
Learning Micro-Planning Rules for Preventative Expressions*

Keith Vander Linden t
Information Technology Research Institute

University o f Brighton
Brighton BN2 4AT, UK

email: knvl@itri.brighton.ac.uk

Barbara Di Eugenio
Computational Linguistics

Carnegie Mellon University
Pittsburgh, PA, 15213 USA

email: dieugeni@andrew.cmu.edu

A b s t r a c t

Building text planning resources by hand is time-
consuming and difficult. Certainly, a number
of planning architectures and their accompanying
plan libraries have been implemented, but while
the architectures themselves may be reused in a
new domain, the library of plans typically cannot.
One way to address this problem is to use ma-
chine learning techniques to automate the deriva-
tion of planning resources for new domains. In
this paper, we apply this technique to build micro-
planning rules for preventative expressions in in-
structional text.

1 I n t r o d u c t i o n

Building text planning resources by hand is time-
consuming and difficult. Certainly, much work
has been done in this regard; there are a num-
ber of freely available text planning architectures
(e.g., Moore and Paris, 1993). It is frequently
the case, however, that while the architecture it-
self can be reused in a new domain, the library
of text plans developed for it cannot. In particu-
lar, micro-planning rules, those rules that specify
the low-level grammatical details of expression,
are highly sensitive to variations between sub-
languages, and are therefore difficult to reuse.

When faced with a new domain in which to
generate text, the typical scenario is to perform a

* This work is partially supported by the Engineering and
Physical Sciences Research Council (EPSRC) Grant J19221,
by BC/DAA9 ARC Project 293, and by the Commission of the
European Union Grant LRE-62009.

t After September 1, Dr. Vander Linden's address will be
Department of Mathematics and Computer Science, Calvin
College, Grand Rapids, MI 49546, USA.

corpus analysis on a representative collection of
the text produced by human authors in that do-
main and to induce a set of micro-planning rules
guiding the generation process in accordance with
the results. Some fairly simple rules usually jump
out of the analysis quickly, mostly based on the
analyst's intuitions. For example, in written in-
structions, user actions are typically expressed as
imperatives. Such observations, however, tend to
be gross characterisations. More accurate micro-
planning requires painstaking analysis. In this
paper, for example, the micro-planner must distin-
guish between phrasing such as "Don't do action-
,V' and "Take care not to do action-X". Without
analysis, it is far from clear how this decision can
best be made.

Some form of automation would clearly be
desirable. Unfortunately, corpus analysis tech-
niques are not yet capable of automating the ini-
tial phases of the corpus study (nor will they be
for the foreseeable future). There are, however,
techniques for rule induction which are useful for
the later stages of corpus analysis and for imple-
mentation.

In this paper, we focus on the use of such rule
induction techniques in the context of the micro-
planning of preventative expressions in instruc-
tional text. We define what we mean by a pre-
ventative expression, and go on to describe a cor-
pus analysis in which we derive three features
that predict the grammatical form of such expres-
sions. We then use the C4.5 learning algorithm
to construct a micro-planning sub-network appro-
priate for these expressions. We conclude with
an implemented example in which the technical
author is allowed to set the relevant features, and
the system generates the appropriate expressions
in English and in French.

11

2 Preventative Expressions

Preventative expressions are used to warn the
reader not to perform certain inappropriate or po-
tentially dangerous actions. The reader may be
told, for example, "Do not enter" or "Take care
not to push too hard". Both of these examples
involve negation ("do not" and "take care not").

Although this is not strictly necessary for preven-
tative expressions (e.g., one might say "stay out"
rather than "do not enter"), we will focus on the
use of negative forms in this paper, using the fol-
lowing categorisation: l

• negative imperatives proper (termed DONT

imperatives) - - These are characterised by
the negative auxiliary do not or don 7, as in:

(1) Your sheet vinyl floor may be vinyl
asbestos, which is no longer on the
market. Don ~ sand it or tear it up

because this will put dangerous
asbestos fibers into the air.

• NEVER imperatives - - T h e s e are charac-
terised by the use of the negative adverb
never, as in:

(2) Whatever you do, never go to Vienna

i f you are on a diet.

• other negative imperatives (termed neg-TC
imperatives) - - These include take care and
be careful followed by a negative infinitival
complement, as in the following examples:

(3) To book the strip, fold the bottom third
or more of the strip over the middle of
the panel, pasted sides together, taking

care not to crease the wallpaper

sharply at the fold.

(4) If your plans call for replacing the
wood base molding with vinyl cove
molding, be careful not to damage the

walls as you remove the wood base.

3 Corpus Analysis

In terms of text generation, our interest is in find-
ing mappings from features related to the function

I Hom (1989) gives a more complete categofisation of
negative forms.

of these expressions, to those related to their gram-
maticalform. Functional features include the se-
mantic features of the message being expressed,
the pragmatic features of the context of commu-
nication, and the features of the surrounding text
being generated. In this section we will briefly
discuss the nature of our corpus, and the fimction
and form features that we have coded. We will
conclude with a discussion of the inter-coder reli-
ability. A more detailed discussion of this portion
of the work is given elsewhere (Vander Linden
and Di Eugenio, 1996).

3.1 Corpus

The corpus from which we take all our coded
examples has been collected opportunistically off
the intemet and from other sources. It is 4.5 MB
in size and is made entirely of written English
instructional texts. As a collection, these texts
are the result of a variety of authors working in a
variety of contexts.

We broke the corpus texts into expressions us-
ing a simple sentence breaking algorithm and then
collected the negative imperatives by probing for
expressions that contain the grammatical forms
we were interested in (i.e., expressions contain-
ing phrases such as don 7, never, and take care).

The grammatical forms we found, 1283 occur-
rences in all, constitute 2.7% of the expressions in
the filll corpus. The first line in Table 1, marked
"Raw Grep", indicates the quantity of each type.

We then filtered the results. When the probe re-
turned more than 100 examples for a grammatical
form, we randomly selected around 100 of those
returned, as shown in line 2 of Table 1 (labelled
"Raw Sample"). We then removed those exam-
ples that, although they contained the desired lex-
ical string, did not constitute negative imperatives
(e.g., "If you don ~ like the colors of the file ,
use Binder to change them."), as shown in line 3,
labelled "Final Coding".

The final corpus sample is made up of 279 ex-
amples, all of which have been coded for the fea-
tures to be discussed in the next two sections.
Table 2 also shows the relative sizes of the var-
ious types of instructions in the corpus as well
as the number of examples from this sample that
came from each type.

12

Raw Grep
Raw Sample
Final Coding

DONT NEVER
~ n ~ ~ not

417 385
100 99
78 89

167

108
108
40
40

take care

21
21
17

Neg-TC
; take sure

229
104

be careful

52
52
46

72

be sure

71
71,
6

Table 1: Distribution of negative imperatives

Instruction type Corpus size # of preventatives

Recipes
Do-it-yourself
Di Eugenio's thesis 2
Software instructions
Administrative forms
Other

Totals

1.7M
1.26M
336K
264K
317K
565K

4.5M

83
99
69
0
9
19

279

Table 2: Distribution of examples from sample

3.2 Form

Because of its syntactic nature, the form feature
coding was very robust. The possible feature val-
ues were: DONT - - for the do not and don

forms discussed above; NEVER, for imperatives
containing never; and neg-TC - - for take care,

make sure, be careful, and be sure expressions
with negative arguments. The two authors agreed
on their coding of this feature in all cases.

3.3 Function Features

We will now briefly discuss three of the func-
tion features we have coded: IINTENTIONALITY,

AWARENESS, and SAFETY. W e illustrate them in
turn using a to refer to the prevented action and
using "agent" to refer to the reader and executer
of the instructions.

Intentionality: This feature encodes whether or
not the writer believes that the agent will con-
sciously adopt the intention of performing a:

CON is used to code situations where the agent
intends to perform a. In this case, the agent

2Note that we used a number of examples from Di Eu-
genio's thesis (1993) which were included as excerpts. In
this table we include only an estimate of the full size of that
portion of the corpus.

must be aware that a is one of his or her
possible alternatives.

UNC is used to code situations in which the agent
doesn't realize that there is a choice involved
(cf. Di Eugenio, 1993). It is used in two
situations: when a is totally accidental, or
the agent may not take into account a crucial
feature of a.

Awareness: This feature captures whether or
not the writer believes that the agent is aware that
the consequences of ~ are bad:

AW is used when the agent is aware that a is
bad. For example, the agent may be told
"Be careful not to burn the garlic" when he
or she is perfectly well aware that burning
things when cooking them is bad.

UNAW is used when the agent is perceived to be
unaware that a is bad.

Safety: This feature captures whether or not the
author believes that the agent's safety is put at risk
by performing a:

BADP is used when the agent's safety is put at
risk by performing a.

NOT is used when it is not unsafe to perform c~,
but may, rather, be simply inconvenient.

13

3.4 In t e r - code r r e l i a b i l i t y

Each author independently coded each of the fea-
tures for all the examples in the sample. The
percentage agreement for each of the features is
shown in the following table:

feature percent agreement
form 100%
intentionality 74.9%
awareness 93.5%
safety 90.7%

As advocated by Carletta (1996), we have used
the Kappa coefficient (Siegel and Castellan, 1988)
as a measure of coder agreement. For nominal
data, this statistic not only measures agreement,
but also factors out chance agreement.

If P(A) is the proportion of times the coders
agree, and P(E) is the proportion of times that
coders are expected to agree by chance, K is com-
puted as follows:

P(A) - P(E)
K =

1 - P (E)

There are various ways of computing P(E)
according to Siegel and Castellan (1988); most
researchers agree on the following formula, which
we also adopted:

m

P i e) =

j=l

where m is the number of categories, andpj is the
proportion of objects assigned to category j .

The mere fact that K may have a value k greater
than zero is not sufficient to draw any conclusion,
however, as it must be established whether k is
significantly different from zero. There are sug-
gestions in the literature that allow us to draw
general conclusions without these further com-
putations. For example, Rietveld and van Hout
(1993) suggest the correlation between K values
and inter-coder reliability shown in the following
table:

Kappa Value
.00 - .20
.21 - .40
.41 - .60
.61 - .80
.81 - 1.00

Reliability Level
slight
fair
moderate
substantial
almost perfect

For the form feature, the Kappa value is 1.0, indi-
cating perfect agreement. The function features,
which are more subjective in nature, engender
more disagreement among coders, as shown by
the K values in the following table:

feature K
INTENTIONALITY 0.46
AWARENESS 0.76

SAFETY 0.71

According to this table, therefore, the AWARE-
NESS and SAFETY features show "substantial"
agreement and the INTENTIONALITY feature shows
"moderate" agreement. We have coded other
functional features as well, but they have either
not proven as reliable as these, or are not as useful
in text planning.

In addition, Siegel and Castellan (1988) point
out that it is possible to check the significance of K
when the number of objects is large; this involves
computing the distribution of K itself. Under this
approach, the three values above are significant at
the .000005 level.

4 Automated Learning

The corpus analysis results in a set of examples
coded with the values of the function and form
features. This data can be used to find correla-
tions between the two types of features, correla-
tions, which, in text generation, are typically im-
plemented as decision trees or rule sets mapping
from function features to forms.

In this study, we used 179 coded examples as
input to the learning algorithm. These are the
examples on which the two authors agreed on their
coding of all the features. The distribution of the
grammatical forms in these examples is shown in
the following table:

form frequency
DONT 100
Neg-TC 57
NEVER 22

The learning algorithm used these examples to
derive a decision tree which we then integrated
into an existing micro-planner.

14

4.1 Data Mining

We have used Quinlan's C4.5 learning algorithm
(1993) in this study; this algorithm can induce ei-
ther decision trees or rules. To provide a more
convenient learning environment, we have used
Clementine (1995), a tool which allows rapid re-
configuration of various data manipulation facil-
ities, including C4.5. Figure I shows the basic
control stream we used for learning and testing de-
cision trees. Data is input from the split-output
file node on the left of the figure and is passed
through filtering modules until it reaches the out-
put modules on the right. The two select mod-
ules (pointed to by the main input node) select
the examples reserved for the training set and the
testing set respectively. The upper stream pro-
cesses the training set and contains a type mod-
ule which marks the main syntactic form (i.e.,
DONT, NEVER, or Neg-TC) as the variable to
be predicted and the AWARENESS, SAFETY, and
INTENTIONALITY features as the inputs. Its out-
put is passed to the C4.5 node, labelled reform,
which produces the decision tree. We then use
two copies of the resulting decision tree, repre-
sented by the diamond shaped nodes marked with
mform, to test the accuracy of the testing and the
training sets.

One run of the system, for example, gave the
following decision tree:

awareness = AW: NEG-TC

awareness = UNAW:

] intention = CON: DONT

] intention = UNC:

] [safety = BADP: NEVER

] 1 safety = NOT: DONT

This tree takes the three function features and pre-
dicts the DONT, NEVER, and Neg-TC forms. It
confirms our intuitions that n e v e r imperatives are
used when personal safety may be endangered
(coded as safety="BADP"), and that Neg-TC
forms are used when the reader is expected to
be aware of the danger that may arise (cf. Vander
Linden and Di Eugenio, 1996). It accurately pre-
dicts the grammatical form of 74.5% of the 161
training examples, and 83.3% of the 18 testing
examples.

Because there are relatively few training exam-
ples in our coded corpus, we have also performed

a 10-way cross-validation test. 3 None of the de-
rived trees in this test were -emarkably different
from the one just shown, although they did or-
der the INTENTIONALITY and AWARENESS features
differently. The average accuracy of the learned
decision trees on the testing sets was 75.4%.

Note that although this level of accuracy is bet-
ter than 55.9%, the score achieved by simply se-
lecting DONT in all cases, there is still more work
to be done. The current features must be refined,
and more features may be need to be added. We
are currently experimenting with a number of pos-
sibilities. Note also that we have not distinguished
between the various sub-forms of DONT and Neg-
TC shown in Table l; this will require yet more
features.

Clementine can also "balance" the input to
C4.5 by duplicating training examples with under-
represented feature values. We used this to in-
crease the number of NEVER and Neg-TC exam-
ples to match the number of DONT examples. Ul-
timately, this reduced the accuracy of the learned
trees to 68.0% in a cross-validation test. The
resulting decision trees tended not to include all
three features.

4.2 Integration

Because it is common for us to rebuild decision
trees frequently during analysis, we implemented
a routine which automatically converts the deci-
sion tree into the appropriate KPML-style sys-
tem networks with their associated choosers, in-
quiries, and inquiry implementations (Bateman,
1995). This makes the network compatible with
the DRAFTER micro-planner, a descendent of IM-
AGENE (Vander Linden and Martin, 1995). The
conversion routine takes the following inputs:

• the applicable language(s) - -C4 .5 produces
its decision trees based on examples from a
particular language, and KPML is capable
of being conditionalised for particular lan-
guages. Thus, we may perform separate cor-
pus analyses of a particular phenomenon for
various languages, and learn separate micro-
planning trees;

3A cross-validation test is a test where C4.5 breaks the
data into different combinations of training and testing sets,
builds and tests decision trees for each, and averages the
results (Clementine, 1995).

15

0 split-output~

@
s e l e c t type

afore

0 , # ,Ira
select afore analysis

,m
analysis

Figure 1: The Clementine learning environment

. the input feature(s) - - The sub-network be-
ing built must fit into the overall categorisa-
tions of the full micro-planner, and thus we
must specify the text functions that would
trigger entry to the new sub-network;

• the decision tree itself;

• a feature-value function - - To traverse the
new sub-network, the KPML inquiries re-
quire a function that can determine the value
of the features for each pass through the net-
work;

• grammatical form specif icat ions- The sub-
network must eventually build sentence plan
language (SPL) commands for input to
KPML, and thus must be told the appropri-
ate SPL terms to use to specify the required
grammatical forms;

• an output file name.

For our example, the system sub-network shown
in Figure 2 is produced based on the decision tree
shown above. 4 It is important to note here that al-
though the micro-planner is implemented as a sys-
temic resource, the machine learning algorithm is
no respecter of systemic linguistic theory. It sim-
ply builds decision trees. This gives rise to three
distinctly non-systemic features of these learned
networks:

~Only the systems are shown in the KPML dump given
in Figure 2. The realisation statements, choosers, ii,quiries,
and inquiry implementations are not shown.

1. The realisation statements are included only
at the leaf nodes of the network. We have
built no intelligent facility for decomposing
the realisation statements and filtering com-
mon realisations up the tree.

2. The learning algorithm will freely reuse sys-
tems (i.e., features) as various points in the
tree. This did not happen in Figure 2, but
occasionally one of the features is indepen-
dently used in different sub-trees of the net-
work. We are forced, therefore, to index the
system and feature names with integers to
disambiguate.

3. There is no meta-functional distinction in the
network, but rather, all the features, regard-
less of their semantic type, are included in
the same tree.

The sub-network derived in this section was
spliced into the existing micro-planning net-
work for the full generation system. As men-
tioned above, this integration was done by man-
ually specifying the desired input conditions for
the sub-network when the micro-planning rules
are built. For the preventative expression sub-
network, this turned out to be a relatively simple
matter. DRAFTER'S model of procedural relations
includes a warning relation which may be attached
by the author where appropriate. The micro-
planner, therefore, is able to identify those por-
tions of the procedure which are to be expressed
as warnings, and to enter the derived sub-network

16

~#, . ,~ . . .~ , ,~ . r~_ o iii[(A W A R E - 1 j |CON SCiOU SNE SS_SYSTE M_3ii i j /CON SCIOU S -4 ,)|SAF ETY_SYSTEM_611i~N OT-BADP_7
'll XUNAWARE - 2 / ~ Ul I \UNCONSCIOUS-5/~ t l IJ~ADP~8 [

Figure 2: The micro-planner system network derived from the decision tree

appropriately. This same process could be done
with any of the other procedural relations (e.g.,
purpose, precondition). This assumes, however,
the existence of a core set of micro-plans which
perform the procedural categorisation properly;
these were built by hand. We have only just be-
gun to experiment with the possibility of building
the entire network automatically from a more ex-
haustive corpus analysis.

5 A DRAFTER Example

Given the corpus analysis and the learned sys-
tem networks discussed above, we will present an
example of how preventative expressions can be
delivered in DRAFTER, an implemented text gen-
eration application. DRAFTER is a instructional
text authoring tool that allows technical authors
to specify a procedural structure, and then uses
that structure as input to a multilingual text gen-
eration facility (Paris and Vander Linden, 1996).
The instructions are generated in English and in
French.

To date, our domain of application has been
manuals for software user interfaces, but because
this domain does not commonly contain preventa-
tive expressions (see Table 2), we have extended
DRAFTER's domain model to include coverage for
do-it-yourself applications. Although this switch
has entailed some additions to the domain model,
DRAFTER's input and generation facilities remain
as they were.

5.1 Input Specification

In DRAFTER, technical authors specify the content
of instructions in a language independent manner
using the DRAFTER specification tool. This tool al-
lows the authors to specify both the propositional
representations of the actions to be included, and
the procedural relationships between those propo-
sitions. Figure 3 shows the DRAFTER interface af-
ter this has been done. We will use the procedure

shown there as an example in this section, details
off how to build it can be found elsewhere (Paris
and Vander Linden, 1996).

The INTERFACE and ACTIONS panes on the
left of figure 3 list all the objects and actions de-
fined so far. These are all shown in terms of a
pseudo-text which gives an indication, albeit un-
grammatical, of the nature of the action. For ex-
ample, the main goal, "repair device", represents
the action of the reader repairing an arbitrary de-
vice. This node may be expressed in any number
of different grammatical forms depending upon
context.

The WORKSPACE pane shows the procedure,
represented in an outline format. The main user
goal of repairing the device is represented by the
largest, enclosing box. Within this box, there is
a single method, called "Repair Method" which
details how the repair should be done. There are
three sub-actions: consulting the manual, unplug-
ging the device, and removing the cover. There is
also a waming slot filled with the action "[reader]
damage service cover". This indicates that the
reader should avoid damaging the service cover. 5

Neither the propositional nor the procedural in-
formation discussed so far specify the three fea-
tures needed by the decision network derived in
the previous section (i.e., intentionality, aware-
ness, and safety). At this point, we see no straight-
forward way in which they could be determined
automatically (see Ansari's discussion of this is-
sue (1995)). We, therefore, rely on the author to
set them manually. DR.AFTER allows authors to set
generation parameters on individual actions using
a dialog box mechanism. Figure 4 shows a case
in which the author has marked the following four
features for the warning action "damage service
cover":

5Actually, this could also be interpreted as an ensurative
warning, meaning that the reader should make sure to damage
the service cover (although this is clearly nonsensical in this
case). We have not yet analysed such expressions and thus
do not support them in DRAFTER.

17

INTERFACE
Test Device Prooram

"4 i.*"

ACTIONS
Repair Device

Consul t Repair Manuz

WORKSPACE

I
Sub-steps .V_ con,,~,zffrepa~- manu# ~ unp/ug dev/ce .V_ remove serv/ce cover ~

Unplug Device I i'" "

Damage Service Cover
Start Test Device Progrz
Quit Test Device Progra

I..4 I . -

Plan -a [

Repair Method

FOCUS
Repair Meth'od

Precond~on

Slde-egect

Cancellation

Warning damage.,~rvlce cover

Sub-steps ~ consuff repair manual ~ Ol~ug device ~ remove

Figure 3: DRAFTER screen with the procedural structure for the example

• The action is to be prevented, rather than
ensured;

• Performing the action would result in incon-
venience, but not in personal danger;

• The user is likely to do the action acciden-
tally, rather than consciously;

• The user is likely to be aware that performing
the action would create problems;

5.2 Text Generation

Once the input procedure is specified, the author
may initiate text generation from any node in the
procedural hierarchy. When the technical author
generates from the root goal node in Figure 3, for
example, the following texts are produced:

English."

To r epa i r the device
1. Consult the repair manual.
2. Unplug the device.
3. Remove the service cover.
Take care not to damage the service
cover.

French."

R~paration du dispositif
1. Se reporter au manuel de r6paration.
2. D6brancher le dispositif.
3. Enlever le couvercle de service.
Eviter d'endornmager le couvercle de
service.

18

What type
o, warn,n u ` ' - is this? ~ prevent the action .~ ensure the action

What are the consequences of ignonng it?

Is the user likely to do it on purpose?

Is the user likely to be aware of this problem?

inconvenience ~ serious danger

on purpose ~ by accident

v unaware ~ aware 1

Figure 4: The DRAFTER dialog box for setting the local parameters

Note that the French version employs Oviter
(avoid) rather than the less common prendre soin
de ne pas (take care not). This is possible be-
cause the French text is produced by a separate
micro-planning sub-network. This sub-network
was not based on a corpus study of French pre-
ventatives, but rather was implemented by taking
the leamed English decision tree, modifying it in
accordance with the intuitions of a French speaker,
and automatically constructing French systems
from that modified decision tree. Clearly, a cor-
pus study French of preventatives is still needed,
but this does show DRAFTER'S ability to make use
of KPML's language conditionalised resources.

Were we to replace the warning with other sorts
of warnings, the expression would also change ac-
cording to the learned micro-planning network. If
authors, for example, wish to prevent the reader
from performing the action of dismantling the
frame of the device, and they decide that the
reader is unaware of this danger, that the action is
consciously performed and not unsafe, DRAFTER
produces the following text:

Do not dismantle the frame.
Ne pas d6monter l'armature.

If authors wish to prevent the reader from dis-
connecting the ground connection, and they de-
cide that the reader is unaware of this danger, that
the action would be unconsciously performed, and
that the consequences are indeed life-threatening,
DRAFTER produces the following text:

Never disconnect the ground.
Ne jamais deconnecter la borne de terre.

6 Conclusion

In this paper we have discussed the use of ma-
chine learning techniques for the automatic con-
struction of micro-planning sub-networks. We
demonstrated this for the case of preventative ex-
pressions in instructional text.

We noted that because the automatic deriva-
tion of useful, well-defined features for corpus
analysis is beyond the current state of the art,
the painstaking process of corpus analysis must
still be performed manually. As an example of
how this can be done, we presented an analysis of
English preventative expressions. We intend to
continue this part of the work by addressing more
preventative forms, addressing ensurative forms,
and by extending the analysis to other languages.

Although the analysis cannot be fully auto-
mated, we noted that the derivation of decision
networks from coded corpus examples can. This
greatly simplifies the tasks of building and testing
text planning resources for new domains. We in-
tend to continue this part of the work by applying
the technique to larger portions of the planning
resources.

Acknowledgements

The authors wish to acknowledge valuable discus-
sions with Tony Hartley, Xiaorong Huang, Adam
Kilgarriff, Cecile Paris, Richard Power, and Do-
nia Scott, as well as detailed comments from the
anonymous reviewers.

19

References

Ansari, D. (1995). Deriving procedural and warn-
ing instructions from device and environ-
ment models. Master's thesis, Department
of Computer Science, University of Toronto.

Bateman, J. A. (1995). KPML: The KOMET-
Penman (Multilingual) Development Envi-
ronment. Technical report, Institut ftir In-
tegrierte Publikations- und Informationssys-
teme (IPSI), GMD, Darmstadt. Release 0.8.

Carletta, J. (1996). Assessing agreement on clas-
sification tasks: the kappa statistic. Compu-
tational Lingustics, 22(2). to appear.

Clementine (1995). Clementine User Guide, Ver-
sion 2.0. Integral Solutions Limited.

Di Eugenio, B. (1993). A Study of Negation in
Instructions. In The Penn Review of Linguis-
tics, Volume 17.

Di Eugenio, B. (1993). Understanding Natu-
ral Language Instructions: A Computational
Approach to Purpose Clauses. PhD thesis,
University of Pennsylvania. also available
as IRCS Report 93-52.

Horn, L. R. (1989). A Natural History of Nega-
tion. University of Chicago Press, Chicago.

Moore, J. D. and Paris, C. L. (1993). Planning
text for advisory dialogues: Capturing in-
tentional and rhetorical information. Com-
putational Linguistics, 19(4):651-694.

Paris, C. and Vander Linden, K. (1996). Drafter:
An interactive support tool for writing mul-
tilingual instructions. IEEE Computer. to
appear.

Quinlan, J. R. (1993). C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann.

Rietveld, T. and van Hout, R. (1993). Statistical
Techniques for the Study of Language and
Language Behaviour. Mouton de Gruyter.

Siegel, S. and Castellan, Jr., N. J. (1988). Non-
parametric statistics for the behavioral sci-
ences. McGraw Hill.

Vander Linden, K. and Di Eugenio, B. (1996). An
empirical study of negative imperatives in
natural language instructions. In Proceed-
ings of the 16th International Cont'erence
on Computational Linguistics, August 5-9,
Copenhagen, Denmark. To appear.

Vander Linden, K. and Martin, J. H. (1995). Ex-
pressing local rhetorical relations in instruc-
tional text: A case-study of the purpose rela-
tion. Computational Linguistics, 21(I):29-
57.

20

