
A Statistical Approach to Automatic OCR Error
Correction in Context

Xiang T o n g a n d D a v i d A. E v a n s

L a b o r a t o r y for C o m p u t a t i o n a l L inguis t i cs
C a r n e g i e M e l l o n U n i v e r s i t y

P i t t sbu rgh , PA 15213
U.S.A.

{tong, dae } @lcl.cmu.edu

Abstract

This paper describes an automatic, context-sensitive, word-error correction system based
on statistical language modeling (SLM) as applied to optical character recognition (OCR) post-
processing. The system exploits information from multiple sources, including letter n-grams,
character confusion probabilities, and word-bigram probabilities. Letter n-grams are used to
index the words in the lexicon. Given a sentence to be corrected, the system decomposes each
string in the sentence into letter n-grams and retrieves word candidates from the lexicon by
comparing string n-grams with lexicon-entry n-grams. The retrieved candidates are ranked by
the conditional probability of matches with the string, given character confusion probabilities.
Finally, the wordobigram model and Viterbi algorithm are used to determine the best scoring
word sequence for the sentence. The system can correct non-word errors as well as real-word
errors and achieves a 60.2% error reduction rate for real OCR text. In addition, the system can
learn the character confusion probabilities for a specific OCR environment and use them in
self-calibration to achieve better performance.

1 Introduction

Word errors present problems for various text- or speech-based applications such as optical char-
acter recognition (OCR) and voice-input computer interfaces. In particular, though current OCR
technology is quite refined and robust, sources such as old books, poor-quali ty (nth-generation)
photocopies, and faxes can still be difficult to process and may cause many OCR errors. For OCR to
be truly useful in a wide range of applications, such as office automat ion and information retrieval
systems, OCR reliability mus t be improved. A me thod for the automatic correction of OCR errors
wou ld be clearly beneficial.

Essentially, there are two types of word errors: non-word errors and real-word errors. A non-
word error occurs w h e n a word in a source text is interpreted (under OCR) as a string that does
not correspond to any valid word in a given word list or dictionary. A real-word error occurs
w h e n a source-text word is interpreted as a string that actually does occur in the dictionary, but is
not identical wi th the source-text word. For example, if the source text "John found the man" is
rendered as "John fornd he man" by an OCR device, then "fornd" is a non-word error and "he" is
a real-word error. In general, non-word errors will never correspond to any dictionary entries and

88

will include wildly incorrect strings (such as "#- -&&') as well as misrecognized alpha-numeric
sequences (such as "BN234" for "8N234"). However, some non-word errors might become real-
word errors if the size of the word list or dictionary increases. (For example, the word "ruel "~
might count as a non-word error for the source-text word "rut" if a small dictionary is used for
reference, but count as a real-word error if an unabr idged dictionary is used.) While non-word
errors might be corrected wi thout considering the context in which the error occurs, a real-word
error can only be corrected by taking context into account.

The problems of word-error detection and correction have been s tudied for several decades.
A good survey in this area can be found in [Kukich 1992]. Most traditional word-correction
techniques concentrate on non-word error correction and do not consider the context in which the
error appears.

Recently, statistical language models (SLMs) and feature-based methods have been used for
context-sensitive spelling-error correction. For example, Atwell and Elliittm [1987] have used a
part-of-speech (POS) tagging method to detect the real-word errors in text. Mays and colleagues
[1991] have exploited word trigrams to detect and correct both the non-word and real-word errors
that were artificially generated from 100 sentences. Church and Gale [1991] have used a Bayesian
classifier me thod to improve the performance for non-word error correction. Golding [1995] has
applied a hybrid Bayesian method for real-word error correction and Golding and Schabes [1996]
have combined a POS trigram and Bayesian methods for the same purpose.

The goal of the work described here is to investigate the effectiveness and efficiency of SLM-
based methods applied to the problem of OCR error correction. Since POS-based methods are not
effective in dist inguishing among candidates with the same POS tags and since methods based on
word-t r igram models involve extensive training data and require that huge word-t r igram tables
be available at run time, we used a word-bigram SLM as the first step in our investigation.

In this paper, we describe a system that uses a word-bigram SLM technique to correct OCR
errors. The system takes advantage of information from mult iple sources, including letter n-
grams, character confusion probabilities, and word bigram probabilities, to effect context-based
word error correction. It can correct non-word as well as real-word errors. In addit ion, the system
can learn the character confusion probability table for a specific OCR environment and use it to
achieve better performance.

2 The Approach

2.1 Problem Statement

The problem of context-based OCR word-error correction can be stated as follows:
Let L = {wl, w~, ..., win} be the set of all the words in a given lexicon. For an input sentence,

S = sl, ..., sn, p roduced as the ou tput of an OCR device, where sl, ...,s,~ are character strings
separated by spaces, find the best word sequence, ~?g = wl, w2, ..., w, , for wi E L, that maximizes
the probability pr (W[S):

I?V = argmaxw (pr(WI S)) (1)

"Ruel" is an obscure French-derivative word meaning the space between a bed and the wall.

89

Using Bayes' formula, we can rewrite 1 as:

argmaxw (Pr(W I S))

= argmaxw(pr(W)* pr(SlW))
S)

= argmaxw(pr(W) , pr(S[W)) (2)

The probability pr(W) is given by the language model and can be decomposed as:
n

pr(W) = I I pr(wilwl.i_l) (3)
i = 1

where pr(wilw~ .i- ~) is the probability that the word wi appears given that wl, w2, • •., wi_ ~ appeared
previously.

In a word-bigram language model, we assume that the probability that a word w~ will appear
is affected only by the immediately preceding word. Thus,

and

pr(w, = p (w, lw,_l) (4)

pr(W) = I~ Pr(w*lw'-~) (5)
i = 1

The conditional probability, pr(SIW), reflects the channel (processing) characteristics of the
OCR environment. If we assume that strings produced under OCR are independent of one
another, we have the following formula:

Pr(SIW) = r I Pr(S~lw~) (6)
i = 1

So,
= argmaxw(Pr(W) , pr(SlW))

n

= argmaxw(l~ Ipr(wilwi_l) • pr(silwi)) (7)
i = 1

Thus, the problem of calculating W is reduced to estimating the word-bigram probability, pr (wil w~_ 1),
and the word confusion probability, pr(silw~). The word-bigram probability, pr(wi[wi_ ~), can be
estimated by a maximum likelihood estimator (MLE):

prML(WiiW,_i) = C(Wi-1, Wi)

where c(wi_x) is the number of times that wi-1 occurs in the text and c(wi_~, w~) is the number of
times that the word bigram (Wi_l, wi) occurs in the text.

However, the estimatation of unseen bigrams is a problem. We use a back-off model similar to
that described in [Dagan & Pereira 1994] to estimate the word-bigram probabilities in our system.

If we already have estimates of the probabilities pr(wilwi_l) and pr(si[wi), the Viterbi algo-
rithm [Charniak 1993] could be used to determine the best word sequence for the given sentence.
Details of the back-off model and Viterbi algorithm can be found in [Dagan & Pereira 1994] and
[Charniak 1993].

90

2.2 Estimate of Channel Probabil it ies and Learning of Character Confus ion Table

The probability pr(s lw)- - the conditional probability that, given a word w, it is recognized by the
OCR software as the string s---can be estimated by the confusion probabilities of the characters in
s if we assume that character recognition in OCR is an independent process.

We assume that an OCR string is generated from the original word by one or more of the
following operations: (a) delete a character; (b) insert a character; or (c) substitute one character
for another. Under such circumstances, a dynamic programming method can be used to determine
the operations that maximize the conditional probability when transforming the original word to
the OCR string, given a character confusion probability table.

Let tl, t~ . . . ti be the first i characters of the string that is produced by the OCR process for
a source word s and let s l , s 2 . . . s j be the first j actual characters of ~. Define pr(il j) to be the
conditional probability that the substring sl,j is recognized as substring tl.i by the OCR process,
i.e., pr(tl,ilSl.j). The dynamic programming recurrence is given as follows:

pr(i - l l j) * pr(ins(ti))
pr(i l j) = max pr(i l j - 1) • pr(del(sj)lsj) (8)

p r (i - l [j - 1)*pr(t , lsj)

where pr(ins(y)) is the probability that letter y is inserted.
pr(del(y)ly) is the probability that letter y is deleted.
pr(xly) is the probability that letter y is replaced by letter x.

For example, suppose that source word "flag" is recognized as "flo" by an OCR device. For-
mula 8 may determine that a sequence of four operations--(1) substitute "f" for "f ' ; (2) substitute
"T' for "l ' ; (3) substitute "a" for "o", and (4) delete "g"--maximizes the conditional probability
pr("flo"l"flag"). Then the probability of "flag" being rendered as "flo" can be estimated as:

pr("flo"l"flag') = pr("f"l"f") * pr("l"l"l") * pr("o'l"a") • pr(del("g")l"g")

This method is similar to what was described in [Wagner 1974] where the minimum edit distance
between two strings was computed. The minimum edit distance is the min imum number of oper-
ations that transform the source string to the target string. Note that to effect spelling correction,
we could include character transposition probabilities.

If we have no information about the character confusion probabilities, we can estimate them
as:

pr(ylx) = { ~ 7 i f y = x
- - otherwise (9)

1 - - ~
pr(dd(x)lx) = pr(ins(x))= i (10)

where N is the total number of printable characters.
The estimator a can be regarded as the probability that a given character is correctly recognized.

Our experiments show that system performance is very sensitive to the value of a, especially for
real-word error correction. For example, if a is very high, then the probability pr(sls) will be too
high to be affected by subsequent processing and will not be changed. On the other hand if a is
very low, some correct words may be detected as real-word errors and will be changed.

If we have both the original text and the corresponding OCR output and if we assume that the
errors made by a particular OCR system are not random (but semi-deterministic), we can count the

91

cases of substitution, deletion, and insertion using a method similar to computing the minimum
edit distance between strings [Wagner 1974] and we can estimate the probabilities using formulas
similar to those in [Church & Gale 1991]:

pr(ylx) = num(sub(x ,y)) /num(x) (11)

pr(del(x)) = num(del(x)) /num(x) (12)

pr(ins(y)) = num(ins(y)) /num(Kall letters>) (13)

Obviously, in practice, we typically do not have the original text to compare to the OCR text or
to use for correction. Moreover, as noted in [Liu et al. 1991], the character confusion characteristics
are heavily dependent on the OCR environment, encompassing everything from the performance
biases of the specific OCR software to the size of characters in the source text, fonts used, individual
character types, and print quality of the text being processed. It is not feasible to train on texts to
acquire character confusion probabilities for each OCR environment.

The current system employs an iterative learning-from-correcting technique that treats the cor-
rected OCR text as an approximation of the original text. The system starts by assuming all
characters are equally likely to be misrecognized (with some uniform, small probability) and
learns the character confusion probabilities by comparing the OCR text to the corrected OCR text
after each pass. Then the learned character confusion probabilities are used for the next pass
processing (feedback processing). This method proves to be quite effective in improving system
performance.

2.3 Generation of Word Candidates for a Given String

Ideally, each word, w, in the lexicon should be compared to a given OCR string, s, to compute the
conditional probability, pr(wls). However, this approach would be computationally too expensive.
Instead, the system operates in two steps, first to generate the candidates and then to specify the
maximal number of candidates, N, to be considered for the correction of an OCR string.

In step 1, the system retrieves a large list of word candidates for a given string. To nominate
candidates, we use a vector space information retrieval technique [Salton 1989]: all the words in
the lexicon are indexed by letter n-grams and the (OCR) string, also parsed into letter n-grams, is
treated as a query over the database of lexicon entries. In particular, all words (or OCR strings)
are indexed by their letter trigrams, including the 'beginning' and 'end' spaces surrounding the
string. Words of four or fewer characters are also indexed by their letter bigrams. For example:

"the" ~ {#th, the, he#, #t, th, he, e#}
"example" ~ {#ex, exa, xam, mpl, ple, le#}

A given OCR string to be corrected is represented by a vector containing its letter n-grams.
Using the vector as the query, the lexicon words that are similar to the word error are retrieved,
giving a large list of candidate correct forms. Candidates must share at least some features with
the input string (query). A ranked list can be generated by scoring matches using a simple term
frequency (TF) count-- the number of matches between the query vector and the n-gram vector of
a candidate word. For example, given the string:

"exanple" ~ {#exanple#}
{#ex, exa, xan, anp, npl, ple, le#}

the word "example" is a candidate:

92

"example" ~ {#example#}
{#ex, exa, xam, amp, mpl, pie, le#}

Since the two items share four letter n-grams--"#ex', "exa', "ple", and "le#'--the TF score of the
candidate word "example" for the input string "exanple" is four. Note also that the TF score can
be used to establish a threshold or cutoff score to limit the number of candidates to consider.

In step 2, the system re-ranks the words in the candidate list using channel probabilities as
described above.

On average, the system generates several hundred candidates for a given string. Only the first
N candidates are retained for context-based word-error correction.

2.4 The Word Correction System for OCR Post-Processing

The architecture of the word correction system for OCR post-processing is given in Figure 1.

I OCR Text l

Candidate Generation

='l Candidate Retrieval

Candidate Ranking

I Lexicon 1

Character Confusion 1
Table

I Word Bigram
Table

:Ira
Maximum Likelihood

Word Sequence Finding

Feedback

I Corrected OCR Text

Figure 1: System Architecture

The lexicon is generated from the training text; it includes all the words in the training set
with frequency greater than the preset threshold. The words in the lexicon are indexed by letter
n-grams as described in the previous section.

93

The overall process for correcting a sentence is as follows:

1. Read a sentence from the input OCR text.

2. Retrieve up to M candidates from the lexicon for each possible errorJ Rerank the M
candidates by their conditional probabilities to the error. Keep only the top N candidates for
the next processing step. (In the current system, M is 10,000 and N is 10.)

3. Use the Viterbi algorithm to get the best word sequence for the strings in the sentence.

Figure 2 illustrates the alternative choices and the optimal path found during the processing
(correcting) of the sentence "john fornd he man".

Original Sentence: John found the man.

Input Sentence: john fornd he man.

Corrected Sentence: John found the man.

john forned he man

found'~.._._._.._ . r l a e .~ ,~__ ._ .~ . - - . - ' ~ Joh~___.~___~ ~ ~- . -~man

join ~ ~ ~ - ~ fond ~ ~ the~, ~ - - - ~ - ~ an
Cohn ~ , ~ , . . ~ N ford ~ ~ - ' " ~ be ~ - . ~ ~ - " ' - - - . . . ~ may
K ohn ~ , ~ ~ - ~ a ~ for ~ ~ ~ He ~ . . . ~ can

~ " ~ The ~ x ~ ~ Jan Sohn ~ ~ a , form , ~
forms ~ \ ~ ~ , mane \\\.q ~ X , ~ ~ , N \ ~ men

joint ~ N N ~ food ~ her "~ S a n - ~
job ~'N~ force she

formed De Man
Johns "X~ sound Le van
Kahn

Best Word Sequence: John found the man.

Figure 2: Process of Correcting a Sentence

The system requires several passes to correct an OCR text. In the first pass, the system has
no information on the character confusion probabilities, so it will assume a prior belief o~ as the
probability that a character is correctly recognized. The system distributes the rest of the probability
uniformly among other events. (Cf. Formula 9.) In each feedback step, the system first generates
a character confusion probability table by comparing the OCR text to the corrected OCR text from
the last pass. It uses the new confusion table for the next-pass correction of the OCR text.

Sin its non-word error mode of operation, the system treats every word that does not match a lexicon entry as a
possible error. In its non-word and real-word error mode, the system treats every word as though it were a possible
error.

94

3 Experiments and Results

To test our OCR-error-correction process, we used a set of electronic documents from the Ziff-Davis
(ZIFF) news wire? The documents in the corpus are business articles in the domain of computer
science and computer engineering. We used 90% of the collection for training and the remaining
10% for testing.

The system created a lexicon and collected word-bigram sequences and statistics from the
training data. Words or word-bigrams with frequency less than three were discarded. The
resulting lexicon contained about 100,000 words; these were indexed using 34,847 letter n-grams.
The resulting word-bigram table had about 1,000,000 entries.

Seventy pages of ZIFF data in the test set were printed in 7-point Times font. We degraded
the print quality of the documents by photocopying them on a "light' setting. The photocopies
were then scanned by a Fujitsu 3097E scanner and the resulting images were processed by Xerox
Textbridge OCR software.

The set of documents contained 55,699 strings and the overall word error rate after OCR
processing was 22.9% (12,760). For literal words in the source (only letter sequences, not alpha-
numeric ones), the error rate was lower, 14.7% (8,198). Table I gives the number of real-word and
non-word errors for literal words in the OCR data.

Non-Word Errors
Number 6,506

% 79.4

Real-Word Errors Total Errors
i,692 8,198
20.6 100

Table 1: OCR Errors Originating from Literal Words

We conducted three experiments:

1. Isolated-Word Error Correction: The system used only channel probabilities without consid-
ering context information, i.e., it always selected the candidate with the highest rank in the
candidates list to correct a given OCR string.

2. Context-Dependent Non-Word Error Correction: The system used context to correct strings that
did match valid lexicon words.

3. Context-Dependent Non- and Real-Word Error Correction: The system treated all input strings
as possible errors and tried to correct them by taking into account the contexts in which the
strings appeared.

In each experiment, the system conducted four correction passes: one initial pass with prior
probability c~ = 0.99 and three feedback passes.

Results are given in Tables 2, 3, and 4. In all cases, we considered only those strings whose
correct forms are literal words (not alpha-numerics). Note that errors can be introduced by the
system when it incorrectly changes a correct word in the OCR text into another word. In fact,
we distinguish two types of errors introduced by the system: errors caused by changing correct

3The ZIFF collection is distr ibuted as part of the data used in the Text Retrieval Conference (TREC) evaluations. The
corpus contains about 33 million words.

95

unknown words and errors caused by changing correct lexicon words. The error reduction rate
was calculated by subtracting total errors from 8,198 and dividing by 8,198.

The system, running unoptimized code on a 128MHz DECalpha processor, processed the test
corpus at a rate of about 200 words (strings) per second for experiments 1 and 2; and 30 words
(strings) per second for experiment 3.

Pass
F~st

Feedback-1
Feedback-2
Feedback-3

Non-Word Errors
Remain Corrected

3,049 3,457
2,816 3,690
2,791 3,715
2,784 3,722

Real-Word Errors
Remain Corrected

1,692 0
1,692 0
1,692 : 0
1,692 ! 0

Introduced Errors
Unknown Wds Lex Wds

182 0
182 0
182 0
182 0

Table 2: Results from Isolated-Word Error Correction

Total Error
Errors Reduction (%)
4923 39.9
4,690 42.8
4,665 43.1
4,658 43.2

Non-Word Errors ! Real-Word Errors Introduced Errors
Pass Unknown Wds Lex Wds
First 182 0

Feedback-1 182 0
Feedback-2
Feedback-3

Remain Corrected
2,684 3,822
1,972 4,354
1943 4,563
1948 4,558

Remain Corrected
1,692 0
1,692 0
1,692 0
1,692 0

182 0
182 0

Total Error
Errors Reduction (%)
4,558 44.4
3,846 53.1
3,817 53.4
3,822 53.4

Table 3: Results from Context-Dependent Non-Word Error Correction

Pass
First

Feedback-1
Feedback-2
Feedback-3

Non-Word Errors
Remain Corrected

2,529 3,977
1,978 4,528
1,935 4,571
1,926 4,580

Real-Word Errors
Remain Corrected

1,225 467
1,031 661
1,008 684
1,015 677

Introduced Errors Total Error
Unknown Wds Lex Wds Errors Reduction (%)

182 54 3,990 51.3
182 119 3,310 59.6
182 141 3,266 60.2
182 , 147 3,270 60.1

Table 4: Results from Context-Dependent Real- and Non-Word Error Correction

4 Analysis

Based on the results, we can see that the predominant, positive effect in correction occurs in the first
pass. Performance also improves significantly in the first feedback process, as the system learns
the character confusion probabilities by correcting the OCR text. The second and third feedback
steps have only slight effect on the error reduction rates. Indeed, in experiment 3, the result
from the third feedback pass is actually worse than that from the second feedback pass. These
results indicate that an initial pass followed by two feedback passes may optimize the method. In
the following discussion, we compare the three experiments using the results obtained from the
second feedback step (Feedback-2).

As we might expect, the results from the context-based experiments are much better than
those from the isolated-word experiment. The error reduction rates in experiments 2 and 3 are,

08

respectively, 10.3% and 17.1% higher than the rate in experiment 1. This indicates that even a
modest (e.g., bigram-based) representation of context is useful in selecting the best candidates for
word-error correction.

In all three experiments, the system introduced 182 new errors due to false corrections of words
that were not in the lexicon. (Recall that the system lexicon is based on the words derived from the
training corpus; some words may be present in the test corpus that are not in the training corpus.)
Whenever the system encounters an unknown word, it treats it as a non-word error and attempts
to correct it. In such cases, the system replaces the presumed non-word error with a word from its
lexicon. Thus, for example, if the system encounters the word "MobileData" (a correct name) in
the OCR output, but does not have "MobileData" in its lexicon, it might change "MobileData" to
"MobileComm" (a word that does exist in the training corpus lexicon). Of course, such problems
in processing unknown words are not unique to OCR error correction; they represent a general
problem for all natural-language processing tasks.

As shown by experiment 3, when the system uses context-based non- and real-word error
correction, it achieves a total error reduction rate of 60.2%. This is 6.8% higher than the rate
achieved in the context-based non-word experiment. The improvement in performance is gained
principally from the reduction of the real-word errors. Although the system introduces additional
errors--since all the strings in the OCR text are treated as possible errors and subject to change--the
number of corrected real-word errors far exceeds the number of real-word errors introduced. In
the second feedback pass, for example, the system introduced 141 new errors by changing correct
lexicon words into other lexicon words. On the other hand, the system properly corrected 684 real
errors--32.1% of all the real errors. The corrected OCR text, therefore, has 543 fewer real-word
errors than the original OCR text.

Certain types of errors in the source or OCR-output text present systematic problems for our
approach, highlighting the limitations of the system. In particular, because the process is based
on the structural definition of a word (viz., a character sequence 'between white space')--not a
morphological one- -any errors that obscure word boundaries will defy correction. For example,
run-on errors (e.g., "of the"/"ofthe") and split-word errors ("training" /" t ra in ng ') cannot be
corrected. In addition, the use of a vector-space querying to find candidate lexical entr ies--
including our special approach to word decomposition and scoring--can present problems when
processing some OCR errors, especially short strings. For example, if "both" (in the source) is
rendered as "hotn" (in the OCR text), it is not possible for the system to generate "both" as one of
the high-ranked candidates-- they share only one feature, the bigram "o t " - - despite the fact that
the conditional probability pr("hotn"l"both") might be high. Finally, the system suffers from the
common limitation of word bigram or trigram models in that it cannot capture discourse properties
of context, such as topic and tense, which are sometimes required to select the correct word.

5 Conclusion

The system we have created uses information from a variety of sources--qetter n-grams, charac-
ter confusion probabilities, and word-bigram probabilities---to realize context-based, automatic,
word-error correction. It can correct non-word errors as well as real-word errors. The system can
also learn character confusion probability tables by correcting OCR text and use such information
to achieve better performance. Overall, for complete (real- and non-word) error correction, it
achieved a 60.2% rate of error reduction.

07

The techniques we have used are subject to certain systematic problems. However, we believe
they will prove to be useful not only in improving the quality of OCR processing, but also in
enhancing a variety of information retrieval applications.

In future work, we plan to explore different heuristics to deal with word boundary problems
and to incorporate other models of context representation, including both SLM approaches, such
as word trigram models, and simple discourse structures.

Acknowledgements

We thank Nata~a Mili4-Frayling and an anonymous reviewer for their excellent comments on
an earlier version of this paper. Naturally, the authors alone are responsible for any errors or
omissions in the current version.

References

[Atwell & Elliittm 1987] Atwell, E., and Elliittm S. 1987. Dealing with ill-formed English text
(Chapter 10). In Garaside, R., Leach, G., and Sampson, G. (eds), The Computational Analysis of
English: A Corpus-Based Approach. New York: Longman, Inc.

[Charniak 1993] Charniak, E. 1993. Statistical Language Learning. MIT Press.

[Church & Gale 1991] Church, K.W., and Gale, W.A. 1991. Probability scoring for spelling correc-
tion. Stat. Comput., 1, 93-103.

[Dagan & Pereira 1994] Dagan, I., and Pereira, F. 1994. Similarity-based estimation of word co-
occurrence probabilities. Proceedings of the 32nd Annual Meeting of the ACL, New Mexico State
University.

[Golding 1995] Golding, R.A. 1995. A Bayesian hybrid method for context-sensitive spelling cor-
rection. Proceedings of the Third Workshop on Very Large Corpora, Cambridge, MA. 39-53.

[Golding & Schabes 1996] Golding, R.A., and Schabes, Y. 1996. Combining trigram-based and
feature-based methods for context-sensitive spelling correction. Proceedings off the 34th Annual
Meeting of the ACL, Santa Cruz, CA. (To appear)

[Jelinek 1988] Jelinek, F. 1988. Self-organized language modeling for speech recognition. In Waibel,
A., and Lee, K.-F. (eds), Readings in Speech Recognition. Morgan Kaufmann Publishers. 450-506.

[Kukich 1992] Kukich, K. 1992. Techniques for automatically correcting words in text. Comput.
Surv., 24, 4, 377-439.

[Liu et al. 1991] Liu, L.M., Babad, Y.M., Sun, W., Chan, K.K. 1991. Adaptive post-processing of
OCR text via knowledge acquisition. 1991 ACM Computer Science Conference. Preparing for the
21st Century. 558-569.

[Maysetal. 1991] Mays, E.,Damerau, F.J., and Mercer, R.L.1991.Contextbasedspellingcorrection.
Information Processing and Management, 27, 5, 517-522.

[Salton 1989] Salton, G. 1989. Automatic Text Processing. Addison-Wesley Publishing Company.

[Wagner 1974] Wagner, R.A. 1974. The string-to-string correction problem. J. ACM, 21,1, Jan. 1974,
168-173.

0 8

A Example of OCR Correction

Original Text

Power-supply IC controls both PWM and power-factor correction.

Designers are focusing more on power-factor correction when creating integrated circuits, due to
limited energy supplies, new standards and the type of office electrical loads found in offices.
Micro Linear Corp's ML4819 makes the designer's job easier by including both
power-faction-correction and PWM control on one chip. This integrated circuit aids in increasing
a supply's power factor with fewer components than other implementations. The ML4819 is
available in 20-pin DIPs for $3.95 for 100 units. Applications for the product include power
supplies for microcomputers in the 150 to 400W range, computer peripherals, instruments,
plotters, printers and other off-line power supplies.

OCR Text:

tN-wer-supp(y IC conimls both PWM and power-factor correciiiifl.

t)esigners are focusing more on power-factor correction when creating integrated circuits, due to
limited energy supplies, new -andards and the type of office electrical loacs found in iffices.
Micro Linear Corp's ML4819 makes the designer's job easier by including both
power-faction.correction and PWM control in one chip. This integrated circuit aids in increasing
a supply's power factor with Thwer components than other implementations. The ML4819 is
available in 20-pm DIPs for 53.95 for ((1) units. Applications for the product include power
supplies for microcomputers in the 150 to 41)0W range, computer penpoerals, instirirnents.
plotters, pnnters and other off-line power supplies.

Corrected OCR Text from First-Pass Correction:
Note: the correction for a given string is in brackets.

tN-wer[Newer] - supp(y[supply] IC conimls[coils] both PWM and power - factor
correciiiifl[correction].

t)esigners[Designers] are focusing more on power - factor correction when creating integrated
circuits, due to limited energy supplies, new -andards[standards] and the type of office
electrical[electrical] loacs[loads] found in iffices[offices]. Micro Linear Corp' s ML4819[XL19]
makes the designer' s job easier by including both power - faction[action], correction and PWM
control in one chip. This integrated circuit aids in increasing a supply' s power factor with
Thwer[fewer] components than other implementations. The ML4819[XL19] is available in 20 -
pm[ppm] DIPs for 53.95 for ((1) units. Applications for the product include power supplies for
microcomputers in the 150 to 41)0W[NEW] range, computer penpoerals[peripherals].
instirirnents[instruments] . plotters, pnnters[punters] and other off - line power supplies.

00

Corrected OCR Text from Feedback Correction:
Note: the correction for a given string is in brackets.

tN-wer[Power] - supp(y[supply] IC conimls[controls] both PWM and power - factor
correciiiifl[correction].

t)esigners[Designers] are focusing more on power - factor correction when creating integrated
circuits, due to limited energy supplies, new "andards[Standards] and the type of office
electrical[electrical] loacs[loads] found in iffices[offices]. Micro Linear Corp ' s ML4819 makes the
des igner ' s job easier by including both power - faction[factor], correction and PWM control in
one chip . This integrated circuit aids in increasing a supp ly ' s power factor with Thwer[Tower]
components than other implementations .The ML4819 is available in 20 - pm[pin] DIPs for 53.95
for ((1) units . Applications for the product include power supplies for microcomputers in the
150 to 41)0W[ROW] range, computer penpoerals[peripherals], instirirnents[instruments] .
plotters, pnnters[printers] and other off - line power supplies.

100

