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Abstract  

This paper describes a reestimation method for stochastic language models such as the 
N-gram model and the Hidden Maxkov Model(HMM) from ambiguous observations. It is 
applied to model estimation for a tagger from a~ untagged corpus. We make extensions 
to a previous algorithm that reestimates the N-gram model from an untagged segmented 
language (e.g., English) text as training data. The new method can estimate not only the 
N-gram model, but also the HMM from untagged, unsegmented language (e.g., Japanese) 
text. Credit factors for training data to improve the reliability of the estimated models 
axe also introduced. In experiments, the extended algorithm could estimate the HMM as 
well as the N-gram model from an untagged, unsegmented Japanese corpus and the credit 
factor was effective in improving model accuracy. The use of credit factors is a useful 
approach to estimating a reliable stochastic language model from untagged corpora which 
axe noisy by nature. 

1 I n t r o d u c t i o n  

Stochastic language models are useful for many language processing applications such as speech 
recognition, natural language processing and so on. However, in order to build an accurate 
stochastic language model, large amounts of tagged text are needed and a tagged corpus may 
not always match a target application because of, for example, differences between the tag 
systems. If the language model can be estimated from untagged corpora and the dictionary of 
a target application, then the above two problems would be resolved because large amounts 
of untagged corpora could be easily used and untagged corpora are neutral toward any appli- 
cations. 

Kupiec (1992) has proposed an estimation method for the N-gram language model using 
the Baum-Welch reestimation algorithm (Rabiner et al., 1994) from an untagged corpus and 
Cutting et al. (1992) have applied this method to an English tagging system. Takeuchi and 
Matsumoto (1995) also have developed an extended method for unsegmented languages (e.g., 
Japanese) and applied it to their Japanese tagger. 

However, Merialdo (1994) and Elworthy (1994) have criticized methods of estimation from 
an untagged corpus based on the maximum likelihood principle. They pointed out limitation 
of such methods revealed by their experiments and said that the optimization of likelihood 
didn't necessarily improve tagging accuracy. In other words, the training data extracted from 
an untagged corpus using only a dictionary are, by nature, too noisy to build a reliable model. 

I would like to know whether or not the noise problem occurs in other language models such 
as the HMM. Zhou and Nakagawa (1994) have shown, in the experiments of word prediction 
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from the previous word sequence, that the HMM is more powerful than the bigram model 
and is nearly equivalent to the trigram model, though the number of parameters of the HMM 
is less than that in the N-gram model. In general, models with fewer parameters are more 
robust. Here, I investigate a method that can estimate HMM parameters from an untagged 
corpus and also a general technique for supressing noise in untagged training data. The goals 
of this paper are as follows. 

• Extension of Baum-Welch algorithm: I formulate an algorithm that can be applied to 
untagged, unsegmented language corpora and estimate not only the N-gram model, but 
the HMM. Also, a scaling procedure is defined in the algorithm. 

• Credit factor: In order to overcome the noise of untagged corpora, I introduce credit 
factors that are assigned to training data. The estimation algorithm can approximately 
maximize the modified likelihood that is weighted by the credit factors. 

The problem of stochastic tagging is formulated in the next section(2) and the extended 
reestimation method in section 3. A way of determining the credit factor based on a rule- 
based tagger is described in section 4. Experiments which evaluate the proposed method are 
reported in section 5. 

2 Stochast ic  Tagging Formulat ion 

In general, the stochastic tagging problem can be formulated as a search problem in the 
stochastic space of sequences of tags and words. In this formulation, the tagger searches for 
the best sequence that maximizes the probability (Nagata, 1994): 

(1~ r, T) = arg maxp(W, TIS ) = arg maxp(W, T) (1) 
W,T W,T 

where W is a word sequence (wl,w2, ...,Wn), T is a tag sequence (tl,t2,.. . , tn) and S is an 
input sentence. Since Japanese sentences have no delimiters (e.g., spaces) between words, a 
morphological analyzer (tagger) must decide word segmentation in addition to part-of-speech 
assignment. The number of segmentation ambiguities of Japanese sentences is large and these 
ambiguities complicate the work of a Japanese tagger. 

Although all possible p(W, T)s on combinations of W and T cannot be estimated, there 
are some particularly useful approximations such as the N-gram model and the HMM. The 
following formulae are straightforward formulations whose observed variables are pairs of words 
and tags: 

n 

p(W, T) ~ ~I  p(wi, tilwi-N+l, ..., wi-1, ti-N+l, . . . ,  ti--1) (2) 
i = 1  

n--1 

p(W,T)  '~' ~ I~  ax(i),x(i+l)bz(i+l) (wi+l'ti+l) (3) 
x i = 0  

Formula 2 is the N-gram model and formula 3 is the HMM. When N of formula 2 is two, 
the model is called the bigram, when N is three, it is the trigrarm Symbol x of formula 3 
denotes a possible path of states of the HMM and x(i) denotes a state of the HMM that 
is visited at the i-th transition in the path x .  a x ( i ) , x ( i + l  ) is the transition probability from 
x(i) to x(i + i). In particular, ax(0),x(1 ) represents the initial state probability (Trx(1)) of x(1). 
b~(i)(w , t) is an output probability of a pair of word w and tag t on the state x(i). A state of 
the HMM represents an abstract class of a part of the input symbol sequence. That  is, we can 
regard the HMM as a mixed model of unigram, bigram, trigram, and so on. 
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We can also decrease the number of model parameters by separating the tag model from 
formulae 2 and 3. In the models, the N-gram and the HMM are used to model tag sequence 
and p(wlt ) is used for another part of the model. 

n 

v(w, T) II v(ti Iti-N...ti-1)v(wilt ) (4) 
i =1  

n - - 1  

p(W,T) ~ ~ ~I = ax(i),x(i+l)b~(i+l)(ti+l)p(wi+l]ti+l ) (5) 
x i=0 

The PAIR-HMM, TAG-bigram model, and TAG-HMM based on formulae 3, 4 (where 
N = 2) and 5, respectively, will be investigated in section 5. In the next section, I describe 
an extension to the forward-backward algorithm for determining HMM parameters fi'om am- 
biguous observations. 

3 R e - e s t i m a t i o n  M e t h o d  from A m b i g u o u s  O b s e r v a t i o n s  

3.1 A m b i g u o u s  O b s e r v a t i o n  S t r u c t u r e  

Here, we define an ambiguous observation as a lattice structure with a credit factor for each 
branch. In unsegmented languages that have no delimiter between words, such as Japanese, 
candidates for alignment of tag and word have different segmentation. That is, they must be 
represented by a lattice. We can create a lattice structure from untagged Japanese sentences 
and a Japanese dictionary. 

The following is the definition of the lattice of candidates representing ambiguous word 
and tag sequences called the morpheme network. All morphemes on the morpheme network 
are numbered. 

w, or word(s): The spelling of the s-th morpheme. 
ts or tag(s): The tag of the s-th morpheme. 
suc(s): The set of morpheme numbers that the s-th morpheme connects to. 
pre(s): The set of morpheme numbers that connect to the s-th morpheme. 
credit(r, s): The credit factor of the connection between the r-th and the s-th morphemes. 

For example, a morpheme network can be derieved from the input sentence " ~  L ~3 v~" 
which means "not to sail" (Fig. 1). The real and dotted lines in Figure 1 represent the correct 
and incorrect paths of morphemes, respectively. Of course, any algorithm for estimation 
from untagged corpora cannot determine whether the connections are correct or not. The 
connections of dotted lines constitute noise for the estimation algorithm. The numbers on the 
lines show the credit factor of each connection that is assigned by the method described in 
section 4. The numbers at the right of colons are morpheme numbers. In Figure 1, word(3) 
is ' ~ b ', tag(3) is 'verb', pre(3) is the set {1}, sue(3) is the set {6, 7} and the credit factor 
credit(l, 3) is 0.8. 

3.2 R e - e s t i m a t i o n  A l g o r i t h m  

Given a morpheme network, we can formulate the reestimation algorithm for the HMM pa- 
rameters. The original forward-backward algorithm calculates the probability of the partial 
observation sequence given the state of the HMM at the time (position of word in the input 
sentence). The original algorithm does this by a time synchronous procedure operating on 
unambiguous observation sequence. The extended algorithm calculates the probability of the 
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INPUT SENTENCE: 
(not to s a i l )  

., ~ ~r~(noun): 1 ..... .0.~8. ..... * ~ L,(verb):3,:--0-'-2----:- ¢'0¢ P~(adjective):6 , ,  
.0.:-I"" (ship) (putout) "..0.5,-"*(not) ",0.9 

0"" :< "" 
0 . ~  0.3/ . . . .  "., ",, 

u.= ~ ~J~(noun):2 .0.7 • [.,(verb):4 -'"'" 0.7 ~ ~'=¢~(post-fix):7 0.9 ~ "."(symbol):8 0~90  
(saling) ""..., (do) (not) ,.,-'" 

o:¢'-. . . . . .  
" ' "  L ~'0¢ ~(noun):5 .... "" 

(bamboo sword) 

Figure 1: An example of the morpheme network. 

part ial  ambiguous  sequence given the state of the HMM at the node (morpheme candidate)  
in the morpheme  network by a node synchronous procedure.  The  a lgor i thm formulat ion is as 
follows: 

initial: 
c~u(j) = lrjbj(wu, tu)credit(#, u) where 
fly(i) = 1 where 

recursion: 
N 

c~(j) = ~] E a~(i)aljbj(wr,t~)credit(s,r) 
sEpre ( r )  i=1 

N 
fls(i) = ~ ~ aijbj(wr, tr)flr(j)credit(s,r) 

u e on(l) 
v E on(B) 

r E s u c ( s )  j = l  

where on( l )  is the set of numbers  of the left most  morphemes  in the morpheme  network and 
on(B) is the set of numbers  of the right most  morphemes.  The  ' # '  in credit(#, u) means  the 
beginning-of-text  indicator. 

The  trellis, tha t  is often used to explain the originM forward-backward algori thm, is ex- 
tended  into a network trellis. Figure 2 is an example of the network trellis tha t  is generated 
from the morpheme  network example given above (Fig. 1). In this example, c~7(1) means  a 
forward probabil i ty of the 7th morpheme at the 1st state of the HMM. 

Using the extended forward-backward probabilities we can formulate the rees t imat ion al- 
gor i thm from ambiguous observations: 

K 1 
k~__ 1 ~ ~ czrk(i)aijbj(ts)fl~(j)credit(r,s) 

---- rEpre ( s )  
a iJ  ---- K 

k=l  

K 

k = l  t'i(w, t) = wora(sl=~,t,g(~l=t (7/ 

k=l  

(6) 
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n o u n :  1 verb:3  a d j e c t i v e : 6  

o1:8 

n 

" < - . . . . . . . . ~ ,  . :[" (X7(1) 

n o u n : 5  " ~ 7 ( 3 )  

Figure 2: An example of the network trellis 

K 
1 O¢~(/)~sk (i) E ~  E 

k=l 8Eon(1) 
~ = g N (8) 

k=l sEon(1)j=l 

where k represents the k-th input sentence and Pk is sum of the probabilities of possible 
sequences in the k-th morpheme network weighted by the credit factors. 

3 .3  S c a l i n g  

In the calculation of forward-backward probabilities, under-flow sometimes occurs if the dic- 
tionaxy for making the morpheme network is large and/or  the length of the input  sentence 
is long, because the forward-backward algorithm multiplies many small transition and output  
probabilities together. This problem is native to speech modeling, but in general, the modeling 
of text is free from this problem. However, since Japanese sentences tend to be relatively long 
and the recent Japanese dictionary for research is large, under-flow is sometimes a problem. 
For example, the EDIt Japanese corpus (EDR, 1994) includes sentences that  consist of more 
than fifty words at a frequency of one percent. In fact, we experienced the underflow problem 
in preliminary experiments with the EDR corpus. 

Application of the scaling technique of the original backward-forward algorithm (Rabiner 
et al., 1994) to our reestimation method would solve the under-flow problem. The original 
technique is based on synchronous calculation with positions of words in the input sentence 
in left-to-right fashion. However, since word boundaries in the morpheme network may or 
may not cross on the input character sequence, we cannot directly apply this method to the 
extended algorithm. 

Let us introduce synchronous points on a~ input characters sequence to facilitate synchro- 
nization of the calculation of forward-backward probabilities. All possible paths of a morpheme 
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Syncronous 
points 

! ! I ! 
I I o ! 
o ! l l 
i i i i 

~t~ :2 • L:4 ~:7 j~ 

! ! 
! ! 
! I 
! ! 
| i 

2 34 

".":8 

Figure 3: An example of syncronous points 

network have one morpheme on each synchronous point. The synchronous points are defined 
as positions of the head character of all morphemes in a morpheme network and are numbered 
from left to right. The synchronous point number of the left most word is defined as 1. A 
morpheme is associated with the synchronous points which are located in the flow of characters 
of the morpheme. 

The symbols and on(q) function are defined as follows: 

B: The maximum number of synchronous points in a morpheme network. 

on(q): The set of morpheme numbers that are associated with synchronous point q. 

L,: The left most synchronous point that is associated with the s-th morpheme. 

R,: The right most synchronous point that is associated with the s-th morpheme. 

Figure 3 is an example of the syncronous points for the morpheme network example given 
above (Fig. 1). The values of the symbols and function defined above are as follows in this 
example; B = 5, on(2) = {2, 3}, L5 = 3, R5 = 4 and so on. 

The scaled forward probabilities are defined with the above definitions. The notation ~st(i) 
is used to denote the unscaled forward probabilities of the s-th morpheme on the syncronous 
point l, &sl(i) to denote the scaled forward probabilities, and &,l(i) to denote the local version 
of c~ before scaling, cl is the scaling factor of synchronous point I. 

initial: 

&sl(i) = ~sl(i) = ~ribi(ws, t , )credi t (~,s)  where  s E on(l) 
N ^ 

C 1 : 1 /  E E &sl( / )  
sEon(1) i=1 

^ 

& s l ( i )  = C l & s l ( i )  where  s E on(l) 
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cost 0 1-10 11-20 21-50 51-100 101-200 201-500 501-1000 
precision 0.84 0.16 0.13 0.069 0.074 0.0083 0.0017 0 

Table 1: The precision on each cost of Juman 

recursion: 

&s,/-l(i) i f  L,  7~l 
N 

& ,l_l(i)aijbtj(w,,t )credit(r,s) i f  L ,  = l 
r E p r e ( s )  i=1  
N ^ 

C l -~ 1 E E &sl(i) 
sEon(l) i = 1  

&st(i) = Cl&t(i)  

The scaled forward probabilities can be calculated synchronizing with the synchronous 
points from left to right. The scaled backward probabilities are defined in the same way using 
the scaling factors obtained in the calculation of the forward probabilities. 

The scaled forward-backward probabilities have the following property: 

1 
&s(i)aijbj(wr, tr)flr(j) = --as( i )ai jbj(wr,  tr)fl~(j) (9) 

Pk 

where &8 = &~R~ and fls = fl~ns. Using this property, the reestimation formulae can be 
replaced with the scaled versions. The replaced formulae are free of the under-flow problem 
and their use also obviates the need to calculate the weighted sum of path probabilities of the 
k-th ambiguous observation, Pk. 

4 C r e d i t  F a c t o r  

In the estimation of a Japanese language model from an untagged corpus, the segmentation 
ambiguity of Japanese sentences severely degrades the model reliability. I will show that model 
estimations excluding the credit factors cannot overcome the noise problem in section 5. Credit 
factors play a very important role by supressing noise in the training data. However, a way of 
calculating the optimal value of credit is not yet available, so a preliminary method described 
in this section was used for the experiments. 

The 'costs' of candidates outputted by a rule-based tagger were used as the source of 
information related to the credit. Juman (Matsumoto et al., 1994) was used in our experiments 
to generate the morpheme network. Juman is a rule-based Japanese tagging system which 
uses hand-coding cost values that represent the implausibility of morpheme connections, and 
word- and tag-occurences. Given a cost-width, Juman outputs the candidates of morpheme 
sequences pruned by this cost-width. A larger cost-width would result in a larger number of 
output candidates. 

We evaluated the precision of a set of morpheme candidates that have a certain cost. 
The precision value was used as the credit factor of each branch in the morpheme network 
to be outputted by Juman (Table 1). In the experiments described in the next section, we 
approximated the results from this example (see Table 1) by the formula 1/(a* cost + b), where 
a was 0.5 and b 1.19. 
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5 Experiments 

5.1 Implementat ion 

The experimental system for model estimation was implemented using the extended reestima- 
tion method. A morpheme network of each input sentence was generated with Juman (Mat- 
sumoto et al., 1994) and the credit factor was attached to each branch as described above. The 
system can estimate three kinds of models; the PAIRoHMM (formula 3) with output symbols 
as pairs of words and tags, the TAG-bigram model (formula 4, where N = 2) and TAG-HMM 
(formula 5) with output symbols as tags and p(w]t). The scaling technique was used with all 
estimations. 

The numbers of parameters of the TAG-bigram model, the TAG-HMM and the PAIR-HMM 
are approximated by the equations N T  2 + ND, N S  2 + N S  * N T  + ND,  and N S  2 + N S  * ND,  
respectively, where NT is the number of tags, NS is the number of states of the HMM, and 
ND is the number of entries in the dictionary. In all experiments, NT,  N S  and N D  were fixed 
at 104, 10, and 130,000, respectively. The numbers of parameters of the TAG-bigram model, 
TAG-HMM, PAIR-HMM were 10816 + ND, 1140 + ND, and 100+ IOND, respectively. Note 
that the number of parameters of the tag model of the TAG-HMM is one tenth that of the 
TAG-bigram model. 

For the model evaluation, a stochastic tagger was implemented. Given a morpheme network 
generated by Juman with a cost-width, the implemented tagger selects the most probable path 
in the network using each stochastic model. The best path was calculated by the Viterbi- 
algorithm on the paths of the morpheme network. 

5.2 Data  and Evaluation 

I used 26108 Japanese untagged sentences as training data and 100 hand-tagged sentences as 
test data, both from the Nikkei newspaper 1994 corpus (Nihon Keizai Shimbun, Inc., 1995). 
The test sentences include about 2500 Japanese morphemes. The tags were defined as the 
combination of part-of-speech, conjugation, and class of conjugation. The number of kinds of 
tags was 104. 

In the precision evaluation, the correct morpheme was defined as that matching the seg- 
mentation, tag, and spelling of the base form of the hand-tagged morpheme. The precision 
was defined as the proportion of correct morphemes relative to the total number of morphemes 
in the sequence which the tagger outputted as the best alignment of tags and words. 

5.3 R e s u l t s  

Three kinds of models were estimated using the untagged training data with the initial pa- 
rameters set to the equivalent probabilities. Each model was estimated both with and without 
use of the credit factor. The reestimation algorithm was iterated for five to twenty times. 

The precision of the most plausible segmentation and tag assignment was outputted by 
the tagger based on each stochastic model estimated either without (Figs. 4 and 5) or with 
(Fig. 6) the credit factor assignment function described in the previous section. Two versions 
of the morpheme network for the estimations were used; one limited by a cost-width of 500 
(Fig. 4) and the other by a cost-width of 70 (Figs. 5 and 6). The cost-width of 500 required 
almost all of the morphemes to be used for the estimation. In other words, a morpheme 
network of cost-width 500 was equivalent to that extracted from the input sentence with a 
dictionary only. Although one experiment (Fig. 5) didn't use the credit factor assignment 
function, it is regarded as using a special function of the credit factor that returns 0 or 1, that 
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cost-width 0 10 20 50 100 200 500 1000 

precision 
recall 

84.4 79.8 79.3 71.0 66.3 43.6 36.5 36.3 
94.7 96.0 96.1 97.2 98.0 98.7 98.7 98.7 

Table 2: The precision and recall of Juman on each cost-width. 

is a step function, with a cost threshold of 70. However, this function doesn't  differentiate 
among morphemes whose costs are 0 and 70. 

The cost-widths (see horizontal axes in Figs. 4, 5 and 6) were provided to Juman to generate 
the morpheme network used in the stochastic tagger for model evaluation. The tagger chose 
the best morpheme sequence from the network by each stochastic model. A larger cost-width 
would result in a larger network, lower precision, and higher recall (Table 2). Note that  
the precision of any model will never exceed the recall of Juman (see Table 2). If a model 
is correctly estimated, then a larger cost-width will improve precision. Therefore, we can 
estimate model accuracy from the precision at cost-width 500 or 1000. 

When estimated without the credit factor (Fig. 4), neither the HMM nor the TAG-bigram 
model was robust against noisy training data. It was also observed in the experiments that  
the accuracy of tagging was degraded by excessive iterations of reestimation. I conclude that  
it is hard to estimate the Japanese model from only an untagged corpus and a dictionary. 

Precision was improved by the step credit factor function whose threshold is 70 (Fig. 5). 
The precision of the HMMs are better than the precision of the TAG-bigram model, despite 
the number of parameters of the TAG-HMM being smaller than that  for the TAG-bigram 
model. The HMM is very capable of modeling language, if the training data is reliable. 

Including the variable credit factor in these models is an effective way to improve precision 
(Fig. 6). In particular, the results of the TAG-bigram model were dramatically improved 
by using the variable credit factor. Although incorporating the credit factor into the HMM 
improved the results, they remained at a level similar to that  of the TAG-bigram model with 
the credit factor. Although it is not clear exactly why the HMM did not improved more, 
there are at least three possible explanations: (1) theoretical limitation of estimation using 
a~ untagged corpus, (2) using an untagged corpus, estimation of the HMM is harder than 
estimation of the bigram model, therefore more corpora are needed to train the HMM or 
(3) the credit factor in this experiment matched to the bigram model but not to the HMM. 
Investigation of these possibilities in the future is needed. 

6 D i s c u s s i o n  and  F u t u r e  W o r k  

Merialdo (1994) and Elworthy (1994) have insisted, based on their experimental results, that  
the maximum likelihood training using an untagged corpus does not necessarily improve tag- 
ging accuracy. However, their likelihood was the probability with all paths weighted equiva- 
lently. Since more than half of the symbols in the observations may be noise, models estimated 
in this way are not reliable. The credit factor was introduced to redefine the likelihood of train- 
ing data. The new likelihood was based on the probability with each possible path weighted 
by the credit factor. The extended reestimation algorithm can approximately maximize the 
modified likelihood and improve the model accuracy. 

The Baum-Welch reestimation algorithm was also extended in two ways. The algorithm can 
be applied to an unsegmented language (e.g., Japanese), because of the extension for coping 
with lattice-based observations as training data. The other extension is that  the algorithm can 
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Figure 4: The precision of the models estimated without the credit factor 
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train the HMM in addition to the N-gram model. Takeuchi and Matsumoto (1995) proposed 
the bigram estimation method from an untagged Japanese corpus. Their algorithm divides 
a morpheme network into possible sequences that  are then used for the normal Baum-Welch 
algorithm. This algorithm cannot take advantage of the scaling procedure, because it requires 
the synchronous calculation of all possible sequences in the morpheme network. Nagata (1996) 
recently proposed a generalized forward-backward algorithm that  is a character synchronous 
method for unsegmented languages. He applied this algorithm to bigram model training from 
untagged Japanese text for new word extraction. However, he did not apply this algorithm to 
the estimation of HMM parameters. 

Two additional experiments have been planned. One is related to the limitations of esti- 
mation using untagged corpora. The other is related to assignment of the credit factor without 
a rule-based tagger. 

The credit factor improved the upper bound of the estimation accuracy from an untagged 
corpus. However, at higher levels of tagging accuracy, the reestimation method based on the 
Baum-Welch algorithm is limited by the noise of untagged corpora. On this point, I agree 
with Merialdo (1994) and Elworthy (1994). One promising direction for future work would 
be an integration of models estimated from tagged and untagged corpora. Although the total 
model estimated from an untagged corpus is worse than that  from a model using a tagged 
corpus, a part  of the model using the untagged corpus may be better, because estimations 
from untagged corpora can use very extensive training material. In the bigram model, we can 
weight each probability of a pair of tags in both models estimated from tagged or untagged 
corpora. A smoothing method,  such as deleted interpolation (Jelinek, 1985), can be used for 
weighting. 

Another promising avenue for research is the development of improved methods to assign 
the credit factor without using rule-based taggers. Any chosen rule-based tagger will impart  
its own characteristic errors to credit factors it has been used to assign. Such errors can be 
misleading in the modeling of language. In order to assign more neutral values to the credit 
factor, we can use the estimated model itself. In the initial estimation of a model, an equivalent 
credit factor is used for estimation. After several iterations of reestimation, development data  
tagged by hand is used to evaluate the estimated model. The credit factors can be assigned 
from this evaluation process and be used in the second phase of estimation. Following the 
second phase of estimation, new credit factors would be decided by evaluation of the new 
model. Such a global iteration is a special version of error correcting learning. 

7 Conclusion 

We have proposed an estimation method from ambiguous observations and a credit factor. 
This estimation method can use untagged, unsegmented language corpora as training data  
and build not only the N-gram model, but  also the HMM. A credit factor can improve the 
reliability of the model estimated from an untagged corpus. 

This method  can be further improved and integrated with other language models. In 
particular, it is important  to formulate a dynamic method to assign the credit factor based on 
small sets of tagged data for development. 

Acknowledgement  

Thanks are due to the members of both the Itahashi laboratory at the University of Tsukuba 
and the Nakagawa laboratory at the Toyohashi University of Technology for their help and 
criticism at various stages of this research. 

166 



R e f e r e n c e s  

Cutting, D., J. Kupiec, J. Pedersen and P. Sibun. 1992. A practical part-of-speech tagger. 
In Proceedings off the Second Conference on Applied Natural Language Processing, pages 
133-140. Association for Computational Linguistics, Morristown, New Jersey. 

Elworthy, David. 1994. Does Baum-Welch re-estimation help taggers? In Proceedings of 
the 4th Conference on Applied Natural Language Processing, pages 53-58. Association for 
Computational Linguistics, Morristown, New Jersey. 

Japan Electronic Dictionary Research Institute. 1995. EDR Electronic Dictionary Version 2 
Technical Guide. http://www.iijnet.or.jp/edr. 

Jelinek, Frederick. 1985. Self-organized language modeling for speech recognition. IBM Re- 
port. (Reprinted in Readings in Speech Recognition, pages 450-506, Morgan Kaufmann). 

Kupiec, Julian. 1992. Robust part-of-speech tagging using a hidden Markov model. Computer 
Speech and Language, 6, pages 225-242. 

Matsumoto, Y., S. Kurohashi, T. Utsuro, Y. Nyoki and M. Nagao 1994. Japanese morpho- 
logical analysis system JUMAN manual (in Japanese). 

Merialdo, Bernard. 1994. Tagging English text with a probabilistic model. Computational 
Linguistics, 20(2), pages 155-171. 

Nagata, Masaaki. 1994. A stochastic Japanese morphological analyzer using a forward-DP 
backward-A* N-best search Mgorithm. In Proceedings of COLING-94, pages 201-207. 

Nagata, Masaaki. 1996. Automatic extraction of new words from Japanese texts using gener- 
alized forward-backward search. In Proceedings of Empirical Methods in Natural Language 
Processing, pages 48-59. 

Nihon Keizai Shimbun, Inc. 1995. Nikkei newspaper database 1994, CD-ROM version. 

Rabiner, Lawrence and Biing-Hwang Juang. 1994. Fundamentals of Speech Recognition. PTR 
Prentice-Hall, Inc. 

Takeuchi, Kouichi and Yuji Matsumoto. 1995. Learning parameters of Japanese morphological 
analyzer based-on hidden Markov model. IPSJ Technical Report SIG-NL, 108-3, pages 13- 
19 (in Japanese). 

Zhou, Min and Seiichi Nakagawa. 1994. A study of stochastic language models for Japanese 
and English. In Proceedings of Symposium on Learning in Natural Language Processing, 
pages 57-64 (in Japanese). 

167 


