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A b s t r a c t  

Building text planning resources by hand is time- 
consuming and difficult. Certainly, a number 
of  planning architectures and their accompanying 
plan libraries have been implemented, but while 
the architectures themselves may be reused in a 
new domain, the library of plans typically cannot. 
One way to address this problem is to use ma- 
chine learning techniques to automate the deriva- 
tion of planning resources for new domains. In 
this paper, we apply this technique to build micro- 
planning rules for preventative expressions in in- 
structional text. 

1 I n t r o d u c t i o n  

Building text planning resources by hand is time- 
consuming and difficult. Certainly, much work 
has been done in this regard; there are a num- 
ber of freely available text planning architectures 
(e.g., Moore and Paris, 1993). It is frequently 
the case, however, that while the architecture it- 
self can be reused in a new domain, the library 
of text plans developed for it cannot. In particu- 
lar, micro-planning rules, those rules that specify 
the low-level grammatical details of expression, 
are highly sensitive to variations between sub- 
languages, and are therefore difficult to reuse. 

When faced with a new domain in which to 
generate text, the typical scenario is to perform a 
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corpus analysis on a representative collection of 
the text produced by human authors in that do- 
main and to induce a set of  micro-planning rules 
guiding the generation process in accordance with 
the results. Some fairly simple rules usually jump 
out of  the analysis quickly, mostly based on the 
analyst's intuitions. For example, in written in- 
structions, user actions are typically expressed as 
imperatives. Such observations, however, tend to 
be gross characterisations. More accurate micro- 
planning requires painstaking analysis. In this 
paper, for example, the micro-planner must distin- 
guish between phrasing such as "Don't do action- 
,V' and "Take care not to do action-X". Without 
analysis, it is far from clear how this decision can 
best be made. 

Some form of automation would clearly be 
desirable. Unfortunately, corpus analysis tech- 
niques are not yet capable of automating the ini- 
tial phases of  the corpus study (nor will they be 
for the foreseeable future). There are, however, 
techniques for rule induction which are useful for 
the later stages of corpus analysis and for imple- 
mentation. 

In this paper, we focus on the use of such rule 
induction techniques in the context of the micro- 
planning of preventative expressions in instruc- 
tional text. We define what we mean by a pre- 
ventative expression, and go on to describe a cor- 
pus analysis in which we derive three features 
that predict the grammatical form of such expres- 
sions. We then use the C4.5 learning algorithm 
to construct a micro-planning sub-network appro- 
priate for these expressions. We conclude with 
an implemented example in which the technical 
author is allowed to set the relevant features, and 
the system generates the appropriate expressions 
in English and in French. 
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2 Preventative Expressions 

Preventative expressions are used to warn the 
reader not to perform certain inappropriate or po- 
tentially dangerous actions. The reader may be 
told, for example, "Do not enter" or "Take care 
not to push too hard". Both of these examples 
involve negation ("do not" and "take care not"). 

Although this is not strictly necessary for preven- 
tative expressions (e.g., one might say "stay out" 
rather than "do not enter"), we will focus on the 
use of  negative forms in this paper, using the fol- 
lowing categorisation: l 

• negative imperatives proper (termed DONT 

imperatives) - -  These are characterised by 
the negative auxiliary do not or don 7, as in: 

(1) Your sheet vinyl floor may be vinyl 
asbestos, which is no longer on the 
market. Don ~ sand it or tear it up 

because this will put dangerous 
asbestos fibers into the air. 

• NEVER imperatives - - T h e s e  are charac- 
terised by the use of  the negative adverb 
never, as in: 

(2) Whatever you do, never go to Vienna 

i f  you are on a diet. 

• other negative imperatives (termed neg-TC 
imperatives) - -  These include take care and 
be careful followed by a negative infinitival 
complement, as in the following examples: 

(3) To book the strip, fold the bottom third 
or more of  the strip over the middle of 
the panel, pasted sides together, taking 

care not to crease the wallpaper 

sharply at the fold. 

(4) If your plans call for replacing the 
wood base molding with vinyl cove 
molding, be careful not to damage the 

walls as you remove the wood base. 

3 Corpus Analysis 

In terms of  text generation, our interest is in find- 
ing mappings from features related to the function 

I Hom (1989) gives a more complete categofisation of 
negative forms. 

of these expressions, to those related to their gram- 
maticalform. Functional features include the se- 
mantic features of  the message being expressed, 
the pragmatic features of  the context of  commu- 
nication, and the features of  the surrounding text 
being generated. In this section we will briefly 
discuss the nature of our corpus, and the fimction 
and form features that we have coded. We will 
conclude with a discussion of  the inter-coder reli- 
ability. A more detailed discussion of  this portion 
of the work is given elsewhere (Vander Linden 
and Di Eugenio, 1996). 

3.1 Corpus 

The corpus from which we take all our coded 
examples has been collected opportunistically off 
the intemet and from other sources. It is 4.5 MB 
in size and is made entirely of  written English 
instructional texts. As a collection, these texts 
are the result of  a variety of  authors working in a 
variety of contexts. 

We broke the corpus texts into expressions us- 
ing a simple sentence breaking algorithm and then 
collected the negative imperatives by probing for 
expressions that contain the grammatical forms 
we were interested in (i.e., expressions contain- 
ing phrases such as don 7, never, and take care). 

The grammatical forms we found, 1283 occur- 
rences in all, constitute 2.7% of the expressions in 
the filll corpus. The first line in Table 1, marked 
"Raw Grep", indicates the quantity of  each type. 

We then filtered the results. When the probe re- 
turned more than 100 examples for a grammatical 
form, we randomly selected around 100 of those 
returned, as shown in line 2 of  Table 1 (labelled 
"Raw Sample"). We then removed those exam- 
ples that, although they contained the desired lex- 
ical string, did not constitute negative imperatives 
(e.g., "If you don ~ like the colors of  the file . . . .  , 
use Binder to change them."), as shown in line 3, 
labelled "Final Coding". 

The final corpus sample is made up of 279 ex- 
amples, all of  which have been coded for the fea- 
tures to be discussed in the next two sections. 
Table 2 also shows the relative sizes of  the var- 
ious types of  instructions in the corpus as well 
as the number of  examples from this sample that 
came from each type. 
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Raw Grep 
Raw Sample 
Final Coding 

DONT NEVER 
~ n ~  ~ not 

417 385 
100 99 
78 89 

167 

108 
108 
40 
40 

take care 

21 
21 
17 

Neg-TC 
; take sure 

229 
104 

be careful 

52 
52 
46 

72 

be sure 

71 
71, 
6 

Table 1: Distribution of negative imperatives 

Instruction type Corpus size # of  preventatives 

Recipes 
Do-it-yourself 
Di Eugenio's thesis 2 
Software instructions 
Administrative forms 
Other 

Totals 

1.7M 
1.26M 
336K 
264K 
317K 
565K 

4.5M 

83 
99 
69 
0 
9 
19 

279 

Table 2: Distribution of examples from sample 

3.2 Form 

Because of its syntactic nature, the form feature 
coding was very robust. The possible feature val- 
ues were: DONT - -  for the do not and don 

forms discussed above; NEVER, for imperatives 
containing never; and neg-TC - -  for take care, 

make sure, be careful, and be sure expressions 
with negative arguments. The two authors agreed 
on their coding of  this feature in all cases. 

3.3 Function Features 

We will now briefly discuss three of  the func- 
tion features we have coded: IINTENTIONALITY, 

AWARENESS, and SAFETY. W e  illustrate them in 
turn using a to refer to the prevented action and 
using "agent" to refer to the reader and executer 
of the instructions. 

Intentionality: This feature encodes whether or 
not the writer believes that the agent will con- 
sciously adopt the intention of  performing a: 

CON is used to code situations where the agent 
intends to perform a. In this case, the agent 

2Note that we used a number of  examples from Di Eu- 
genio's thesis (1993) which were included as excerpts. In 
this table we include only an estimate of  the full size of that 
portion of the corpus. 

must be aware that a is one of his or her 
possible alternatives. 

UNC is used to code situations in which the agent 
doesn't realize that there is a choice involved 
(cf. Di Eugenio, 1993). It is used in two 
situations: when a is totally accidental, or 
the agent may not take into account a crucial 
feature of  a. 

Awareness: This feature captures whether or 
not the writer believes that the agent is aware that 
the consequences of  ~ are bad: 

AW is used when the agent is aware that a is 
bad. For example, the agent may be told 
"Be careful not to burn the garlic" when he 
or she is perfectly well aware that burning 
things when cooking them is bad. 

UNAW is used when the agent is perceived to be 
unaware that a is bad. 

Safety: This feature captures whether or not the 
author believes that the agent's safety is put at risk 
by performing a: 

BADP is used when the agent's safety is put at 
risk by performing a. 

NOT is used when it is not unsafe to perform c~, 
but may, rather, be simply inconvenient. 
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3.4 In t e r - code r  r e l i a b i l i t y  

Each author independently coded each of  the fea- 
tures for all the examples in the sample. The 
percentage agreement for each of the features is 
shown in the following table: 

feature percent agreement 
form 100% 
intentionality 74.9% 
awareness 93.5% 
safety 90.7% 

As advocated by Carletta (1996), we have used 
the Kappa coefficient (Siegel and Castellan, 1988) 
as a measure of  coder agreement. For nominal 
data, this statistic not only measures agreement, 
but also factors out chance agreement. 

If P(A) is the proportion of times the coders 
agree, and P(E) is the proportion of times that 
coders are expected to agree by chance, K is com- 
puted as follows: 

P(A) - P(E) 
K =  

1 - P ( E )  

There are various ways of computing P(E) 
according to Siegel and Castellan (1988); most 
researchers agree on the following formula, which 
we also adopted: 

m 

P i e )  = 

j=l  

where m is the number of  categories, andpj is the 
proportion of  objects assigned to category j .  

The mere fact that K may have a value k greater 
than zero is not sufficient to draw any conclusion, 
however, as it must be established whether k is 
significantly different from zero. There are sug- 
gestions in the literature that allow us to draw 
general conclusions without these further com- 
putations. For example, Rietveld and van Hout 
(1993) suggest the correlation between K values 
and inter-coder reliability shown in the following 
table: 

Kappa Value 
.00 - .20 
.21 - .40 
.41 - .60 
.61 - .80 
.81 - 1.00 

Reliability Level 
slight 
fair 
moderate 
substantial 
almost perfect 

For the form feature, the Kappa value is 1.0, indi- 
cating perfect agreement. The function features, 
which are more subjective in nature, engender 
more disagreement among coders, as shown by 
the K values in the following table: 

feature K 
INTENTIONALITY 0.46 
AWARENESS 0.76 

SAFETY 0.71 

According to this table, therefore, the AWARE- 
NESS and SAFETY features show "substantial" 
agreement and the INTENTIONALITY feature shows 
"moderate" agreement. We have coded other 
functional features as well, but they have either 
not proven as reliable as these, or are not as useful 
in text planning. 

In addition, Siegel and Castellan (1988) point 
out that it is possible to check the significance of  K 
when the number of  objects is large; this involves 
computing the distribution of  K itself. Under this 
approach, the three values above are significant at 
the .000005 level. 

4 Automated Learning 

The corpus analysis results in a set of  examples 
coded with the values of the function and form 
features. This data can be used to find correla- 
tions between the two types of  features, correla- 
tions, which, in text generation, are typically im- 
plemented as decision trees or rule sets mapping 
from function features to forms. 

In this study, we used 179 coded examples as 
input to the learning algorithm. These are the 
examples on which the two authors agreed on their 
coding of all the features. The distribution of  the 
grammatical forms in these examples is shown in 
the following table: 

form frequency 
DONT 100 
Neg-TC 57 
NEVER 22 

The learning algorithm used these examples to 
derive a decision tree which we then integrated 
into an existing micro-planner. 
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4.1 Data Mining 

We have used Quinlan's C4.5 learning algorithm 
(1993) in this study; this algorithm can induce ei- 
ther decision trees or rules. To provide a more 
convenient learning environment, we have used 
Clementine (1995), a tool which allows rapid re- 
configuration of  various data manipulation facil- 
ities, including C4.5. Figure I shows the basic 
control stream we used for learning and testing de- 
cision trees. Data is input from the split-output 
file node on the left of  the figure and is passed 
through filtering modules until it reaches the out- 
put modules on the right. The two select mod- 
ules (pointed to by the main input node) select 
the examples reserved for the training set and the 
testing set respectively. The upper stream pro- 
cesses the training set and contains a type mod- 
ule which marks the main syntactic form (i.e., 
DONT, NEVER, or Neg-TC) as the variable to 
be predicted and the AWARENESS, SAFETY, and 
INTENTIONALITY features as the inputs. Its out- 
put is passed to the C4.5 node, labelled reform, 
which produces the decision tree. We then use 
two copies of the resulting decision tree, repre- 
sented by the diamond shaped nodes marked with 
mform, to test the accuracy of the testing and the 
training sets. 

One run of the system, for example, gave the 
following decision tree: 

awareness = AW: NEG-TC 

awareness = UNAW: 

] intention = CON: DONT 

] intention = UNC: 

] [ safety = BADP: NEVER 

] 1 safety = NOT: DONT 

This tree takes the three function features and pre- 
dicts the DONT, NEVER, and Neg-TC forms. It 
confirms our intuitions that n e v e r  imperatives are 
used when personal safety may be endangered 
(coded as safety="BADP"), and that Neg-TC 
forms are used when the reader is expected to 
be aware of the danger that may arise (cf. Vander 
Linden and Di Eugenio, 1996). It accurately pre- 
dicts the grammatical form of 74.5% of the 161 
training examples, and 83.3% of the 18 testing 
examples. 

Because there are relatively few training exam- 
ples in our coded corpus, we have also performed 

a 10-way cross-validation test. 3 None of the de- 
rived trees in this test were -emarkably different 
from the one just shown, although they did or- 
der the INTENTIONALITY and AWARENESS features 
differently. The average accuracy of the learned 
decision trees on the testing sets was 75.4%. 

Note that although this level of  accuracy is bet- 
ter than 55.9%, the score achieved by simply se- 
lecting DONT in all cases, there is still more work 
to be done. The current features must be refined, 
and more features may be need to be added. We 
are currently experimenting with a number of pos- 
sibilities. Note also that we have not distinguished 
between the various sub-forms of DONT and Neg- 
TC shown in Table l; this will require yet more 
features. 

Clementine can also "balance" the input to 
C4.5 by duplicating training examples with under- 
represented feature values. We used this to in- 
crease the number of NEVER and Neg-TC exam- 
ples to match the number of DONT examples. Ul- 
timately, this reduced the accuracy of the learned 
trees to 68.0% in a cross-validation test. The 
resulting decision trees tended not to include all 
three features. 

4.2 Integration 

Because it is common for us to rebuild decision 
trees frequently during analysis, we implemented 
a routine which automatically converts the deci- 
sion tree into the appropriate KPML-style sys- 
tem networks with their associated choosers, in- 
quiries, and inquiry implementations (Bateman, 
1995). This makes the network compatible with 
the DRAFTER micro-planner, a descendent of IM- 
AGENE (Vander Linden and Martin, 1995). The 
conversion routine takes the following inputs: 

• the applicable language(s) - -C4 .5  produces 
its decision trees based on examples from a 
particular language, and KPML is capable 
of being conditionalised for particular lan- 
guages. Thus, we may perform separate cor- 
pus analyses of a particular phenomenon for 
various languages, and learn separate micro- 
planning trees; 

3A cross-validation test is a test where C4.5 breaks the 
data into different combinations of training and testing sets, 
builds and tests decision trees for each, and averages the 
results (Clementine, 1995). 
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0 split-output~ 

@ 
s e l e c t  type 

# 
afore  

0 , #  ,Ira 
select afore analysis 

,m 
analysis 

Figure 1: The Clementine learning environment 

. the input feature(s) - -  The sub-network be- 
ing built must fit into the overall categorisa- 
tions of the full micro-planner, and thus we 
must specify the text functions that would 
trigger entry to the new sub-network; 

• the decision tree itself; 

• a feature-value function - -  To traverse the 
new sub-network, the KPML inquiries re- 
quire a function that can determine the value 
of the features for each pass through the net- 
work; 

• grammatical form specif icat ions-  The sub- 
network must eventually build sentence plan 
language (SPL) commands for input to 
KPML, and thus must be told the appropri- 
ate SPL terms to use to specify the required 
grammatical forms; 

• an output file name. 

For our example, the system sub-network shown 
in Figure 2 is produced based on the decision tree 
shown above. 4 It is important to note here that al- 
though the micro-planner is implemented as a sys- 
temic resource, the machine learning algorithm is 
no respecter of systemic linguistic theory. It sim- 
ply builds decision trees. This gives rise to three 
distinctly non-systemic features of these learned 
networks: 

~Only the systems are shown in the KPML dump given 
in Figure 2. The realisation statements, choosers, ii,quiries, 
and inquiry implementations are not shown. 

1. The realisation statements are included only 
at the leaf nodes of the network. We have 
built no intelligent facility for decomposing 
the realisation statements and filtering com- 
mon realisations up the tree. 

2. The learning algorithm will freely reuse sys- 
tems (i.e., features) as various points in the 
tree. This did not happen in Figure 2, but 
occasionally one of the features is indepen- 
dently used in different sub-trees of the net- 
work. We are forced, therefore, to index the 
system and feature names with integers to 
disambiguate. 

3. There is no meta-functional distinction in the 
network, but rather, all the features, regard- 
less of their semantic type, are included in 
the same tree. 

The sub-network derived in this section was 
spliced into the existing micro-planning net- 
work for the full generation system. As men- 
tioned above, this integration was done by man- 
ually specifying the desired input conditions for 
the sub-network when the micro-planning rules 
are built. For the preventative expression sub- 
network, this turned out to be a relatively simple 
matter. DRAFTER'S model of procedural relations 
includes a warning relation which may be attached 
by the author where appropriate. The micro- 
planner, therefore, is able to identify those por- 
tions of the procedure which are to be expressed 
as warnings, and to enter the derived sub-network 
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Figure 2: The micro-planner system network derived from the decision tree 

appropriately. This same process could be done 
with any of the other procedural relations (e.g., 
purpose, precondition). This assumes, however, 
the existence of a core set of  micro-plans which 
perform the procedural categorisation properly; 
these were built by hand. We have only just be- 
gun to experiment with the possibility of building 
the entire network automatically from a more ex- 
haustive corpus analysis. 

5 A DRAFTER Example 

Given the corpus analysis and the learned sys- 
tem networks discussed above, we will present an 
example of  how preventative expressions can be 
delivered in DRAFTER, an implemented text gen- 
eration application. DRAFTER is a instructional 
text authoring tool that allows technical authors 
to specify a procedural structure, and then uses 
that structure as input to a multilingual text gen- 
eration facility (Paris and Vander Linden, 1996). 
The instructions are generated in English and in 
French. 

To date, our domain of application has been 
manuals for software user interfaces, but because 
this domain does not commonly contain preventa- 
tive expressions (see Table 2), we have extended 
DRAFTER's domain model to include coverage for 
do-it-yourself applications. Although this switch 
has entailed some additions to the domain model, 
DRAFTER's input and generation facilities remain 
as they were. 

5.1 Input Specification 

In DRAFTER, technical authors specify the content 
of  instructions in a language independent manner 
using the DRAFTER specification tool. This tool al- 
lows the authors to specify both the propositional 
representations of the actions to be included, and 
the procedural relationships between those propo- 
sitions. Figure 3 shows the DRAFTER interface af- 
ter this has been done. We will use the procedure 

shown there as an example in this section, details 
off how to build it can be found elsewhere (Paris 
and Vander Linden, 1996). 

The INTERFACE and ACTIONS panes on the 
left of  figure 3 list all the objects and actions de- 
fined so far. These are all shown in terms of a 
pseudo-text which gives an indication, albeit un- 
grammatical, of the nature of the action. For ex- 
ample, the main goal, "repair device", represents 
the action of the reader repairing an arbitrary de- 
vice. This node may be expressed in any number 
of different grammatical forms depending upon 
context. 

The WORKSPACE pane shows the procedure, 
represented in an outline format. The main user 
goal of  repairing the device is represented by the 
largest, enclosing box. Within this box, there is 
a single method, called "Repair Method" which 
details how the repair should be done. There are 
three sub-actions: consulting the manual, unplug- 
ging the device, and removing the cover. There is 
also a waming slot filled with the action "[reader] 
damage service cover". This indicates that the 
reader should avoid damaging the service cover. 5 

Neither the propositional nor the procedural in- 
formation discussed so far specify the three fea- 
tures needed by the decision network derived in 
the previous section (i.e., intentionality, aware- 
ness, and safety). At this point, we see no straight- 
forward way in which they could be determined 
automatically (see Ansari's discussion of this is- 
sue (1995)). We, therefore, rely on the author to 
set them manually. DR.AFTER allows authors to set 
generation parameters on individual actions using 
a dialog box mechanism. Figure 4 shows a case 
in which the author has marked the following four 
features for the warning action "damage service 
cover": 

5Actually, this could also be interpreted as an ensurative 
warning, meaning that the reader should make sure to damage 
the service cover (although this is clearly nonsensical in this 
case). We have not yet analysed such expressions and thus 
do not support them in DRAFTER. 
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INTERFACE 
Test Device Prooram 

"4 i.*" 

ACTIONS 
Repair Device 

Consul t Repair Manuz 

WORKSPACE 

I 
Sub-steps .V_ con,,~,zffrepa~- manu# ~ unp/ug dev/ce .V_ remove serv/ce cover ~ 

Unplug Device I i'" " 

Damage Service Cover 
Start Test Device Progrz 
Quit Test Device Progra 

I..4 I . -  

Plan -a [ 

Repair Method 

FOCUS 
Repair Meth'od 

Precond~on 

Slde-egect 

Cancellation 

Warning damage.,~rvlce cover 

Sub-steps ~ consuff repair manual ~ Ol~ug device ~ remove 

Figure 3: DRAFTER screen with the procedural structure for the example 

• The action is to be prevented, rather than 
ensured; 

• Performing the action would result in incon- 
venience, but not in personal danger; 

• The user is likely to do the action acciden- 
tally, rather than consciously; 

• The user is likely to be aware that performing 
the action would create problems; 

5.2 Text Generation 

Once the input procedure is specified, the author 
may initiate text generation from any node in the 
procedural hierarchy. When the technical author 
generates from the root goal node in Figure 3, for 
example, the following texts are produced: 

English." 

To r epa i r  the  device 
1. Consult the repair manual. 
2. Unplug the device. 
3. Remove the service cover. 
Take care not to damage the service 
cover. 

French." 

R~paration du dispositif 
1. Se reporter au manuel de r6paration. 
2. D6brancher le dispositif. 
3. Enlever le couvercle de service. 
Eviter d'endornmager le couvercle de 
service. 
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What type 
o, warn,n u `  ' -  is this? ~ prevent the action .~ ensure the action 

What are the consequences of ignonng it? 

Is the user likely to do it on purpose? 

Is the user likely to be aware of this problem? 

inconvenience ~ serious danger 

on purpose ~ by accident 

v unaware ~ aware 1 

Figure 4: The DRAFTER dialog box for setting the local parameters 

Note that the French version employs Oviter 
(avoid) rather than the less common prendre soin 
de ne pas (take care not). This is possible be- 
cause the French text is produced by a separate 
micro-planning sub-network. This sub-network 
was not based on a corpus study of French pre- 
ventatives, but rather was implemented by taking 
the leamed English decision tree, modifying it in 
accordance with the intuitions of a French speaker, 
and automatically constructing French systems 
from that modified decision tree. Clearly, a cor- 
pus study French of preventatives is still needed, 
but this does show DRAFTER'S ability to make use 
of KPML's language conditionalised resources. 

Were we to replace the warning with other sorts 
of  warnings, the expression would also change ac- 
cording to the learned micro-planning network. If 
authors, for example, wish to prevent the reader 
from performing the action of dismantling the 
frame of the device, and they decide that the 
reader is unaware of this danger, that the action is 
consciously performed and not unsafe, DRAFTER 
produces the following text: 

Do not dismantle the frame. 
Ne pas d6monter l'armature. 

If authors wish to prevent the reader from dis- 
connecting the ground connection, and they de- 
cide that the reader is unaware of this danger, that 
the action would be unconsciously performed, and 
that the consequences are indeed life-threatening, 
DRAFTER produces the following text: 

Never disconnect the ground. 
Ne jamais deconnecter la borne de terre. 

6 Conclusion 

In this paper we have discussed the use of ma- 
chine learning techniques for the automatic con- 
struction of micro-planning sub-networks. We 
demonstrated this for the case of preventative ex- 
pressions in instructional text. 

We noted that because the automatic deriva- 
tion of useful, well-defined features for corpus 
analysis is beyond the current state of the art, 
the painstaking process of corpus analysis must 
still be performed manually. As an example of 
how this can be done, we presented an analysis of 
English preventative expressions. We intend to 
continue this part of  the work by addressing more 
preventative forms, addressing ensurative forms, 
and by extending the analysis to other languages. 

Although the analysis cannot be fully auto- 
mated, we noted that the derivation of decision 
networks from coded corpus examples can. This 
greatly simplifies the tasks of building and testing 
text planning resources for new domains. We in- 
tend to continue this part of  the work by applying 
the technique to larger portions of the planning 
resources. 
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