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Abstract 

In this paper, an integrated score function is proposed to resolve the ambiguity of deep- 
structure, which includes the cases of constituents and the senses of words. With the integrated 
score function, different knowledge sources, including part-of-speech, syntax and semantics, are 
integrated in a uniform formulation. Based on this formulation, different models for case 
identification and word-sense disambiguation are derived. In the baseline system, the values of 
parameters are estimated by using the maximum likelihood estimation method. The accuracy rates 
of 56.3% for parse tree, 77.5% for case and 86.2% for word sense are obtained when the baseline 
system is tested on a corpus of 800 sentences. Afterwards, to reduce the estimation error caused by 
the maximum likelihood estimation, the Good-Turing's smoothing method is applied. In addition, a 
robust discriminative learning algorithm is also derived to minimize the testing set error rate. By 
applying these algorithms, the accuracy rates of 77% for parse tree, 88,9% for case, and 88.6% for 
sense are obtained. Compared with the baseline system; 17.4% error reduction rate for sense 
discrimination, 50.7% for case identification, and 47.4% for parsing accuracy are obtained. These 
results clearly demonstrate the superiority of the proposed models for deep-structure 
disambiguation. 

I Introduction 

For many natural language processing tasks, e.g., machine translation, systems usually 
require to apply several kinds of knowledge to analyze input sentence and represent the analyzed 
results in terms of a deep structure which identify the thematic roles (cases) of constituents and the 
senses of words. However, ambiguity and uncertainty exist at the different levels of analysis. To 
resolve the ambiguity and uncertainty, the related knowledge sources should be properly 
represented and integrated. Conventional approaches to case identification usually need a lot of 
human efforts to encode ad hoc rules [1,2,3]. Such a rule-based system is, in general, very 
expensive to construct and difficult to maintain. In contrast, a statistics-oriented corpus-based 
approach achieves disambiguation by using a parameterized model, in which the parameters are 
estimated and tuned from a training corpus. In such a way, the system can be easily scaled up and 
well trained based on the well-established theories. 

However, statistical approaches reported in the literature [4,5,6,7] usually use only surface 
level information, e.g., collocations and word associations, without taking structure information, 
such as syntax and thematic role, into consideration. In general, the structure features that 
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characterize long-distance dependency, can provide more relevant correlation information between 
words. Therefore, word association information can be trained and applied more effectively by 
considering the structural features. In many tasks, such as natural language understanding and 
machine translation, deep-structure information other than word sense is often required. 
Nevertheless, few research was reported to provide both thematic role and word sense information 
with statistical approach. 

Motivated by the above concerns, an integrated score function, which encodes lexical, 
syntactic and semantic information in a uniform formulation is proposed in this paper. Based on the 
integrated score function, the lexical score function, the syntactic score function, and the semantic 
score function are derived. Accordingly, several models encoding structure information in the 
semantic score formulation are proposed for case identification and word-sense discrimination. 

To minimize the number of parameters needed to specify the deep-structure, a deep- 
structure representation form, called normal  form which adopts "predicate-argument" style, is 
used in our system. By using this normal form representation, the senses of content words and the 
relationships among constituents in a sentence can be well specified. The normal form used here is 
quite generalized and flexible; therefore, it is also applicable in other tasks. 

When the parameters of the proposed score function are estimated with the maximum 
likelihood estimation (MLE) method, the baseline system achieves parsing accuracy rate of 56.3%, 
case identification rate of 77.5%, and 86.2% accuracy rate of word sense discrimination. 
Furthermore, to reduce the estimation error resulting from the MLE, Good-Tudng's smoothing 
method is applied; significant improvement is obtained with this parameter smoothing method. 
Finally, a robust discriminative learning algorithm is derived in this paper to minimize the testing 
set error, and very promising results are obtained with this algorithm. Compared with the baseline 
system; 17.4% error reduction rate for sense discrimination, 50.7% for case identification, and 
47.4% for parsing accuracy are obtained. These results clearly demonstrate the superiority of the 
proposed models for deep-structure disambiguation. 

2 The Integrated Score Function 

The block diagram of the deep-structure disambiguation system is illustrated in Figure 1. 
As shown, the input word sequence is first tagged with the possible part-of-speech sequences. A 
word sequence would, in general, correspond to more than one part-of-speech sequence. The parser 
analyzes the part-of-speech sequences and then produces corresponding parse trees. Afterwards, 
the parse trees are analyzed by the semantic interpreter, and various interpretations represented by 
the normal form are generated. Finally, the proposed integrated score function is adopted to select 
the most plausible normal form as the output. The formulation of the scoring mechanism is derived 
as follows. 

Scoring Module 

Tagger ~-~t~---~ Parser ~ Semantic 
Interpreter 

sequence of trees \ ~ l ~ l l ~  n°rma 
speech forms 

FIGURE I. Block diagram of the deep-structure disambiguation system 

For an input sentence, say W,  of n words w I , w 2,..-, w, ,  the task of deep-structure 
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disambiguation is formulated to find the best normal form l~l, parse tree L ,  and parts of speech 

'l ', such that 

(lq, L,'~') = arg max P(N,,  L j, Tk ]W), 
N i , L j , T  k 

where N i , L i , T k denote the i-th normal form, the j-th parse tree and the k-th part-of-speech 

sequence, respectively; P(Ni,L j, TkIW ) is called the integrated score function. For computation, 

the integrated score function is further decomposed into the following equations. 

P(N,, L,,T, IW) = P(N,IL,,T,,W) x P(L, IT,,W) x P(T, IW) 

= s...fN,)x S,.(L,)x S,..(T,), 

where Ssem(Ni ),Ssyn(Lj ), Slex(T k )stand for the semantic score function, syntactic score function, 

and lexical score function, respectively; they are defined as follows: 

S , 4 N i ) = P ( N i I L j , T k , W )  

S..(L,)=P(L, IT ,W) 
s,o(T ) = IW). 

The derivations of these score function are addressed as follows. 

2.1 The Lexical Score 

The lexical score for the k-th lexical (part-of-speech) sequence T k associated with the 
input word sequence W is expressed as follows: 

S,,x(T~): P(T, IW ): P[tk,"lw" kk,l I l /  

k,. p(tk. ,  ,(w:l,..)× , . ,)  
, 

where tk. i , denoting the i-th part-of-speech in T k , stands for the part-of-speech assigned to wi. 

Since P(w;) is tho same for all possible lexical sequences, this term can be ignored without 

* m tl k ,n  affecting the final disambignation results. Therefore, Slex(T~)(=P(wi[tk,1 )xP{ t~ ' " '~  instead 

of St,x(Tk) is used in our implementation. Like the standard trigram tagging procedures, the 

lexical score S;x(T k) is expressed as follows: 

n k,n X k,n ) 
/ I  

=H~t..i]t.,,_,.t,.,_~)x~w, lt,). 
i=1 

2.2 The Syntactic Score 

The tree in Figure 2 is used as an example to explain the syntactic score function. The 
basic derivation of the syntactic score includes the following steps. 
eFirst, the tree is decomposed into a number of phrase levels, such as /-t,/-2,'", L~ in Fig. 2. 
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• Secondly, the transition between phrase levels is formulated as a context-sensitive rewriting 
process. With the formulation, each transition probability between two phrase levels is 
calculated by consulting a finite-length window that comprises the symbols to be reduced and 
their left and right contexts. 

A 

. B 

• : ~ i ~  ¸ s l  

: i  t~ .l:e2 

.Ci C2 

• /%,  
:F:  " • G 

C3 C4:. 

Ls = ~A} 
={B C} 

L6 ={B. F g} 
• Ls = { B  F c,} 

• L, ={B c3 c4} 
L3 ={D E C~ C~} 

' L ~ = { D  c~ c~ c ~ }  

Lz ={cx c~ e~ c , }  

FIGURE 2. The decomposition of a given syntactic tree X into different phrase levels. 

Let the label t i in Fig. 2 be the time index for the i-th state transition, which corresponds 

to a reduce action, and /~ be the i-th phrase level. Then the syntactic score of the tree L A in 

Figure 2 is defined as follows [8,9]: 

S (LA) = 

= p(t~I4,c4,r4)xP(1~13,c3,r3)xP(J~12,c2,r 2)×t~l~l ' ,q ,r , ) ,  

where ¢ and $ correspond to the begin-of-sentence and the end-of-sentence symbols, respectively; 

I i and r~ stand for the left and right contextual symbols to be consulted in the i-th phrase level. 

If M number of left contextual symbols and N number of right contextual symbols are consulted in 
computation, the model is said to operate in the LMRN mode. 

Note that each pair of phrase levels in the above equation corresponds to a change in the 
LR parser's stack before and after an input word is consumed by a shift operation. Because the total 
number of shift actions, equal to the number of product terms in the above equation, is always the 
same for all alternative syntactic trees, the normalization problem is resolved in such a formulation. 
Moreover, the syntactic score formulation provides a way to consider both intra-level context- 
sensitivity and inter-level correlation of the underlying context-free grammar. With such a 
formulation, the capability of context-sensitive parsing (in probabilistic sense) can be achieved with 
a context-free grammar. 

2.3 T h e  S e m a n t i c  S c o r e  

To simplify the computation of the semantic score, a structure normalization procedure 

1 1 6  



is taken beforehand by the semantic interpreter to convert a parse tree into an intermediate normal 
form, called normal  form one (NF1), which preserves all relevant information for identification of 
cases and word senses. The implementation of the normalization procedure includes a syntactic 
normalization procedure and a semantic normalization, procedure. 

In the syntactic normalization procedure, many parse trees that are syntactically equivalent 
should be normalized first. Such syntactic variants may result from a writing convention, function 
words, or non-discriminative syntactic information, such as punctuation markers. Excessive nodes 
for identifying the various bar levels in the phrase structure grammar are also deleted or compacted. 

Afterwards, different syntactic structures that are semantically equivalent are normalized to 
the desired normal  form (NF) structure. In the NF representation, the tense, modal, voice and type 
information of a sentence are extracted as features. By taking the sentence "To meet spectrum- 
analyzer specification, allow a 30-rain warm-up before making any measurement." as an example, 
the parse tree, NF1, and the desired normal form structure are illustrated in Figure 3. 

To compute the semantic score, the normal form is first decomposed into a series of 
production rules in a top-down and leftmostfirst manner, where each decomposed production rule 
corresponds to a "case subtree". For instance, the normal form in Figure 3(c) is decomposed into a 
series of case subtrees, where 

~ :  PROP .--> FURPVACINGOAL'IIME 

l~: F'UP, P ---> VSTAT GOAL 

~ :  GOAL--> HEAD HEAD 

F4: GOAL.--> HEAD HEAD 

Fs: TIME ---> VACTN THEME 

I~: GOAL---> QUAN HEAD. 

Similarly, the NF1 structure is also decomposed into another set of production rules, each 
of which corresponds to a Normal Form One (NF1) subtree. For example, the NF1 structure in 
Figure 3(b) is decomposed into the following NF1 subtrees: 

/~: S---> SS*vNPSS** 

/~: SS*.--> v NP 

/~: NP---> n n  

E4: NP--> n n  

~ :  SS**-->vNP 

E6: NP--> quan n. 

In such a way, the semantic score can be defined in terms of the case subtrees and the NF1 subtrees. 
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( a )  P a r s e  Tree  
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I \ 
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SB . . . .  
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I \ 
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I I 
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I \ 
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N3J 
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N2 
\ 
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I 

N tk . . .  

I \ 
N* 

a r t  

ADTC 
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SBJ 
I 
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\ 
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I 
I 
I 
VI 
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I 
I 
I 
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I 
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N2J 

N2 ..... 
\ 

NLM* NI 
I 

I~..M* N* 
I 

NLM AI 
I 

Or/AN I 
I 

v quan n 
To meet s p e c t r u m  s p e c i f i c  

a n a l y z e r  - a t i o n s  

(b) NFI. 

I 
SS* 

I: \ .  
v ~ • 
I I 
I n 
I 'L 
I t 

allow a 30-minute warm-up before making any measurement 

SS*: [ f e a t u r e  = to ]  ; SS**: [ f e a t u r e  = b e f o r e ]  
\ ~ 

v NP SS** 
I \ 1 \ 
I n n v NP.., 

\ t I I I I 
n I I I I quan  n 
I I [ I I I I 
I I I I I I I 

meet spectrum- specifi- allow 30-min. warm-up make any measurement 
a n a l y z e r  • c a t i o n  

(e) Normal Form 

PROP [PRUP: f e a t u r e  = t o ] ;  [TIME: e a s e  marker  = b e f o r e ]  
I \ \ \ 

PURP VACrN GOAL TIME 
I \ I I • \  I \ 

VSTAT GOAL t HEAD HEAD VACTN GOAL 
I I \ I I I I I \ 
I HEAD HEAD I I I I QUANT HEAD 
I I I I I I I I I 
I I I I I I I I I 

meet#3 spectrum- specifi- allow#l 30-min warm-up make#2 any measurement 
analyzer cation 

FIGURE 3. An example of the (a) parse tree, (b) NF1 and (c) normal form. 
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Formally, regarding the NF1 alternatives, the semantic s c o r e  Sse m ( N i )  can be expressed 

as follows: 

O 

O 

where ~ denotes the possible NF1 structures with respect t o  N i and Ly.  Theoretically, a parse 

trees may be normalized into more than one NF1 structure; however, this happens seldom in our 
case. That is, it is almost true that the normalization procedure can be considered as a one-to-one 

mapping, which indicates P(O}Lj ,  T k , W ) = I  in our task. Under this assumption, the semantic 

score can be simplified as: 

Since the normal form comprises the cases of constituents and the senses of content words, 
f i,n v - ' i 'Mi} ,  W "  in the representation of the normal form can be thus rewritten as N i = ~si. l , l~.~ nere s~i I is the 

word senses corresponding to W(= w: ) ;  I":~g' = {l- ' l ,r '2, '",I"n, } is the M i case subtrees 

which define the structure of the normal form N j .  In such a way, the semantic score is rewritten 

as follows: 

S,,m(Ni)=P(NiI~j,Lj,Tk,W) 
( i ..', ,,.,w:) p ,.n ri.M, tI)j:lM,, = Si, 1 ~ A i,1 j,I ' tk,I 

= i,n i,M i k,n , W~ ) P(Si,, IF/., ,*j:7',L~:~',t,,i 
× ,., w:) 

: Ssense(Sf:: )~ Scase(riilMi ), 
where L~:~' :{L1,L2, . . . ,LN,}corresponds  to theN i sentential forms (phrase levels) with 

respect to the parse tree L j .  ~ : ~ '  = {~ i ,~2 , ' - . , tDM,}  stands for theNF1 subtrees transformed 

from L~:~ j respectively, the word-sense 

score and Sca~,(F/]~ n ' ) =  P(Fi'.',M'I*j:~',L~;7',t~:~,w: ) is the casescore. 

Different models for case identification and word-sense disambiguation are further derived below. 

• Case Identification Models 

To derive the case identification model, it is assumed that the required information for case 
k,n L! 'N~ parts-of-speech tk, l and the word w~ has be identification from the parse tree j.~ , 

represented by the NF1. Based on this assumption, the case score, Scas,[F~'g' ~ is thus i,l j ,  

approximated as follows: 
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Scaset i,I )= P Fi,! ~ j,! ' jA 'tk,l ' 

i,M i j,Mi 

Mr 
-- P ( I F  i,m-I d)j, Mi 

\ i,mlri,, ,--j , ,  ). 
n ' l = l  

Again, the number of parameters required to model such a formulation is still too many to afford, 
unless more assumptions are made. 

Since the decomposition of the normal form structures has been carried out in the top-down 
and lefimost-first manner, the case subtree Ft,,, depends on its previously decomposed case 

subtrees, which are either the siblings or the ancestors of the subtree Fi, m . Therefore, in addition 

~ i ,  Mi to the NF1 representation T i,~ , the determination of cases in the case subtree r'i, m is assumed to 

be highly dependent on its ancestors and siblings. In computation, if N number of ancestors and R 
number of siblings of Fi. m have been consulted, the case score function is approximated as: 

Mi 
(Fi,Mi = i,ra-I j,M i 

Scase, i,l ) H P(Fi,mIFi,1 ,(I)1,] ) 
m=l 

f i  P(I'~i,ml{l~A, ,I'~A2 ,'",FAN }, {I~s, ,FS2 ,'",l~sR }, (I)j:lMi ), 
m=l 

where I-'a, and Fsj denote the i-th ancestor and the j-th sibling of F~. m , respectively. A model 

using this case score function is hereby said to operate in an ANSR mode. For example, when the 
model is operated in AlSo mode, the case score of the normal form in the previous example is 
expressed as: 

= P(r,l¢l)× 
x e(r'4l,r'.,.4) × P(r , l , r . ,¢ , )  × e(r'6l.r'5,¢6) 

SS'vN SS") 
x P ( P U R P  ~ V S T A T  G O A L  P R O P  ~ P U R P  V A C T N  G O A L T I M E  / 

SS* ---) v NP ) 

H E A D  H E A D  P U R P  ~ V S T A T  G O A L  ~ 
× P G O A L  ~ NP ~ n n 

, . .  

NP ~ nn ) 

• Word-sense Disambiguation Model 

To make the word-sense score function feasible for implementation, we further assume that 
the senses of words depend only on the case assigned to the words, the parts-of-speech, and the 
words themselves only. Therefore, the word sense score function is approximated as follows. 
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Ssense(S[:~ ) v,~[ i ,n"ri ,  Mi ~ j , M  i L!,Nj -k,n n ~ =r~Si, ,].t/,, , = j , ,  , j,, ,tk, , ,W, ) 

r~[ i.nl-r.d,M i k,n 
= tk, I , r[s,,, ,,, , w? ) 

n[ i,n l i,n - k,n /"[A'i,l [Ci,l '/'k,l' W?) 
n 

r I (  I ' ' '-' '" ' '  P Si, m Si,I , Ci,I , tk,l , Wi , 

m=l 

vi 'g i .  Currently, a where ci. m denotes the case of wi, m which is specified by the case subtrees -i,i 

simplified model, called case dependent (CD) model, is implemented in this paper. In the case- 
dependent model, the sense of a word is assumed to depend on its case role, part-of-speech and the 

(co) 
word itself. Thus, the word sense score in this model, denoted by Sse,, e , is approximated as 

follows: 

(C°)(S,,  I ) =  f l  P(Si,mlCi,m ' ,Win)" S sense i,n t k,m 
ra=l 

3. The Baseline System 

3.1 Experimental Setup 

A. Corpora: 3,000 sentences in English, extracted from computer manuals and related documents, 
are collected and are parsed by the BehaviorTran system [10], which is a commercialized English- 
to-Chinese machine translation system developed by Behavior Design Corporation (BDC). The 
correct part-of-speech, parse trees and normal forms for the collected sentences are verified by 
linguistic experts. The corpus is then randomly partitioned into the training set of 2,200 sentences 
and the testing set of the remaining 8,00 sentences to eliminate possible systematic biases. The 
average number of words per sentence for the training set and the testing set are 13.9 and 13.8, 
respectively. On the average, there are 34.2 alternative parse trees per sentence for the training set, 
and 31.2 for the testing set. 

B. Lexicon: In the lexicon, there are 4,522 distinct words extracted from the corpus. Different 
sense definitions of these words are extracted from the Longman English-Chinese Dictionary of 
Contemporary English. For those words which are not included in the Longman dictionary, their 
sense are defined according to the system dictionary of the BehaviorTran system. In total, there are 
12,627 distinct senses for those 4,522 words. 

C. Phrase Structure Rules: The grammar is composed of 1,088 phrase structure rules, expressed 
in terms of 35 terminal symbols (parts of speech) and 95 nonterminal symbols. 
D. Case Set: In the current system, the case set includes a total number of 50 cases, which are 
designed for the next generation BehaviorTran MT system. Please refer to [11] for the details of 
the case set. 

To evaluate the performance of the proposed case identification models, the recall rate and 
the precision rate of case assignment, defined in the following equations, are used. 
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recall ~- 
No of  matched case trees specified by the model  

Total no of  case trees specified by the linguistic experts 

No of  matched case treesspecified by the model  
precision ~- 

Total no of  case trees specified by the model  

where a case tree specified by the model is said to match with the correct one if the corresponding 
cases of the case tree are fully identical to those of the correct case tree. 

3.2 Results and Discussions 

In the baseline system, the parameters are estimated by using the maximum likelihood 
estimation (MLE) method. The results of the deep-structure disambiguation system with the 
AiSo+CD model is summarized in Table 1. For comparison, the performance of the parser, without 
combined with the semantic interpreter, is also listed in this table. As expected, the accuracy of 
parse tree selection is improved as the semantic interpreter is integrated. 

Parse Tree 
Case 

Recall/Precision 

Parser 

50.1 

Baseline +Smoothing 

56.3 61.4 77.0 
77.5 84.2 88.9 
76.9 83.4 88.3 

+Smoothing 
+Learning 

Sense 86.2 87.2 88.6 
TABLE 1. Summary of the performance for the deep-structure disambiguation system. 

When the error of the baseline system was examined, we found that a lot of errors occur 
because many events were assigned with zero probability. To eliminate this kind of estimation 
error, the parameter smoothing method, Good-Turing's formula [12], is adopted to improve the 
baseline system. The corresponding results are listed in the third column of Table 1, which 
show that parameter smoothing improves the performance significantly. 

In addition, a robust learning algorithm, which has been shown to perform well in our 
previous work [9], is also applied to the system to minimize the error rate of the testing set. The 
basic idea for the robust learning algorithm to achieve robustness is to adjust parameters until the 
score differences between the correct candidate and the competitors exceed a preset margin. The 
parameters trained in such a way, therefore, provide a tolerance zone for the mismatch between the 
training and the testing sets. Readers who are interested in details of the learning algorithm are 
referred to [ 11 ]. When the robust learning algorithm is applied, very encouraging result is obtained. 
Compared with the baseline system, the error reduction rate is 50.7% for case and 17.4% for sense 
discrimination, and 47.4% for parsing accuracy. As the parser, before coupling with the semantic 
interpreter, is considered, the performance is improved from 50.1% to 77.0%, which corresponds to 
53.9% error reduction. 

4 Error Analysis 

To explore the areas for further improving the deep-structure disambiguation system, the 
errors for 200 sentences extracted randomly from the training corpus have been examined. It is 
found that a very large portion of error come from the syntactic ambiguity. More precisely, most 
syntactic errors result from attachment problems, including prepositional phrase attachment and 
modification scope for adverbial phrases, adjective phrases and relative clauses. Only less than 
10% of errors arise due to incorrect parts-of-speech. Since the normal form cannot be correctly 
constructed without selecting the correct parse tree, errors of this type deteriorate system 
performance most seriously. 

In addition, errors for case identification is one of the problems that make the deep- 
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structure disambiguation system unable to achieve a high accuracy rate of normal form. Excluding 
the effect of syntactic ambiguity, we checked out the errors of the semantic interpreter and found 
that 44.9% of normal form errors occur in identifying case. As these errors are examined, it is 
found that more than 30% of the incorrect normal forms have only one erroneous case. Among 
them, a lot of errors occur in assigning the case for the first noun of a compound noun. Taking the 
compound noun "shipping materials" as an example, the corresponding cases for the words 
"shipping" and "materials" are both annotated as the "HEAl3" case in the corpus, as shown in 
Figure. However, they are assigned the cases "MODIFIER" and "HEAD" ,  respectively. Error of 
this kind is usually tolerable for most applications. 

PROP 
I 

COND 
I 

THEME 
I 

M0D 
I 
I 

ship 

\ 
VCLAS 

\ I 
HEAD I 

I I 
I I 

materials be 

\ 
VACTN 

\ 
MANNERw 

l \ 
MOD HEAD 
i i 
f l 

good condition retain 

FIGURE 4. Example of error type I. 

\ 
THEME 

them 

\ 
PURP 

I \ \ 
M0D HEAD HEAD 

I I I 
I I I 
I I I 
I I I 

possible future use 

Another important type of case error is to determine the class of a verb. A constituent with 
an action verb tends to prefer the case frame in the form of [VACTN AGENT (INSTR .... ), THEME], 
where AGENT, INSTR, and TH.~IE are the arguments of the action verb, assigned by the VACTN 
case. On the contrary, a constituent with a stative verb would have the case frame in the form of 
[VSTAT THEME GOAL]. Therefore, once the class of a verb is recognized incorrectly, the cases 
for the verb's arguments and adjuncts will not be identified correctly. Therefore, the errors of this 
kind would have more serious effects on the case recall rate and the precision rate than the case 
structure accuracy rate. 

PROP 
I \ \ 

TH_ME VSTAT GOAL 
I \ I 

HEAD HEAD MOD 
\ 

HEAE 
I \ 

HEAD 
I \ 

HEAD HEAD 
I I 
I I 
I I 
I I 

\ 
VACrN 

\ 
THEME 

I \ 
HEAD MOD 

I I 
I VSTAT 
I I 
I I 
I I 
I I 

\ 
GOAL. 

I \ 
HEAD HEAD 

I I 
I I 

function column indicate which front- key softkey act ivat  function related screen annotation 
key panel 

The function-key column indicates which front-panel key or softkey act ivates  the function related 
to the screen annotation . 

FIGURE 5. Example of error type 2. 

6. Conclusions 

In this paper, a deep-structure disambiguation system, integrating a semantic interpreter, a 
parser and a part-of-speech tagger, is developed. In this system, deep-structure ambiguity is 
resolved with the proposed integrated score function. This integrated score function incorporates 
the various knowledge sources, including parts-of-speech, syntax and semantics, in a uniform 
formulation to resolve the ambiguities at the various levels. Based on the integrated score function, 
the lexical score function, the syntactic score function, the case score function and the sense score 
function are derived accordingly. In addition, different models are denved in this paper to carry out 
case identification and word-sense discrimination. 

To reduce the estimation error from maximum likelihood estimation, the Good-Tufing's 
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smoothing method is also applied. Parameter smoothing is shown to improve the performance 
significantly. Finally, the parameters are adapted by using the robust discriminative learning 
algorithm. With this learning algorithm, 17.4% error reduction rate for sense discrimination, 50.7% 
for case and 47.4% for parsing accuracy are obtained compared with the baseline system. These 
results clearly demonstrate the superiority of the proposed models for deep-structure 
disambiguation. 
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