
ter Publishes, London, 1992.

[13] Johanna Doris Moore and CEcile L.
Paris. Planning text for advisory dia-
logues. In Proc. 27th Annual Meeting of
the Association for Computational Lin-
guistics, 1989.

[14] FFranck Panaget. Using a textual repre-
sentational level component in the con-
text of discourse or dialogue generation.
In Proc. of 7th International Workshop
on Natural Language Generation, 1994.

[15] Penelope Sibun. The local organiza-
tion of text. In Proe. of the fifth in-
ternational natural language generation
workshop, 1990.

[16] Ingrid Zukerman. Using meta-com-
ments to generate fluent text in a techni-
cal domain. Computational Intelligence,
7:276-295, 1991.

30

