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Abstract

We present a novel new word extraction method
from Japanese texts based on expected word
frequencies. First, we compute expected word
frequencies from Japanese texts using a robust
stochastic N-best word segmenter. We then ex-
tract new words by filtering out erroneous word
hypotheses whose expected word frequencies are
lower than the predefined threshold. The method
is derived from an approximation of the general-
ized version of the Forward-Backward algorithm.
When the Japanese word segmenter is trained on
a 4.7 million word segmented corpus and tested
on 1000 sentences whose out-of-vocabulary rate
is 2.1%, the accuracy of the new word extraction
method is 43.7% recall and 52.3% precision.

Introduction

Segmentation of sentences into words is trivial in
English because words are delimited by spaces.
It is a simple task to count word frequencies in
a given text. It is also a simple task to list all
new words (unknown words), namely, the words
in a given text that are not found in the system
dictionary. However, several languages such as
Japanese, Chinese and Thai do not put spaces
between words and so in these languages word
segmentation, word frequency counting, and new
word extraction remain unsolved problems in com-
putational linguistics.

Most Japanese NLP applications require word
segmentation as a first stage because there are
phonological units and semantic units whose pro-
nunciation and/or meaning is not trivially deriv-
able from the pronunciation and/or meaning of the
individual characters. It is well known that the
accuracy of word segmentation greatly depends
on the coverage of the dictionary, in other words,
the Out-Of-Vocabulary (OOV) rate of the target
texts.

Qur goal is to provide a method to automati-
cally extract new words from Japanese texts. This
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method should adapt the dictionary of the word
segmenter to new domains and applications. It
should also maintain the dictionary by collecting
new words in the target domain. The applica-
tion of the word segmenter is described elsewhere
(Nagata, 1996).

The approach we take is as follows: First, we
design a statistical language model that can as-
sign a reasonable word probability to an arbitrary
substring in the input sentence, whether or not
it is truly a word. Second, we devised a method
to obtain the expected word N-gram count in the
target texts, using an N-best word segmentation
algorithm (Nagata, 1994). Finally, we extract new
words by filtering out spurious word hypotheses
whose expected word frequencies are lower than

the threshold.

Japanese Morphological Analysis

Before we start, we briefly explain the difficul-
ties of Japanese morphological analysis, especially
when the input sentence includes unknown words.
Suppose the input sentence is “X2 I NNR=T
KFIZENIAC @ 50 A% %% 5. 7, which means
“University of Pennsylvania celebrates the 50th
anniversary of ENIAC”, where the words <> &
Jvs3=7F (transliteration of 'Pennsylvania’) and
ENIAC (the name of the world’s first computer)
are not registered in the system dictionary. Fig-
ure 1 shows three possible analyses of the input
sentence, where each box represents a word hy-
pothesis whose meaning and part of speech are
shown above and under the box. The tag <UNK>
represents an unknown word.

One of the hardest problems in handling unre-
stricted Japanese text is the identification of un-
known words. In Figure 1, the string ENITAC is
successfully tokenized as an unknown word. How-
ever, there is ambiguity in the segmentation of the
string X VA R= T KE

In the first analysis, the system considers <~
N =F ("Pennsylvania’) as an unknown word,
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Figure 1. Japanese Morphological Analysis Example

because X% ("university’) is registered in the dic-
tionary. This is correct. In the second analysis,
the system guesses /3=7 K% (’Vania university’)
as an unknown word, because ~> 3L (transliter-
ation of ’pencil’) is registered in the dictionary and
some university names are registered in the dictio-
nary, such as X% 74— FAK% (*Stanford Uni-
versity’) and &> 7 U » PK% ("Cambridge Uni-
versity’). In the third analysis, the system consid-
ers /3=7 (’Vania’) as an unknown word, because
both ~> /L and K% are registered in the dic-
tionary.

It is often the case that we have overlapping
word hypotheses if the input sentence contains un-
known words, such as Ry I AR=T R=T K
and /3=7 in Figure 1. We need a criteria to se-
lect the most likely word hypothesis from among
the overlapping candidates. In fact, it is fairly dif-
ficult to get plausible analyses like the ones shown
in Figure 1, because failure to identify an unknown
word affects the segmentation of the neighboring
words. Obviously, a robust word segmenter is the
essential first step.

In the following sections, we first describe a
statistical language model to cope with unknown
words. We then describe the word segmentation
algorithm and the new word extraction method,
with their derivation as an approximation of a
generalization of the Forward-Backward algorithm
(Baum, 1972). Finally, we show experiment re-
sults and prove its effectiveness.

Statistical Language Model
Segmentation Model (Tagging Model)

Let the input Japanese character sequence be

C = ci1¢3. .. ¢y, and segment it into word sequence
W = wiw, ... w, whose part of speech sequence is
T = tyty...1,. The word segmentation task can

be defined as finding the set of word segmentation
and parts of speech assignment (W, T) that max-
imize the joint probability of word sequence and
tag sequence given character sequence P(W, T|C).
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Since the maximization is carried out with fixed
character sequence C, the word segmenter only
has to maximize the joint probability of word se-
quence and tag sequence P(W,T).

(W’T) =

)

= arglvr‘ll?,q{(P(W,fI) 1)

We call P(W,T) the segmentation model, al-
though it is usually called tagging model in En-
glish tagger research. In this paper, we compare
three segmentation models: part of speech tri-
gram, word unigram, and word bigram.

In the part-of-speech trigram model (POS tri-
gram model), the joint probability P(W,T) is ap-
proximated by the product of parts of speech tri-
gram probabilities P(¢;|t;—2,%;—1) and word out-
put probabilities for given part of speech P(w;|¢;)

P(W,T) = HP(tilti—Zyti—l)P(wilti) (2)

In the word unigram and word bigram mod-
els, the joint probability P(W,T) is approxi-
mated by the product of word unigram proba-
bilities P(w;,?;) and word bigram probabilities
P(w;, t;lwi_1,t;-1), respectively.

Hp(w,,t)

PW,T) = (3)

P(W,T) = fIP(w.-,t.'IW.'—ht{—l)

i=1

(4)

Basically, parameters of these segmentation
models are estimated by computing the relative
frequencies of the corresponding events in the seg-
mented training corpus. However, in order to han-
dle unknown words, we have introduced a slight
modification in computing the relative frequencies,
as is described in the next section.



Word Model

We think of an unknown word as a word having a
special part of speech <UNK>. We define a statis-
tical word model to assign a word probability to
each word hypothesis. It is formally defined as the
joint probability of the character sequence ¢y ... cp
if w; is the unknown word. We decompose it into
the product of word length probability and word
spelling probability,

P(w;|<UNK>) = P(cy ... cp|<UNK>)
= P(k)P(cy ...cxk) (5)

where k is the length of the character se-
quence. We call P(k) the word length model, and
P(ey ... c|k) the word spelling model.

We assume that word length probability P(k)
obeys a Poisson distribution whose parameter is
the average word length A in the training corpus,

1\k~1
P(k) = (A(,c—_l)ﬁ!—e‘“'” (6)

This means that we regard word length as the
interval between hidden word boundary markers,
which are randomly placed with an average inter-
val equal to the average word length. Although
this word length model is very simple, it plays a
key role in making the word segmentation algo-
rithm robust.

We approximate the spelling probability given
word length P(c; .. .ck|k) by the word-based char-
acter bigram model, regardless of word length.
Since there are more than 3,000 characters in
Japanese, the amount of training data would be
too small if we divided them by word length.

k
Pler ..ok = Ples ) [ Plesleiza) P(#1ex) ()

Here, special symbol “#” indicates the word
boundary marker.

Note that the word-based character bigram
model is different from the sentence-based charac-
ter bigram model. The former is estimated from
the corpus segmented into words. It assigns a large
probability to a character sequence that appears
in the beginning (prefixes), the middle, and the
end (suffixes) of a word. It also assigns a small
probability to a character sequence that appears
across a word boundary.

By using the word model, we can create
modified segmentation models that take unknown
words into consideration. The parameters of the
modified POS trigram, word unigram, and word
bigram are estimated by Equations (8), (9), (10},
and (11), in Figure 2.
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In Figure 2, C(-) denotes the count of the spec-
ified event in the training corpus. In the part of
speech trigram model, P(w;|t;) for an unknown
word w; is obtained, by definition, from the word
model P(w;|<UNK>). In the word unigram model,
the unigram count C(w;) for unknown word w; is
given as the product of the total unigram count
of unknown words C(<UNK>) and the word model
probability P{w;|<UNK>). The higher order N-
grain counts involving unknown words are also ob-
tained in the same manner.

In order to compute the parameters in Fig-
ure 2, we need the counts involving unknown
words, such as C(t;_2,t;_1,<UNK>), C(<UNK>), and
C((w;-1,t;—1),<UNK>). These counts are impor-
tant because they represent the contexts in which
unknown words likely to appear. To estimate
these counts, we replace all words appearing only
once in the training corpus with unknown word
tags <UNK>, before computing relative frequen-
cies. The underlying idea of the replacement is
the same as Turing’s estimates in back-off smooth-
ing (Katz, 1987). We redistribute the probabil-
ity mass of low count sequences to “unseen” se-
quences.

Generalized Forward Backward
Reestimation

Generalization of the Forward and
Viterbi Algorithm

In English part of speech taggers, the maximiza-
tion of Equation (1) to get the most likely tag se-
quence, is accomplished by the Viterbi algorithm
(Church, 1988), and the maximum likelihood es-
timates of the parameters of Equation (2) are
obtained from untagged corpus by the Forward-
Backward algorithm (Cutting et al., 1992). How-
ever, it is impossible to apply the Viterbi algo-
rithm and the Forward-Backward algorithm for
word segmentation of those languages that have
no delimiter between words, such as Japanese and
Chinese, because word segmentation hypotheses
overlap one another.

Figure 3 shows an example of overlapping
word hypotheses and possible word segmentations
for the string &[E#ERTE (*all prefectures in the
nation’). We assume €[ (’all nation’), 4= ('all’),
E# ('national capital’), #RENFIR (*prefectures’),
#FiE (Cmetropolitan road’), # (‘metropolis’), &
B (Cprefectures’), i (‘road’), K¥I (‘prefectures’),
Hf (Cprefecture’), and & (’prefecture’) are regis-
tered in the dictionary. There are 15 possible word
segmentations in this example. In Japanese, a
lot of words consist of one character. Moreover,
sequence of characters may constitute a different
word.



C(ti_a.t,—1,<UNK>)
Clti—a,tiz1)

Cti—a,ti-1,t,

Clticy,ti-1

if t; = <UNK>

otherwise

P(tilti—a,tic1) = {

P(wi |<UNK>)

C(w,,t;
C(t;

Pusl) = {

P(wi,t") = éw,,t,
E :,» C(w;,t;)
C((wi—1,t;-1),<UNK>)
Clw;—1,ti—y
C(ws-1,ti=1),{wits))
C(wymr,ti-1

P(w;, ti|wi-1,ti—1) = {

C(<UNK> .
Egmg X P(’lU,,l<UNK>) if {; = <UNK>

otherwise

X P(w;|<UNK>)

if t; = <UNK>

otherwise

(8)

&)

(10)

if ¢; = <UNK>

(11)

otherwise

Figure 2: Modified Segmentation Models with Consideration to Unknown Words.

Figure 3: Overlapping Word Hypotheses and Pos-
sible Word Segmentations

For Japanese word segmentation, we define
a generalized Forward algorithm and a general-
ized Viterbi algorithm as follows. Let the input
Japanese character sequence of length n be C =
€i1C2...Cn, and cg denote the substring c,41...¢q4.
We define a function D that maps a character
sequence ¢ to a list of word hypotheses {w;}.
Function U is the generalization of the dictionary.
Here, w; denotes a combination of orthography
(formally denoted by w;) and part of speech ¢;,
for simplicity. We use word bigram as the seg-
mentation model in the following example. Other
segmentation models, such as part of speech tri-
gram and word unigram, can be used in the same
manner.

In the generalized forward algorithm, the for-
ward probability a},(w,-) is the joint probability of
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the character sequence c§ and the event that the
final word in the segmentation of ¢} is w; that
spans the substring ¢]. Forward probabilities can
be recursively computed as follows.

ag(win) = D Y ad(wi)P(wirfwi)

0<P<q w;€D(c])

wiy1 € D(cg),0< g <n,g<r<n(12)

The generalized forward algorithm starts from
the beginning of the input sentence, and proceeds
character by character. At each point ¢ in the
sentence, it sums over the product of the forward
probability of the word segmentation hypotheses
ending at the point of(w;) and the transition
probability to the word hypotheses starting at that
pOiIlt P(w,-+1]w,~).

Figure 4: One Step in the Generalized Forward
Algorithm.

Figure 4 shows a snapshot of the generalized
forward algorithm. The input is 2E#FEARF I, and
the current point ¢ is 2. The word hypotheses
ending at point 2 (w; € D(c?)) are £ (c3) and
[ (c?). Those starting at point 2 (w;yq1 € D(c}))
are #IEFFI (c3), #B3 (c3), and #6 (c2). The string
FBEAF (c3) is not registered in the dictionary. All
combinations of these words are examined.

The generalized Viterbi algorithin can be ob-



tained by replacing summation with maximization
in Equation (12). Here, ¢f(w;) is the probabil-
ity of the most likely word segmentatlon sequence
for the character sequence cf whose final word w;
spans the substring cf.

do(wiyr) = rggngrelgth)é p(wi) P(wiys|wi)

wiy1 € D(cy),0<g<n,g<r<n (13)

Note that the original Forward algorithm and
the Viterbi algorithm is the special case in Equa-
tion (12) and (13) where p and ¢ are fixed as
p=q—landr=gq+1.

In order to handle unknown words, the dictio-
nary function D returns a word hypothesis tagged
as unknown word if the substring ¢! is not regis-
tered in the dictionary, such as #ERF (c3) in Fig-
ure 4. The word model assigns a reasonable prob-
ability to the unknown word. Therefore, in the
generalized forward algorithm and the generalized
Viterbi algorithm, we hypothesize all substrings
in the input sentence as words, and examine all
possible combinations of these word hypotheses.

Since we can define the generalized Back-
ward algorithm in the same manner, we can de-
fine the generalized Forward-Backward algorithm
to estimate the word N-gram counts in Japanese
texts, and to reestimate the word N-gram prob-
abilities in the segmentation model. However,
we give a more intuitive account of the method
to introduce an approximation of the generalized
Forward-Backward algorithm.

Expected Word N-gram Count

By using the above mentioned word segmentation
algorithm, we can get all word segmentation hy-
potheses of the input sentence. Once we get them,
we can estimate word N-gram count in an unseg-
mented Japanese corpus.

Let O} be the jth word segmentation hypoth-

esis for the ith sentence in the corpus. P(O') can
be computed by using the segmentation model.
The Bayes a posteriori estimate of the word un-
igram count C'(w,) and the word bigram count
C'(w;—1,w;) in the ith sentence can be computed
a's’

P(0})

C(wa)—zj(Z Bon X ) ()
C* (e w5) = Z(ZP () i )19
k

Here, n}  (wq) and n‘(wa,wﬁ) denote the number
of times the unigram w, and the bigram wq,wg
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appeared in the jth candidate of the ith sentence
1

The estimate of the total unigram count
C(wq) and the total bigram count C(wq, wg) can
be obtained by summing the counts over all sen-
tences in the corpus.

Cwa) = Z C'(wa) (16)

C(wa, wg) = Zc (We, wp) (17)

The estimate of the unigram probability and
the bigram probability can be obtained as the rel-
ative frequency of the associated events.

_ _Clwa)
J(we) = S Clwa) (18)
Fphun) = Cgte) (19)

If necessary, we can reestimate the word N-gram
probabilities by replacing P(w,) and P(wglw,)
with f(w,) and f(wglws).

Extraction of New Words in Texts

Expected word unigram counts (expected word
frequencies) in the corpus (Equation (16)) can be
used as a measure of likelihood that a particular
substring in the input texts is actually a word. Let
0 denote the minimum expected word frequency
that we use to classify a given word hypothesis wq,
as a word.

C(wa) > 0 (20)

Those words that are not found in the dictionary
and whose expected frequencies in the corpus are
larger than the threshold 6 are extracted as the
new words in the input texts.

In theory, expected word N-gram counts can
be obtained by the generalized Forward-Backward
algorithm. In order to save computation time,
however, we approximated the weighted sum of
the word N-gram counts over all the word seg-
mentation hypotheses in a sentence (Equation

(14)), by that of the N-best word segmentation
hypotheses?.

!Note that the (Generalized) Forward-Backward
algorithm is devised to compute these expected word
N-gram count without listing all word segmentation
hypotheses.

2If we only use the best word segmentation, it is
called the Viterbi reestimation. Our method might
be called N-best reestimation. It is designed to be
more accurate than the Viterbi reestimation and more
efficient than the generalized Forward-Backward algo-
rithm.
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Figure 5: An example of computing the expected
word frequencies

N-best word segmentation hypotheses can be
obtained by using the Forward-DP Backward-A*
algorithm (Nagata, 1994). It consists of a for-
ward dynamic programining search to record the
probabililies of all partial word segmentation hy-
potheses, and a backward A* algorithm to extract
the N-best hypotheses. It is a generalization of
the tree-trellis search (Soong and Huang, 1991),
in the sense that its forward Viterbi search is
replaced with the generalized Viterbi search de-
scribed in this paper.

In reestimating the word N-gram probabili-
ties, we introduce two modifications to the normal
reestimation procedure. The first modification is
that, instead of using the relative frequency in an
unsegmented corpus (Equation (18) and (19)), we
combine the N-gram count in the segmented cor-
pus with the estimated N-gram count in the un-
segmented corpus to increase estimate reliability.
This is because a fairly large amount of segmented
Japanese corpus were available in our experiments.

w = C"eg(wa) + Cunaeg(wa)
f(wa) S Coeg(wa) + 3, Cunseg(Wa) (21)
f('wﬁ|wa) - C,eg(’wu, 'lUﬂ) + Cunseg('wa, ’l.U,g) (22)

Cseg('wa) + Cunseg(wa)

where Cy.4(-) denotes the count in the segmented
corpus, and Cynseq(-) denotes the estimated count
in the unsegmented corpus.

The second modification is that we prune the
expected N-gram counts in the unsegmented cor-
pus if they are lower than a predefined threshold,
before computing Equation (21) and (22). This
is because Cynseq(-) is unreliable, especially when

i

Cunseg () 1s low.

Examples of Estimating Expected
Word Frequencies

Finally, we show a simple example of estimat-
ing the word N-gram counts in an unsegmented
sentence. Assume that the ith input sentence is
the character sequence ik A, which means
“introduction to linguistics”, and its best three
word segmentation hypotheses are as shown in
Figure 5. The leftmost numbers in Figure 5 are
the relative probabilities of the word segmentation
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P(0})
5, P(O})
tion (14). The expected word unigram count of
each word hypothesis in the sentence is,

hypotheses, corresponding to in Equa-

C"()\r*fj) = 07+02+01=1.0
C(EWY¥) = 07
C"(*‘é‘-ﬂ)_(**(*) = 02
CH(E) = C'(35%) 0.1

The expected total number of the words in the sen-
tence 3, C*(wq) is 2.3. 1f all word hypotheses are
not registered in the dictionary and the threshold
6 is 0.15, we regard AP (introduction’), & dli*#
(linguistics’), &k (language’), and " (’study’)
as the new words. & (’say’) and % (’study of
languages’) are discarded.

Let us give another example that shows the
effect of summing the expected word unigram
counts over all the sentences in the corpus. Sup-
pose the sentence “~X1 AR =TF K¥iX ENIAC
® 50 HF %>, 7, which means “University of
Pennsylvania celebrates the 50th anniversary of
ENIAC.”, 1s in the corpus, and the first three
word segmentation hypotheses are as shown in
Figure 1. The expected word unigram counts for
N Y R=TF (PPennsylvania’), /3=7 K% ("Va-
nia University’), and 7X=7 (*Vania’) are 0.790,
0.169, and 0.041, respectively. Suppose also the
sentence “R7 A PNTRPFRIAR=THEYIZ
» 5, 7, which means “White House lies at Penn-
sylvania Avenue.”, is in the corpus, and the ex-
pected word unigram counts for ~ /3=
7 (’Pennsylvania’), »S=7 i ¥ (’Vania Avenue’),
and /3=7 ("Vania’) are 0.825, 0.127, and 0.048,
respectively. The expected word unigram counts
in the corpus are,

C(~v v AR=7) = 0.790 +0.825 = 1.615
C(=T7K%¥) = 0.169
C(A=7@Y) = 0127

C(A=7) = 0.041+0.048 = 0.089

Therefore, X2 L L/3=7 is definitely more likely
to be a new word. The more often the unknown
word appears in the corpus, the more it is likely
to be extracted, even if there is word segmentation
ambiguity in each sentence.

Experiments

Language Data

We used the EDR Japanese Corpus Version 1.0
(EDR, 1995) to train and test the word segmen-



tation program. It is a corpus of approximately
5 million words (200,000 sentences). It was col-
lected to build a Japanese Electronic Dictionary,
and contains a variety of Japanese sentences taken
from newspapers, magazines, dictionaries, ency-
clopedias, textbooks, etc. It has a variety of an-
notations on morphology, syntax, and semantics.
We used word segmentation, pronunciation, and
part of speech in the morphology information field
of the annotation.

In this experiment, we randomly selected 90%
of the sentences in the EDR Corpus for training
the word segmentation program. We made two
test sets from the rest of the corpus, one for a small
size experiment (100 sentences) and the other for
a medium size experiment (1000 sentences). Ta-
ble 1 shows the number of sentences, words, and
characters for training and test sets. Note that the
test sets were not part of the training set. That
is, open data were tested in the experiment.

Table 1: The amount of training and test data

training | test-1 | test-2
Sentences 192802 100 1000
Words 4746461 | 2463 | 25177
Characters | 7521293 | 3912 | 39875

The training texts contained 133281 word
types. We discarded word types that appeared
only once in the training texts. This resulted in
65152 word types being registered in the dictio-
nary of the word segmenter. We trained three
segmentation models, namely, part of speech tri-
gram, word unigram, and word trigram, after we
replaced those words appeared only once in the
training texts with the unknown word tag <UNK>,
as described in the section of word model. Af-
ter this replacement, there were 758172 distinct
word bigrams. Again, we discarded word bigrams
that appeared only once in the training texts
for saving main memory, and used the remaining
294668 word bigrams. The word bigram proba-
bilities were smoothed using deleted interpolation
(Jelinek, 1985).

The training texts contained 3534 character
types. We discarded characters that appeared
only once in the training texts; 3167 character
types remained. We then replaced the discarded
characters with the unknown character tag to
train the word spelling model. There were 91198
distinct character bigrams in the words in the
training texts 3.

3There are more than 3000 (some say more than
10000) charters in Japanese, and their frequency dis-
tribution is skewed. In order to save memory, we used
a type of character bigram model that considers un-
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We made two spelling models. The first was
trained using all words in the training texis, while
the second was trained using those words whose
frequency is less than or equal to 2. In princi-
ple, the spelling model of unknown words must be
trained using the low frequency words. However, it
might suffer from the sparse data problem because
the total number of word tokens for training is de-
creased from 4746461 to 103919. We also made
two length models. The average word lengths of
all words and that of low frequency words were
1.58 and 4.49, respectively. Note that the aver-
age word length is the only parameter of the word
length model.

Evaluation Measures

Word Segmentation accuracy is expressed in terms
of recall and precision. First, we count the number
of words in corpus segmentation (Std), the num-
ber of words in system segmentation (Sys), and
the number of matching word segmentations (M).
Recallis defined as M /Std, and precision is defined
as M/Sys.

Figure 6 shows an example of computing pre-
cision and recall for the sentence “a v 7 7 =7 —
WRFIIT AV VOREBER Y 7 7= F—HRIALL
1o WP RAT ¢4, ”, which means “Rockefeller
Laboratory is an academic laboratory founded by
an American millionaire, Rockefeller”. Because of
the difference in the segmentation of > 7 7 =
Z —WF4tHT, the number of words in corpus seg-
mentation (Std=15) differs from that of system
segmentation (Sys=14). Note that the system cor-
rectly tokenized Wi 5uT, although it is not reg-
istered in the dictionary.

New word extraction accuracy is described in
terms of recall, precision, and F-measure. First,
we count the number of unknown words in the cor-
pus segmentation (Std), the number of unknown
words in the system segmentation (Sys), and the
number of matching words (M). Here, unknown
words are those that are not registered in the sys-
tem dictionary. Recall is defined as M/Std, and
precision is defined as M/Sys. Since recall and
precision greatly depend on the frequency thresh-
old, we used the F-measure to indicate the overall
performance. F-measure is used in Information
Retrieval, and is calculated by

F_(ﬁ2+1.0)xPxR
~ B*xP+R

(23)

where P is precision, R is recall, and 3 is the rel-
ative importance given to recall over precision.

known characters, like the word bigram model used in
the segmentation model.
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corpus segmentation

system segmentation

Oy 77—/ vy | By 7 7=9—/ay /7= Rockefeller
» > WFEET/ 7rdavPa /4 laboratory
WX/ N/ BhER 12/ /858 particle (topic)
TAVR ) TAV R /48 TAYA TAUD /A America
D/ 7/ By D/ 7/ B of
K/ &A / HEHRRE K/ FA [ HEAGE big
BE/ 7Y /4 BE/ 730 [ A rich man
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Figure 6: Comparison between the corpus segmentation (left) and the system segmentation (right). All

words are listed in UNIX sdiff style.

Word Segmentation Accuracy

In order to decide the best configuration of the un-
derlying Japanese word segmenter, we compared
three segmentation models: part of speech tri-
gram, word unigram, and word bigram. We also
compared three word models: all words, low fre-
quency words, and the combination of the two.
The third word model consisted of the spelling
model trained using all words and the length
model trained using low frequency words.

Table 2 shows, for the small test set (100 sen-
tences), the segmentation accuracy of the various
combinations of the segmentation models and the
word models.

It is obvious that word bigram outperformed
the part of speech trigram as well as word unigram.
As for the word model, it seems the combination
of the spelling model for all words and the length
model for low frequency words is the best, but the
difference is small. In the following experiment, we
decided to use word bigram as the segmentation
model, and the combination of the spelling model
of all words and the length model of low frequency
words as the word model.

New Word Extraction Accuracy

We tested the new word extraction method us-
ing the medium size test set (1000 sentences). It
contains 538 unknown word types. 8 word types
appeared twice in the test set. The other 530 word
types appeared only once. The out-of-vocabulary
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rate of the test set is 2.2%. To count the expected
word frequencies, we used the top-10 word seg-
mentation hypotheses. We limited the maximum
character length of the a unknown word to 8 in
order to save computation time.

We tested three variations of the new word
extraction method. The first one was “No Reesti-
mation”; it uses the word segmenter’s outputs as
they are when extracting new words. The second
and the third ones carry out reestimation before
extraction, where the pruning thresholds of the ex-
pected N-gram counts in the reestimation are 0.95
and 0.50, respectively. Reestimations were carried
out three times.

Table 3 shows the new word extraction ac-
curacies for a variety of expected word frequency
thresholds 6, with and without reestimation. In
Table 3, we set 3 = 1.0 to compute F-measure.

As Table 3 shows, the higher the threshold is,
the higher the precision and the lower the recall
become. When we put equal importance on recall
and precision, the best value for the expected word
frequency threshold is around 0.10 where the recall
is 43.7% and the precision is 52.3%.

Figure 7 shows excerpts of correcily extracted
new words (matched), incorrectly extracted word
hypotheses (sys-matched), and new words that
were not extracted (std-matched), when the fre-
quency threshold was 0.5 and reestimation was not
carried out. We find that the overall quality of
the extracted word hypotheses is satisfactory, al-



Table 2: Language Models and Segmentation Accuracies (100 test sentences)

POS trigramn | word unigram | word bigram

word model recall | prec. | recall | prec. | recall | prec.

all words 916 | 88.8 | 88.7 873 946 | 894

low frequency words 915 | 89.5| 88.4 88.0 1 943 | 90.1
all words + 1.f.w. length | 91.5 ] 89.3 | 88.8 87.6 | 94.7 | 89.9

Table 3: New Word Extraction Accuracy (1000 test sentences)

No Reestimation freq>0.95, 3 iter. freq>0.50, 3 iter.

freq. | recall | prec. | F | recall T prec. F recall | prec. F
>0.00 | 56.1 | 342 425 | 506 [ 3791434 | 396 | 56.7 [ 46.6
>0.10 | 43.7| 523 | 476 | 43.1 4} H52.1 1472 | 37.9| 63.6 | 47.5
>050) 364 | 656 |46.8 1 36.1 | 65.8 | 46.6 | 36.6 | 65.2 | 46.9
>090 ] 253 768 358 | 253 | 773|381} 366} 652 [ 46.9
>095 | 232 78.1 358 234 783 | 36.1| 366 | 652 | 46.9
>099 | 173 | 816|285 234 | 783 |36.1 | 36.6 | 65.2 ] 46.9

though the values of recall and precision are not
so high. We discuss the reason for this in the next
section.

Discussion

The problem of Japanese word segmentation is
that people often can not agree on a single word
segmentation. Therefore, the reported perfor-
mance could be greatly underestimated. Most of
the new words extiracted by the system are ac-
ceptable as a word (at least for us), and may not
necessarily be a wrong word entry. On the other
hand, most of the new words not extracted by the
system can be divided into shorter words that are
registered in the dictionary.

For example, in the first sentence of Fig-
ure 8, 7—% + a3 a=4—¥ 3 ("data commu-
nication’) is regarded as one word in corpus seg-
mentation and counted as an unknown word in
the test sentence. However, the system seg-
mented it into ¥—# (’data’) and T I==4—
¥ a ¥ ("communication’), both of which are found
in the dictionary. In the second sentence of Fig-
ure 8, the system extracted /~/ — /74 ("Duke
of Hanover’) as a new word, while this word is di-
vided into /~/ —%' 7 ("Hanover’) and % ("Duke’)
in corpus segmentation. Most of extraction errors
are of this category.

There are three types of obvious extraction
errors. The first type is the truncation of long
words. Some transliterated Western-origin words
exceed the predefined maximum length for un-
known word. The third sentence of Figure 8 is an
example of this type. In Japanese, 'illustration’ is
transliterated into 9 characters £ 7 X hL—33
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v, which exceeds the maximum unknown word
length of 8 characters in our system. Since £ 7 A
I (the transliteration of ’illust’, which also means
illustration in Japanese) is registered in the dictio-
nary, L — 3 3~ (the transliteration of ’ration’) is
incorrectly extracted as a new word.

The second type is the fragmentation of nu-
merals. Since we did not use any tokenizers,
numerals tend to be divided arbitrarily. In the
second sentence in Figure 8, the system divided
“1676” into “16” and “76”. In fact, it may output
“1” and “676”, “16” “7” and “6”, or whatever.

The third type is the concatenation of noun(s)
and particle. In other words, the system some-
times erroneously recognizes a noun phrase as a
word. For example, the Japanese counterparts of
“A of B”, “A and B”, and “A, B” are recognized
as a word. This may be because the probability
of one long unknown word can be higher than the
product of the probabilities of two short unknown
(or infrequent) words and one known word. The
fourth sentence of Figure 8 is an example of this
type of error. The system considered ®[iili#iA>>
A[#A (controllable and observable’) as a word,
while it is divided into #] (’able’), {48 (’control’),
A2 (*and’), 7 (Cable’), and BL#] (Cobserve’) in the

corpus.

As for reestimation, Table 3 shows no signif-
icant improvements in the new word extraction
accuracy. The only effect of reestimation, in our
experiment, is to increase the expected word fre-
quencies of the unknown word hypotheses whose
expected word frequencies are greater than the
pruning threshold of reestimation.

This result does not necessarily mean that
reestimation is useless. This is because most un-



matched=196

371487 LANBN2000 ¥YVv&y Pry7 bh=2—R My7 7V—FUyk LYo 7
HraE EMEC BB RORER ESL MREE B REL BOEEHe s Y 53 .

sys-matched=103

90HT700048 STKHE =yt mX Yo Crb—il 772 Fa7ik 7u—F 47 v=a
ML TR e R SVAE FIUKE RKFiEMZ 8P, 85 TR FEIG BEEML BERE ...

std~matched=342.

404 BBNT7 RNURAMcayba—g—it XBEE HboLtE5W FXxT7v7WE vOox—E¥E
1y 277 —RE S5lELY6T HEREE BEESK EEMabis T EEEE BRI R E (M

BRE LK AL EF Ahld ...

threshold=0.5
std=b38, sys=299, matched=196

recall=36.4 (196/538), precision=65.6 (196/299)

Figure 7: Excerpts of correctly extracted new words (matched), incorrectly extracted word hypotheses
(sys-matched), and not extracted new words (std-matched).

known words appeared only once in the test sen-
tences. An ideal example to confirm that reesti-
mation works well would have an unknown word
appearing more than twice in the test sentences,
and it is trivial to extract the word in one appear-
ance, while it is difficult in the others, because
of, for example, successive unknown words. If the
test set were larger, or the out-of-vocabulary rate
were higher, we believe that the effectiveness of
reestimation would be more clearly shown.

Related Work

Recent years have seen several works on corpus-
based word segmentation and dictionary construc-
tion for both Japanese and Chinese. For Chi-
nese, (Sproat et al., 1994) used the word unigram
model in their word segmenter based on weighted
finite-state transducer. Word frequencies were es-
timated by the Viterbi reestimation (a reestima-
tion procedure using the best analysis) from an
unsegmented corpus of 20 million words. Initial es-
timates of the word frequencies were derived from
the frequencies in the corpus of the strings of hanzi
making up each word in the lexicon whether or not
each string is actually an instance of the word in
question.

(Chang et al., 1995) proposed an automatic
dictionary construction method for Chinese from a
large unsegmented corpus (311591 sentences) with
the help of a small segmented seed corpus (1000
sentences). They combined Viterbi reestimation
using the word unigram model with a post filter
called the “I'wo-Class Classifier”, which is a lin-
ear discriminatlion function to decide whether the
string is actually a word or not based on features
derived from the character N-gram in a large un-
segmented corpus. The system’s performance is
compared with a word list derived from two on-
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line Chinese dictionaries (21141 words). The re-
ported recall and precision values were 56.88% and
77.371% for two character words, and 6.12% and
85.97% for three character words, respectively.

For Japanese, (Nagao and Mori, 1994) pro-
posed a method of computing an arbitrary length
character N-gram, and showed that the charac-
ter N-gram statistics obtained from a large cor-
pus includes information useful for word extrac-
tion. However, they did not report any evaluation
of their word extraction method.

(Teller and Batchelder, 1994) proposed a very
naive probabilistic word segmentation method for
Japanese, based on character type information
and hiragana bigram frequencies. They claimed
98% word segmentation accuracy, while we claim
94.7%. However, their evaluation method is very
optimistic, and completely different from ours.
They count an error only when the system segmen-
tation violates morpheme boundaries. In other
words, they count an error only when the system
segmentation is not acceptable to human judge-
ment, while we count an error whenever the sys-
tem segmentation does not exactly match the cor-
pus segmentation, even if it is inconsistent.

We used the word bigram model for word
segmentation, and expected word frequency for
unknown word extraction. We compared the
results with a segmented Japanese corpus, and
reported 43.7% recall and 52.3% precision for
1000 sentences whose out-of-vocabulary rate is
2.1%. It is impossible to compare our results with
(Chang et al., 1995), because the experiment con-
ditions are completely different in terms of lan-
guage (Chinese vs. Japanese), the size of seed
segmented corpus, the size of target unsegmented
corpus and its out-of-vocabulary rate, the size of
initial word list, and the type of reference data



(on-line dictionary vs. segmented corpus).

Our idea of filtering erroneous word hypoth-
esis by expected word frequency is simple and
straightforward. The major contribution of this
paper is that we present a more accurate method
for estimating word frequencies in an unsegmented
corpus, even if it includes unknown words. This
is achieved by introducing an explicit statistical
model of unknown words, and by using an N-
best word segmentation algorithm (Nagata, 1994)
as an approximation of the generalized Forward-
Backward algorithm.

In English taggers, (Weischedel et al., 1993)
proposed a statistical model to estimnate word out-
put probability p(w;|t;) for an unknown word from
spelling information such as inflectional endings,
derivational endings, hyphenation, and capitaliza-
tion. Our word model can be thought of a gener-
alization of their statistical model. One potential
benefit of our statistical model and segmentation
algorithm is that they are completely independent
of the target language and its writing system. We
intend to test our word segmentation method on
other languages, such as Chinese and Thai.

Conclusion

We present a new word extraction method for
Japanese based on expected word frequency, which
is computed by using a statistical language model
and an N-best word segmentation algorithm. Al-
though we have encouraging initial results, there
are a number of questions to be answered, for ex-
ample, the minimum seed segmented corpus size
required, the minimum initial word list required,
the effect of reestimation for a large unsegmented
corpus with various out-of-vocabulary rates. Be-
sides these questions, we are also thinking of as-
signing the part of speech to the extracted new
words in order to construct a Japanese dictionary
automatically.
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Computers are increasingly getting connected through data communication such as satellites and
optical fibers.
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In 1676, he became the consultant of Duke of Hanover and the head of the library, and he worked
hard to found Berlin science academy, then, in 1700, he became the president.
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He held public exhibition of illustration every year, and found many new talents, such as Mr.
Katsuhiko Hibino.
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If linear system is controllable and observable, Karman filter is asymptotic stable.
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Figure 8: Comparison between the corpus segmentation (left) and the system segmentation (right). Only
differences are listed in UNIX sdiff -s style.

59



