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Abstract 

This paper describes a data-driven method for hierarchical clustering of words and 
clustering of multiword compounds. A large vocabulary of English words (70,000 words) is 
clustered bottom-up, with respect to corpora ranging in size from 5 million to 50 million 
words, using mutual information as an objective function. The resulting hierarchical clusters 
of words are then naturally transformed to a bit-string representation of (i.e. word bits for) 
all the words in the vocabulary. Evaluation of the word bits is carried out through the 
measurement of the error rate of the ATR Decision-Tree Part-Of-Speech Tagger. The same 
clustering technique is then applied to the classification of multiword compounds. In order 
to avoid the explosion of the number of compounds to be handled, compounds in a small 
subclass are bundled and treated as a single compound. Another merit of this approach is 
that we can avoid the data sparseness problem which is ubiquitous in corpus statistics. The 
quality of one of the obtained compound classes is examined and compared to a conventional 
approach. 

1 In troduct ion  

One of the fundamental  issues concerning corpus-based NLP is that  we can never expect to 
know from the training data  all the necessary quantitative information for the words that  might 
occur in the test da ta  if the vocabulary is large enough to cope with a real world domain. In 
view of the effectiveness of class-based n-gram language models against the da ta  sparseness 
problem (Kneser and Ney 1993, Ueberla 1995), it is expected that  classes of words are also 
useful for NLP tasks in such a way that  statistics on classes are used whenever statistics on 
individual words are unavailable or unreliable. An ideal type of clusters for NLP is the one 
which guarantees mutual  substitutabili ty,  in terms of both  syntactic and semantic soundness, 
among words in the same class (Harris 1951, Brill and Marcus 1992). Take, for example, the 
following sentences. 

(a) He went to the house by car. 
(b) He went to the apar tment  by bus. 
(c) He went to the ? by ? . 
(d) He went to the house by the sea. 

Suppose that  we want to parse sentences using a statistical parser and that  sentences (a) and 
(b) appeared in the training and test data,  respectively. Since (a) is in the training data,  
we know that  the prepositional phrase by car is at tached to the main verb went, not to the 
noun phrase the house. Sentence (b) is quite similar to (a) in meaning, and identical to (a) in 
sentence structure. Now if the words apartment and bus are unknown to the parsing system 

*A part of this work is done when the author was at ATR Interpreting Telecommunications Research Labo- 
ratories, Kyoto, Japan. 
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(i.e. never occurred in the training data), then sentence (b) must look to the system very 
much like (c), and it will be very hard for the parsing system to tell the difference in sentence 
structure between (c) and (d). However, if the system has access to a predefined set of classes 
of words, and if car and bus are in the same class, and house and apartme.nt are in another 
class, it will not be hard for the system to detect the similarity between (a) and (b) and assign 
the correct sentence structure to (b) without confusing it with (d). The same argument holds 
for an example-based machine translation system. In that  case, an appropriate translation of 
(b) is expected to be derived with an example translation of (a) if the system has an access 
to the classes of words. Therefore, it is desirable that  we build clustering of the vocabulary in 
terms of mutual substitutability. 

Furthermore, clustering is much more useful if the clusters are of variable granularity. Sup- 
pose, for example, that  we have two sets of clusters, one is finer than the other, and that  word-1 
and word-2 are in different finer classes. With finer clusters alone, the amount of information 
on the association of the two words that  the system can obtain from the clusters is minimal. 
However, if the system has a capability of falling back and checking if they belong to the same 
coarser class, and if that is the case, then the system can take advantage of the class informa- 
tion for the two words. When we extend this notion of two-level word clustering to many levels, 
we will have a tree representation of all the words in the vocabulary in which the root node 
represents the whole vocabulary and a leaf node represents a word in the vocabulary. Also, 
any set of nodes in the tree constitutes a partition (or clustering) of the vocabulary if there 
exists one and only one node in the set along the path from the root node to each leaf node. 

In the following sections, we will first describe a method of creating a binary tree repre- 
sentation of the vocabulary and present results of evaluating and comparing the quality of 
the clusters obtained from texts of very different sizes. Then we will extend the paradigm of 
clustering from word-based clustering to compound-based clustering. In the above examples 
we looked only at the mutual substitutability of words; however, a lot of information can also 
be gained if we look at the substitutability of word compounds for either other word com- 
pounds or single words. We will introduce the notion of compound-classes, propose a method 
for constructing them, and present results of our approach. 

2 Hierarchical Clustering of Words 

Several algorithms have been proposed for automatically clustering words based on a large 
corpus (Jardino and Adda 91, Brown et al. 1992, Kneser and Ney 1993, Martin et al. 1995, 
Ueberla 1995). They are classified into two types. One type is based on shuffling words from 
class to class starting from some initial set of classes. The other type repeats merging classes 
starting from a set of singleton classes (which contain only one word). Both types are driven by 
some objective function, in most cases by perplexity or average mutual  information. The merit 
of the second type for the purpose of constructing hierarchical clustering is that  we can easily 
convert the history of the merging process to a tree-structured representation of the vocabulary. 
On the other hand, the second type is prone to being trapped by a local minimum. The first 
type is more robust to the local minimum problem, but the quality of classes greatly depends 
on the initial set of classes, and finding an initial set of good quality is itself a very difficult 
problem. Moreover, the first approach only provides a means of partitioning the vocabulary 
and it doesn't provide a way of constructing a hierarchical clustering of words. In this paper 
we adopt the merging approach and propose an improved method of constructing hierarchical 
clustering. An at tempt  is also made to combine the two types of clustering and some results 
will be shown. The combination is realized by the construction of clusters using the merging 
method followed by the reshuffling of words from class to class. 

Our word bits construction algorithm (Ushioda 1996) is a modification and an extension 
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of the mutual  information (MI) clustering algorithm proposed by Brown et al. (1992). The 
reader is referred to (Ushioda 1996) and (Brown et al. 1992) for details of MI clustering, but 
we will first briefly summarize the MI clustering and then describe our hierarchical clustering 
algorithm. 

2.1 M u t u a l  I n f o r m a t i o n  C l u s t e r i n g  A l g o r i t h m  

Suppose we have a text of T words, a vocabulary of V words, and a partition 7r of the vocabulary 
which is a function from the vocabulary V to the set C of classes of words in the vocabulary. 
Brown et al. showed that  the likelihood L(Tr) of a bigram class model generating the text is 
given by the following formula. 

L(r)  -- - H  -4- I (1) 

Here H is the entropy of the 1-gram word distribution, and I is the average mutual  information 
(AMI) of adjacent classes in the text and is given by equation 2. 

F (elc2) 
I= ~ Pr(clc2)log Pr(cl)Pr(c2) (2) 

Cl ~C2 

Since H is independent of r, the partition that maximizes the AMI also maximizes the likelihood 
L(r) of the text. Therefore, we can use the AMI as an objective function for the construction 
of classes of words. 

The mutual information clustering method employs a bottum-up merging procedure. In the 
initial stage, each word is assigned to its own distinct class. We then merge two classes if the 
merging of them induces minimum AMI reduction among all pairs of classes, and we repeat 
the merging step until the number of the classes is reduced to the predefined number C. Time 
complexity of this basic algorithm is O(V s) when implemented straightforwardly, but it can 
be reduced to O(V 3) by storing the result of all the trial merges at the previous merging step. 

Even with the O(V 3) algorithm, however, the calculation is not practical for a large vo- 
cabulary of order 104 or higher. Brown et al. proposed the following method, which we also 
adopted. We first make V singleton classes out of the V words in the vocabulary and arrange 
the classes in the descending order of frequency, then define the merging region as the first 
C + 1 positions in the sequence of classes. So initially the C + 1 most frequent words are in 
the merging region. Then do the following. 

I. Merge the pair of classes in the merging region merging of which induces minimum AMI 
reduction among all the pairs in the merging region. 

2. Put the class in the (C + 2) nd position into the merging region and shift each class after 
the (C + 2) nd position to its left. 

3. Repeat I. and 2. until C classes remain. 

With this algorithm, the time complexity becomes O(C2V) which is practical for a workstation 
with V in the order of 100,00O and C up to 1,000. 

2.2 W o r d  B i t s  C o n s t r u c t i o n  A l g o r i t h m  

The simplest way to construct a tree-structured representation of words is to construct a 
dendrogram as a byproduct of the merging process, that  is, to keep track of the order of merging 
and make a binary tree out of the record. A simple example with a five word vocabulary is 
shown in Figure 1. If we apply this method to the above O(C2V) algorithm straightforwardly, 
however, we obtain for each class an extremely unbalanced, almost left branching subtree. The 
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Merging History: 
Merge(A, B -> A) 
Merge(C, D -> C) 
Merge(C, E -> C) 
Merge(A, C -> A) 

Merge(X,Y->Z) reads 
"merge X and Y and name 

the new class as Z" 

Dendrogram 

f 

F 

Figure 1: Dendrogram Construction 

reason is that  after classes in the merging region are grown to a certain size, it is much less 
expensive, in terms of AMI, to merge a singleton class with lower frequency into a higher 
frequency class than merging two higher frequency classes with substantial sizes. 

A new approach we adopted incorporates the following steps. 

1. MI-clustering: Make C classes using the mutual  information clustering algorithm with 
the merging region constraint mentioned in (2.1). 

2. Outer-clustering: Replace all words in the text with their class token 1 and execute binary 
merging without the merging region constraint until all the classes are merged into a single 
class. Make a dendrogram out of this process. This dendrogram, Droot, constitutes the 
upper part of the final tree. 

3. Inner-clustering: Let {C(1), C(2), ..., C(C)} be the set of the classes obtained at step 1. 
For each i (1 < i < C) do the following. 

(a) Replace all words in the text except those in C(i) with their class token. De- 
fine a new vocabulary V' = V1 U V2, where V1 = {all the words in C(i)}, V2 = 
{C1,C2, ...,Ci-l,Ci+l,Cc}, and Cj is a token for C(j) for 1 < j _< C. Assign each 
element in V' to its own class and execute binary merging with a merging constraint 
such that  only those classes which only contain elements of V1 can be merged. This 
can be done by ordering elements of V' with elements of V1 in the first Ivll positions 
and keep merging with a merging region whose width is ]Vll initially and decreases 
by one with each merging step. 

(b) Repeat merging until all the elements in V1 are put  in a single class. 

Make a dendrogram Dsub out of the merging process for each class. This dendrogram 
constitutes a subtree for each class with a leaf node representing each word in the class. 

4 Combine the dendrograms by substituting each leaf node of Droot with the corresponding 
D s u b  . 

This algorithm produces a balanced binary tree representation of words in which those 
words which are close in meaning or syntactic feature come close in position. Figure 2 shows 
an example of Dsu b for one class out of 500 classes constructed using this algorithm with a 
vocabulary of the 70,000 most frequently occurring words in the Wall Street Journal Corpus. 
Finally, by tracing the path from the root node to a leaf node and assigning a bit to each branch 
with zero or one representing a left or right branch, respectively, we can assign a bit-string (word 
bits) to each word in the vocabulary. 

1In the actual implementation, we only have to work on the bigram table instead of the whole text. 
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I I I 

Figure 2: Sample Subtree for One Class 

3 W o r d  C l u s t e r i n g  E x p e r i m e n t s  

We performed experiments using plain texts from six years of the Wall Street Journal Corpus 
to create clusters and word bits. The sizes of the texts are 5 million words (MW), 10MW, 
20MW, and 50MW. The vocabulary is selected as the 70,000 most frequently occurring words 
in the entire corpus. We set the number C of classes to 500. The obtained hierarchical clusters 
are evaluated via the error rate of the ATR Decision-Tree Part-Of-Speech Tagger. 

Then as an attempt to combine the two types of clustering methods discussed in Section 
2, we performed an experiment for incorporating a word-reshuffling process into the word bits 
construction process. 

3.1 D e c i s i o n - T r e e  P a r t - O f - S p e e c h  T a g g i n g  

The ATR Decision-Tree Part-Of-Speech Tagger is an integrated module of the ATR Decision- 
Tree Parser which is based on SPATTER (Magerman 1994). The tagger employs a set of 
441 syntactic tags, which is one order of magnitude larger than that of the University of 
Pennsylvania Treebank Project. Training texts, test texts, and held-out texts are all sequences 
of word-tag pairs. In the training phase, a set of events are extracted from the training texts. 
An event is a set of feature-value pairs or question-answer pairs. A feature can be any attribute 
of the context in which the current word word(O) appears; it is conveniently expressed as a 
question. Tagging is performed left to right. Figure 3 shows an example of an event with 
a current word like. The last pair in the event is a special item which shows the answer, 
i.e., the correct tag of the current word. The first two lines show questions about identity of 
words around the current word and tags for previous words. These questions are called basic 
questions. The second type of questions, word bits questions, are on clusters and word bits such 
as is the current word in Class 295? or what is the 29th bit of  the previous word's word bits?. 
The third type of questions are called linguist's questions and these are compiled by an expert 
grammarian. Such questions could concern membership relations of words or sets of words, or 
morphological features of words. 

Out of the set of events, a decision tree is constructed. The root node of the decision 
tree represents the set of all the events with each event containing the correct tag for the 
corresponding word. Probability distribution of tags for the root node can be obtained by 
calculating relative frequencies of tags in the set. By asking a value of a specific feature on 
each event in the set, the set can be split into N subsets where N is the number of possible 
values for the feature. We can then calculate conditional probability distribution of tags for 
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Event- 128: 
{ 
(word(0), "like" ) (word(-1), "flies" ) (word(-2), "time" } (word(l), "a~" ) (word(2), "arrow" ) 
(tag(-1), "Verb-3rd-Sg-type3" ) (tag(-2), "Noun-Sg-typel4" ) 
. . . . . . . . . . .  (Basic Questions) 
(Inclass?(word(0), Class295), "yes" ) (WordBits(Word(-1), 29), "1" ) 

(]sMember?(word(-2), Set("and", "or" , "nor" )), "no" ) 

(Tag, "Prep-typeS" ) 
} 

(WordBits Questions) 
(IsPrefix?(Word(0), "anti"), "no" ) 

(Linguist's Questions) 

Figure 3: Example of an event 
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Figure 4: Tagging Error Rate 

each subset, conditioned on the feature value. After computing for each feature the entropy 
reduction incurred by splitting the set, we choose the best feature which yields maximum 
entropy reduction. By repeating this step and dividing the sets into their subsets we can 
construct a decision tree whose leaf nodes contain conditional probability distributions of tags. 
The obtained probability distributions are then smoothed using the held-out data. The reader 
is referred to (Magerman 1994) for the details of smoothing. In the test phase the system looks 
up conditional probability distributions of tags for each word in the test text and chooses the 
most probable tag sequences using beam search. 

We used WSJ texts and the ATR corpus for the tagging experiment.  The WSJ texts are 
re-tagged manually using the ATR syntactic tag set. The ATR corpus is a comprehensive 
sampling of Written American English, displaying language use in a very wide range of styles 
and settings, and compiled from many different domains (Black et al. 1996). Since the ATR 
corpus is still in the process of development, the size of the texts we have at hand for this 
experiment is rather minimal considering the large size of the tag set. Table 1 shows the 
sizes of texts used for the experiment. Figure 4 shows the tagging error rates plotted against 
various clustering text sizes. Out of the three types of questions, basic questions and word bits 
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Text Size (words) Training Test Held-Out 
WSJ Text 75,139 5,831 6,534 
ATR Text 76,132 23,163 6,680 

Table 1: Texts for Tagging Experiments 
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Figure 5: Comparison of WordBits with LingQuest & WordBits 

questions are used in this experiment. To see the effect of introducing word bits information 
into the tagger, we performed a separate experiment in which a randomly generated bit-string 
is assigned to each word 2 and basic questions and word bits questions are used. The results are 
plotted at zero clustering text size. For both WSJ texts and ATR corpus, the tagging error rate 
dropped by more than 30% when using word bits information extracted from the 5MW text, 
and increasing the clustering text size further decreases the error rate. At 50MW, the error 
rate drops by 43%. This shows the improvement of the quality of clusters with increasing size 
of the clustering text. Overall high error rates are attributed to the very large tag set and the 
small training set. One notable point in this result is that introducing word bits constructed 
from WSJ texts is as effective for tagging ATtt texts as it is for tagging WS3 texts even though 
these texts are from very different domains. To that extent, the obtained hierarchical clusters 
are considered to be portable across domains. 

Figure 5 contrasts the tagging results using only word bits against the results with both word 
bits and linguistic questions 3 for the WS3 text. The zero clustering text size again corresponds 

~Since a dis t inct ive bi t-str ing is assigned to each word, the tagger also uses the bi t-str ing as an ID number  
for each word in the process. In this control  exper iment  bit-str ings are assigned in a random way, but  no two 
words are assigned the same word bits. Random word bits are expected to give no class information to the 
tagger except  for the identi ty of words. 

3The linguistic questions we used here are still in the initial stage of development  and are by no means 
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Figure 6: Effects of Reshuffling for Tagging 

to a randomly generated bit-string. Introduction of linguistic questions is shown to significantly 
reduce the error rates for the WSJ corpus. Note that  the dependency of the error rates on the 
clustering text size is quite similar in the two cases. This indicates the effectiveness of combining 
automatically created word bits and hand-crafted linguistic questions in the same platform, i.e., 
as features. In Figure 5 the tagging error rates seem to be approaching saturation after the 
clustering text size of 50MW. However, whether  no further improvement can be obtained by 
using texts of greater size is still an unsolved question. 

3 .2 R e s h u f f l i n g  

One way to improve the quality of word bits is to introduce a reshuffling process just after step 
1 (MI-clustering) of the word bits construction process (cf. § 2.2). The reshuffling process we 
adopted is quite simple. 

1. Pick a word from the vocabulary. Move the word from its current class to another class 
if that  movement increases the AMI most among all the possible movements. 

2. Repeat step 1 starting from the most frequent word through the least frequent word. 

This constitutes one round of reshuffling. After several rounds of reshuffling, the word bits 
construction process is resumed from step 2 (Outer-clustering). 

Figure 6 shows the tagging error rates with word bits obtained by zero, two and five rounds 
of reshuffling 4 with a 23MW text. Tagging results presented in Figure 5 are also shown as a 
reference. Although the vocabulary used in this experiment is slightly different from the other 

comprehensive. 
4The vocabulary used for the reshuffling experiment shown in Figure 6 is the one used for a preliminary 

experiment and its size is 63850. 
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experiments, we can clearly see the effect of reshuffling for both the word-bits-only case and 
the case with word bits and linguistic questions. After five rounds of reshuffling, the tagging 
error rates become much smaller than the error rates using the 50MW clustering text with 
no reshuffling. It is yet to be determined if the effect of reshuffling increases with increasing 
amount of clustering text. 

4 From Word Clustering to Compound Clustering 

We showed in section 3 that the clusters we obtained are useful for Part-Of-Speech tagging. 
However, the clusters we have worked on so far have all been clusters of words, and the Part- 
Of-Speech tagging task has been limited to individual words. For many other NLP tasks, 
however, similarities among phrases or multiword compounds are more important than those 
among individual words. Let's turn back to the motivation of the clustering work discussed in 
the Introduction. Consider the following sentences. 

(e) The music sent Mary to sleep. 
(f) The music sent Professor Frederic K. Thompson to sleep. 

Suppose that we want to translate sentence (f) to some language by an example-based machine 
translation system with example data including sentence (e) and its translation. In this case, 
what the system has to detect is that both "Mary" and "Professor Frederic K. Thompson" 
represent a human. The similarity between "Mary" and "Frederic" as being first names doesn't 
help in this case. Similarly, the detection of a correspondence between "CBS Inc." and "Ameri- 
can Telephone & Telegraph Co." might be necessary in another case. This observation leads us 
to construct classes o.f compounds rather than classes of just words. Individual words can also 
be in the same class as multiword compounds, but we will generically call such a class a class of 
compounds in this paper. While several methods have been proposed to automatically extract 
compounds (Smadja 1993, Sue t  al. 1994), we know of no successful attempt to automatically 
make classes of compounds. 

The obvious problem we face when we construct classes of compounds is that the possible 
number of compounds is too large if we try to handle them individually. However, if we repre- 
sent compounds by a series of word-classes 5 instead of a series of words, we can constrain the 
explosion of the number of compounds. One way of looking at this approach is to bundle quite 
similar compounds in a small subclass and treat them as a single compound. For example, in 
the experiment described in Section 3, it was found that some word class, say WC129, con- 
tains almost exclusively first names, and another class, say WC246, contains almost exclusively 
family names. Then the chain of classes "WC129_WC246" represents one pattern of human 
names, or one group of two-word compounds representing human names. There are of course 
many other patterns, or class chains, of different lengths which represent human names. There- 
fore, our aim is to collect all the different class chains which are syntactically and semantically 
similar and put them in one compound-class. 

In the following subsection, we describe one approach to this goal which is completely 
automatic. 

4.1 Compound C l u s t e r i n g  M e t h o d  

Our compound clustering method consists of the following three steps. 

1. Identification of Class Chains 

First, we replace each word in a large text with its word-class. We then use mutual 
information as a measure of "stickiness" of two classes, and identify which class pair 

5We use  t h e  t e r m  word-class for a class  of  w o r d s  to  m a k e  a clear  d i s t inc t ion  f rom a compound.class. 
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should be chained. Let MI(C1,C2) be mutual information of adjacent classes C1 and C2 
in the text. Then we form chain "C1_C2" if 

Pr(ClC2) > * T H  * (3) 
M I ( C 1 ,  C2) = log Pr(c l )Pr(c2)  - 

for some threshold *TH*. 

If it is found, in the series of three classes "C1 C2 C3" in the text, that (C1,C2) forms 
a chain and (C2,C3) also forms a chain, then we simply form one large chain C1_C2_C3. 
In a similar way we form a chain of maximum length for any series of classes in the text. 

Construction of Reduced Text and New Vocabulary 

Each class chain identified is then replaced in the text with a token which represents the 
chain. We call such a token a class chain token. After the scan through the text with this 
replacement operation of a class chain with its token, the text is represented by a series 
of word-classes and class chain tokens. The word classes remaining in the text are the 
ones which don't form a chain in their context. Those word classes are then converted 
back to their corresponding words in the text 6 

The resulting text is the same as the original text except that a multiword compound 
which matches one of the extracted class chains is represented by a class chain token. We 
call this text the reduced text. Out of the reduced text, a new vocabulary is created as 
a set of words and tokens whose frequency in the reduced text is more than or equal to 
some threshold. 

Compound Clustering 

We conduct MI-clustering (step 1 of the word bits construction process) using the reduced 
text and the new vocabulary. The classes we obtained, which we call compound-classes, 
contain words and class chain tokens. Each class chain token in a compound-class is then 
expanded. This means that all the multiword compounds that are represented by the class 
chain token in the text are put into the compound-class. After expanding all the tokens, 
the tokens are removed from the compound-classes. This results in compound-classes 
containing words and multiword compounds. It is also possible to construct hierarchical 
clustering of compounds if we follow all the steps in the word bits construction process 
after this step. 

4.2 Compound Clustering Experiment 

We used plain texts from two years (1987 and 1988) of Wall Street Journal Corpus to create 
compound clusters. The total volume amounts to about 40 MW of text. The word-classes used 
in this experiment are taken from the result of MI clustering with the 50MW text followed by 
five rounds of reshuffling. The quality of the compound clusters depends on the threshold *TH* 
in equation 3. We used *TH*=3 following "a very rough rule of thumb" used for word-based 
mutual information in (Church and Hanks, 1990). 

Out of the 40MW text, 7621 distinct class chains and 287,656 distinct multiword compounds 
are extracted. To construct a new vocabulary, we selected the words and tokens whose fre- 
quency in the reduced text is more than four. The size of the new vocabulary is 60589 and it 
contains 4685 class chain tokens. Some of the compound-classes that were obtained are shown 
in Figure 7. The compounds are listed in descending order of frequency in each class, and the 
lists are truncated at an arbitrary point. 

6The conversion of a word-class to a word is not a one-to-one mapping, but with the context in the text the 
conversion is unique. In the actual implementation, the text is represented by a series of (word, word-class) 
pairs and no conversion is actually carried out. 
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Figure 7: Examples of Compound Classes 
COMPOUND CLASS 171: 
President_Reagan Mr._Reagan Mr._Bush Mr._Dukakis Judge_Bork Ronald_Reagan 
George_Bush Michael_Dukakis Treasury_Secretary_J ames.B aker Mr._Holmes 
Vice_President_George_Bush Gov._Dukakis Gen._Noriega Mrs._Thatcher some- 
one_who Mrs._Aquino Mr._Roh Gen._Secord Mr._Lawson Adm._Poindexter 
anyone_who Mr..Dole Lt._Col._North Jimmy_Carter Sen._Dole Mr._Mulroney 
Mr._Quayle Sen._Bentsen Mr._Chirac Mr._Gephardt Mr._Marcos Vice_President_Bush 
Sen._Quayle Mr._Carter Mr._Chun Prime_Minister_Margaret_Thatcher Judge_Greene 
Mr..Brady President_Carter President_Chun Judge_Kennedy Sen._Proxmire 
Robert_Bork Rep._Rostenkowski Mr._Kohl Robert. Holmes Judge_Pollack Mr..Kemp 
Prime_Minister_Yasuhiro_Nakasone Mr._Kennedy President_Aquino 

COMPOUND CLASS 179: 
General_Motors_Corp. Drexel_Burnham_Lambert..Inc. Ford.Motor_Co. Interna- 
tional..Business_Machines_Corp. General_Electric_Co. Shearsoniehman_Brothers_Inc. 
Chrysler_Corp. First.Boston_Corp. Merrill_Lynch_&_Co. Morgan_Stanley_&_Co. Shear- 
son_Lehman_Hut ton..Inc. News_Corp. American_Telephone_&_Telegraph_Co. PaineWeb- 
bet_Inc. Prudential- B ache_SecuritiesAnc. TexacoAnc. McDonnell_Douglas_Corp. 
Dean_Witter_ReynoldsAnc. Time..Inc. AMR_Corp. CB SAnc. Ameri- 
can. Express_Co. Campeau_Corp. BankAmerica_Corp. Du_Pont_Co. Allegis_Corp. 
General.Dynamics_Corp. Digital_Equipment_Corp. Kohlb erg_Kravis_Roberts_&_Co. 
Exxon_Corp. Chase_Manhattan_Corp. USX_Corp. Nikko_Securities_Co. Lock- 
heed_Corp. 

COMPOUND CLASS 221: 
common_stock preferred_stock cash_flow bank_debt long-term_debt foreign_debt 
subordinated_debt senior_debt balance_sheet short-term_debt balance_sheets 
cost_overruns corporate_debt debt_load convertible_preferred_stock international_debt 
debt_outstanding Class_B_stock debt_ratings cumulative_preferred_stock corporateAOUs 
current_delivery preference_stock ozoneAayer buffer_stock unsecured_debt convert- 
ible_preferred external_debt debt_offering current_contract blood_clots Class_B_common 
cumulative_convertible_preferred_stock corporate_governance Class_B_common_stock un- 
sold_balance secured_debt debt.issue cumulative_preferred municipal_debt convert- 
ible_exchangeable_preferred_stock cash.hoard debt.rating 65-day_supply cash_balance 
senior_subordinated_debt senior_secured_debt 

COMPOUND CLASS 256: 
Fed SEC Reagan_administration IRS Pentagon Justice. Department Navy Com- 
merce.Department FDA Army FCC FDIC Federal.Reserve_Board State_Department 
Bundesbank EPA FAA IMF Labor_Department Agriculture_Department FBI 
NASD Defense. Department Federal_Home. Loan_Bank_Board British..government NRC 
Finance.Ministry Japanese.government FTC UAW Kremlin PRI Transporta- 
tion._Department PLO Federal_Trade_Commission CFTC Canadian_government NSC 
GAO Teamsters Carter_Hawley INS GSA Environmental_Protection..Agency ANC 
Labor_Party AFL-CIO FASB NFL Federal_Aviation_Administration ACLU 
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Compound-class-171 consists of names with title many of which are politicians' names. 
Compound-class-179 contains multiword company names. Compound-class-221 consists of 
multiword compound nouns from several specific semantic domains including money, surgery 
and natural environment, but most of the frequent compounds are money-related terms. 
Compound-class-256 is worth special attention in the sense that although single words and 
multiword compounds are mixed almost evenly, most of the single words are abbreviations of 
organizations, mostly public organizations, and the multiword compounds also ahnost exclu- 
sively represent public organizations. Another point to note here is that the pattern of case 

is not uniform in this list. Although both "Defense Department" and "British government" 
represent political organizations, the former consists of only capitalized words and the latter 
doesn't. 

In order to measure the performance of this compound clustering method, a consistency 
check is performed for one class. The objective is to check what proportion of the identi- 
fied members of the class actually deserves to be included in the class. Because this kind of 
judgement is very difficult in general, we must choose a class whose membership is quite clear 
to identify. By this criterion we chose compound-class-179 because it is quite easy to decide 
if some compound is a correct company name or not. From the 40MW text, we randomly 
chose 3000 occurrences of multiword compounds which are members of compound-class-179. 
By manual anMysis, it was found that 133 identified compounds were wrong. The precision is 
therefore 95.6 %. Most of the errors are due to the truncation of correct company names. For 
example, from the string "North American Philips Corp.", only "Philips Corp." was extracted. 
Although "Philips Corp." is itself a correct company name, we treated this instance as an error 
because our judgement was occurrence-based. There was only one instance where a compound 
irrelevant to company names was extracted (a person name). For a control experiment which 
we will describe shortly, all the incorrect compounds are corrected by hand and a standard file 
is created which contains all the correct 2999 occurrences of company names. 

One merit of the current approach is that the identification of a compound-class is carried 
out in time linear with the text size. Therefore, by associating a word with its word-class as a 
feature in the lexicon, and by storing class chain patterns and their membership to compound 
classes, we can carry out a real time identification of the compound-classes without actually 
storing the compounds in the lexicon. 

As a control experiment to the above experiment, we conducted word-based compound 
extraction and compared the result with the above result. Instead of mutual information of 
adjacent classes, mutual information of adjacent words are calculated for all the bigrams in the 
text. Then using various MI threshold values, words are chained in a similar way as described 
in Section 4.1, and compounds are identified. We then evaluated how many of the occurrences 
of company names in the standard file are identified in the word-based compound extraction 
experiment. We varied the MI threshold values from 1.0 to 6.0 with a step of 0.5, but the 
precision of the word-based approach with respect to the standard file was always below 50 %. 

The main reason of the superiority of the class-based approach against the word-based one 
is associated with the data sparseness problem. Most of the previously proposed methods to 
extract compounds or to measure word association using mutual information (MI) either ignore 
or penalize items with low co-occurrence counts (Church and Hanks 1990, Su, Wu and Chang 
1994), because MI becomes unstable when the co-occurrence counts are very small. Take for 
example a class chain "WC129_WC246" discussed above. Figure 8 shows some examples of 
compounds matching the pattern "WC129_WC246" in the 40MW text. Each column shows, 
from left to right, word-based MI for the word bigram (WORD-1,WORD-2), co-occurrence 
frequency of the word bigram, the first word, the second word, class-based MI for the class 
bigram (CLASS-I, CLASS-2), co-occurrence frequency of the class bigram, the word-class of 
WORD-l, and the word-class of WORD-2. Note that the numbers for class-based entries are 
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Figure 8: Examples of Compounds for Names 

WORD-MI BI-COUNT WORD-1 WORD-2 CLASS-MI CL-BI-COUNT CLASS-I CLASS-2 

16.104915 1 Takako Doi 3.941235 52087 129 246 

15.881772 3 Mandy Patinkin 3.941235 52087 129 246 

14.783159 3 Hideo Sakamaki 3.941235 52087 129 246 

12.280086 10 Curt Bradbury 3.941235 52087 129 246 

11.048669 3 Matthew Kennelly 3.941235 52087 129 246 

9.358209 1 Marsha Gardner 3.941235 52087 129 246 

7.994606 7 Ralph Whitehead 3.941235 52087 129 246 

5.073718 1 George Hartman 3.941235 52087 129 246 

4.328457 1 Daniel Owen 3.941235 52087 129 246 

3.914939 3 Charles Walker 3.941235 52087 129 246 

3.319351 1 Robert Fischer 3.941235 52087 129 246 

2.939145 1 Robert Lucas 3.941235 52087 129 246 

2.236354 2 Edward Baker 3.941235 52087 129 246 

1.119861 1 Robert Shultz 3.941235 52087 129 246 

1.072005 1 Robert Hall 3.941235 52087 129 246 

1.069133 1 George Jackson 3.941235 52087 129 246 

0.771154 1 Richard Baker 3.941235 52087 129 246 

0.218531 1 John Jackson 3.941235 52087 129 246 

the same for all the compounds because we collected compounds with the same class chain. 
Although all the compounds are compounds of a first name and a family name, the word- 
based MI varies considerably. This is because frequencies of first names and family names vary 
considerably while frequencies of pairs of first names and family names in the list are very 
small. For example, "John" and "Jackson" are very common first and second names, but the 
name "John Jackson" appeared only once in the text. Therefore the word-based MI becomes 
very small. On the other hand, because "Takako" and "Doi" were very rare names in WSJ 
news articles in 1987 and 1988, the MI becomes very high even though "Takako Doi" appeared 
only once in the text. In contrast, the class-based MI is very stable because the co-occurrence 
frequency of the two classes is as high as 52087. When we examined frequencies of all the 
compounds in the text that match "WC129_WC246", it turned out that more than 80 % of 
the compounds appeared less than five times in the text. This shows how the data sparseness 
problem is critical for the purpose of compound extraction. 

5 Conc lus ion  

We presented an algorithm for hierarchical clustering of words, and conducted a clustering 
experiment using large texts ranging in size from 5MW to 50MW. High quality of the obtained 
clusters is confirmed by the effect of introducing word bits into the ATR Decision-Tree Part-Of- 
Speech Tagger. The hierarchical clusters obtained from WSJ texts are also shown to be useful 
for tagging ATR texts which are from quite different domains than WSJ texts. The word- 
classes thus obtained are then used to identify and cluster multiword compounds. It is shown 
that by using statistics on classes instead of on words, the data sparseness problem is avoided 
and the reliability of mutual information is increased. As a result, class-based compounds 
identification and extraction becomes more reliable than word-based methods. This approach 
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also provides a way of automatically clustering compounds, which has rarely been attempted. 
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