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Abstract

For some time now, it has been known that in unification grammars
we can use functional uncertainty to model certain linguistic
phenomena (Kaplan and Zaenen 1989). Dalrymple et al. (1990)
introduced the notion of inside-out functional uncertainty, and showed
how this concept could account for the description of syntactic
constraints on anaphoric binding. So far, however, no method for
computing inside-out functional uncertainty equations has been
described in the literature. This paper presents an algorithm and a
Prolog implementation for the computation of a subset of equations
involving inside-out functional uncertainty. To illustrate the details, the
method is applied to resolution of the Norwegian long-distance
reflexive [seg]. Prolog is well suited to model the inside-out functional
uncertainty in question, although it is not a functional programming
language. The main reasons for this are the use of logical variables, the
inherent searching behavior of the Prolog machine, and the
backtracking to alternative continuations while failing.

1 Inside-out functional uncertainty

An LFG grammar for a particular language yields a complete and
coherent functional structure for a single sentence if the sentence is well-
formed according to the annotated phrase structure rules and the lexical
entries for the respective words occurring in that sentence. LFG makes use
of a finite set of grammatical functions to give a functional description of an
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utterance. If we present the functional structure as a directed graph, it is
possible to reach all the relevant syntactic information for each phrase in the
utterance via the edges labelled with these grammatical functions. Focusing
only on the functional information, a representation of the sentence (1) will
yield a graph like that in figure 1.

(D Hans; hdpet at Jon; ville be Sylvig
forsgke 4 fi Ola, til 4 tenke pa seg?.

Hans; hoped that Jonjwould ask Sylviy
to try to make Ola think of himself/herself>

P seg,

obl,, pred

Fig. 1: A graph for the sentence in (1).

In LFG, it is convenient to let the arguments in the functional equations
denote a set of paths over grammatical functions. Such a set can be
described by a regular expression with the grammatical functions as
alphabet. Functional uncertainty has been used to account for long distance
dependencies (Kaplan and Zaenen 1989), quantifier scope (Halvorsen and
Kaplan 1988) and modelling of syntactic constraints on anaphoric binding
(Dalrymple et al. 1990, Dalrymple 1993). In the latter two cases, the notion
of inside-out functional uncertainty is used. Given a functional description
of a sentence, we can draw a picture of the binding relation as in figure 2.

The two vertical strokes are meant to model the variable point in the
graph at which the actual binding domain for the anaphor in question starts.
The path from the global f-structure and all the way into the anaphor is the
concatenation of pre_path and path_out.
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Path into
antecedent
(path_in)

Path into binding domain
(pre_path)

Path into
anaphor
(path_out)

Fig. 2: The uncertainty point in the functional graph

The uncertainty point in the graph can vary for the same anaphor. This
depends on the syntactic constraints on the binding domain. In figure 1 we
will have more than one of these points. If the path_out is described by a
regular expression like XCOMPY : (ADJ) : OBJ | OBJ2 | OBLg!, and the
total path from the global f-structure and into the anaphor is COMP:
XCOMP : XCOMP : XCOMP : OBL;,, we will have three possible
uncertainty points in this graph. The notion of functional uncertainty is due
to this variation, and the notion "inside- out" is due to the fact that the
uncertainty is rooted at the f-structure of the anaphor.

2 Descriptions containing
uncertainty equations

Dalrymple et al. (1990) propose an equation like (2) to model the
anaphoric relationship between antecedent and anaphor:

<o>TA

(2) < 6> ((PathOut TA) Pathln)

<G> represent the mapping between syntax and semantics, TA the f-

structure of the anaphor, (PathOut TA) picks out the set of f-structures that
contain the anaphor and in which the antecedent must be located, and PathIn
characterizes the set of possible paths into the antecedent from these
domains. The equation should be read as follows: There should exist an f-
structure b from which there is a path in the set of strings PathOut leading to

TA, and from which an antecedent f-structure ant is reachable via a path in
the set of strings PathIn, and ant and TA should map to the same semantic

I In this notation, ":" means concatenation, "*" means zero, one, or more repetitions,
"*+" means repetition one or more times, "I" means disjunction and round parentheses
means optionality.
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projection. The equation could very well be satisfiable in more than one
way, depending on the choice of paths from the sets PathOut and Pathln,
respectively. But the contribution of (2) to the global functional description,
is that we stick to one of these ways in the final representation.

In this paper, I express the anaphoric relationship through unification of
the AGR features in the f-structure. These AGR features project from the
lexical entries of nominal heads, and consist in turn of the index, gender,
number and person features.

Norwegian has a rich inventory of reflexives. They comprise 1) [seg
selv], which has to be bound to a subjective noun phrase in the minimal
nucleus ([+sb], [+ncl], in the LFG terminology (Sells 1985)); 2) [seg],
which has to be bound to a subjective noun phrase outside the minimal
nucleus, but inside the minimal finite tensed domain ([+sb], [-ncl]); and 3)
[ham selv], [henne selv], [den selv] and [det selv], which have to be bound
in the minimal complete nucleus, but at the same time disjoint from the
subjective phrase in this domain ([-sb], [+ncl])2. If the PathOut for [seg] is
stated as (GF - COMP)* : OBJ | OBJ2 | OBLg3, and the PathIn as SUBJ |
POSS, the equation in (2) may be expressed in the following way when
applied to [seg]:

(3) (((GF - COMP)*+:0OBJIOBJ2I0BLg: T)SUBJIPOSS:AGR) = (T:AGR)

Both to make (3) more readable and to foresee some of the
implementational matters, I divide (3) into a conjuction of equations. To
achieve this, we introduce existential quantified variables ranging over f-
structures. The equation in (3) will thus be transposed to the three equations
in (4), where b and ant are existentially bound f-structure variables.

(4) b:(GF-COMP)*:OBJIOBJ2IOBLy = T
b:SUBJIPOSS = ant
ant:AGR = T:AGR

The resolution process amounts to instantiating the index value of the
anaphor (or of sharing the variable index with the antecedent). Reflexives
are also often underspecified regarding the other morphosyntactic features in
the AGR feature (e.g., [seg] is underspecified with respect to syntactic
gender and number). Unification of the AGR features will thus, under
normal circumstances, add information to the linguistic description of the
anaphoric phrase, in addition to the index feature.

2 This analysis of the Norwegian anaphors has been questioned, e.g., by Lgdrup
(1985). In this paper I will stick to the analysis given by Sells (1985). The parts of this
analysis relevant for the implementation described here, is also supported by Hellan (1988)
and Dalrymple (1993).

3 As in Dalrymple et al. (1990) I take GF to denote the set of grammatical function
labels.
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Under the lexical entry for [seg] is also inserted the constraint in (5)%:
(5) - ( ant :GF* = T )

The "non containment condition" in (5) says that no path (including the
null path, i.e., identity) exists between the antecedent and the anaphor f-
structures. This ensures the first requirement of f-command: "For any

occurrences of the functions a, B, in an f-structure F, o f-commands B if
and only if o does not contain B and every f-structure of F that contains o

contains B" (Bresnan 1982; 334).The Pathln in the second line of (4) is the
disjunction SUBJ | POSS, which means that this path has length one. This
ensures the other requirement of f~command (Dalrymple 1993; 156).

The problem with (5) is that it involves universal quantification over
paths in the set of strings GF*. This is the effect of negating an equation
involving functional uncertainty (Dalrymple 1993; 123). Such equations
only make sense if related to completed f-structures, where they will be
evaluated as true or not. This is accounted for in LFG by treating negation
nonconstructively (Kaplan and Bresnan 1982; 210, Dalrymple 1993; 123).
The last equation is thus only constraining, i.e., it will be checked for
satisfaction in a complete and coherent f-structure.

The equations in (4) and (5) have to be further elaborated to account for
all the syntactic constraints on anaphoric binding.The [+sb] anaphors must
be bound inside the minimal tensed domain. This means that no intervening
f-structure in the PathOut should contain the feature TENSE. This can be
expressed in the following way?>:

(6) - [ int : GF+ = )
b : GF+ = int
int: TENSE ]

The [-ncl] feature states that all non-reflexive arguments inside the
minimal nucleus should be disjoint from the anaphor in question. As (7)
shows, it is perfectly possible for the [-ncl] anaphor [seg] to corefer with a
reflexive argument inside the minimal nucleus:

4 The constraints in (5) and (6) are assumed to be expressed as conjuncts to the
existential quantified constraints in (4), so the variables ant and b will be properly bound.
5 Dalrymple (1993; 136) uses the following notation to express the constraint in (6):
((DomainPath GF T) AntecedentPath)g = To
— (-> TENSE)
This should be read as follows: None of the f-structures that is picked out along the path

DomainPath, should contain the feature TENSE. The equation in (6) involves universal
quantification of the variable int, as the negation sign has wider scope.
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(7 Martin; ba oss snakke til seg; om [seg selv]i/seg;.
Martin; asked us to talk to him; about himself;.

The minimal nucleus is the minimal f-structure containing both the
anaphor and a feature PRED, that is, no intervening f-structure between this
f-structure and the anaphor should contain PRED. In this domain all the
non-reflexive co-argumenting f-structures should have an index disjoint
from the index of the anaphor. This so-called co-argument disjointness
condition can be stated with the help of a constraint like that in (6).

3 The inside-out algorithm

Kaplan and Maxwell (1988) showed that the verification problem for
equations containing outside-in functional uncertainty was trivial, while the
satisfiability problem was decidable in the acyclic case. Whether these
results hold also for equations involving inside-out uncertainty, is not
obvious. Imagine, for instance, the case where an equation enables us to
build ever more comprehensive f-structures by adding ADJ on our way out.
This cancels the property of rootedness which is usually presupposed for
linguistic descriptions.

In the application considered in this paper, however, this problem need
not arise. This will be evident by a closer inspection of the equations
comprising inside-out functional uncertainty, and in particular the first two
equations in (4). None of these equations could be defining, using the
LFG terminology, in that they allow information to be added in a monotonic
way during construction time. The antecedent ant for an intrasentential
anaphor always has to be realized by other means in the global f-structure,
either as an element subcategorized for by an existing PRED, or otherwise
realized in terms of a projection from the c-structure. This is also the case for
the f-structure representing the binding domain b, and for all grammatical
functions in PathOut and PathIn. Only the third equation in (4), unifying the
AGR features, adds information, in that the anaphor is attached with its
antecedent by sharing of index values. Thus only the latter equation is
defining in the LFG sense. The consequence of this argument, is that we can
treat the inside-out uncertainties with respect to the final coherent and
complete f-structure for the sentence as a whole. For this application we
only have to consider the grammatical functions in the final global
representation as candidates for possible steps in the uncertainty paths.

The algorithm is called IO, as it is based upon a true, "inside-out”
recursive traversal of a finite graph. Input to the algorithm are the global f-
structure FS, the f-structure for the anaphoric element ana and the regular
expression reg_exp describing the PathOut from ana to the possible

6 This example is from Dalrymple (1993; 150), where it is used to illustrate binding
asymmetries.
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binding domains. We start by assigning FS to the variable parameter
fstruc. Then we traverse into ana, one step (gf) at the time. At each step
gf we instantiate the corresponding part of path by concatenating gf in
front of the variable path rest. On each corresponding step during
withdrawal we check for a match between reg_exp and path, and try to
resolve the anaphor if we have a match. Output is either success, with the
AGR feature of ana unified with the antecedent, or failure.

Above, we stated that reg_exp in the [seg] case could be described by
the regular expression (GF - COMP)* : OBJ | OBJ2 | OBLg. Only f-
structures at this "distance" from ana should be taken into account as
possible binding domains. If some suffix of path satisfies this description at
all, we will be in one of three situations on our way out of the graph,
starting from ana at the innermost level:

1) We have not reached the variable point in the graph where path
matches reg_exp. In this case path should be a suffix of
reg_exp. (e.g., path = OBLy).

2) We have a situation where path matches reg_exp.
(e.g., path = XCOMP : XCOMP : OBLy).

3) We have passed the variable point where path matches reg_exp.
(e.g., path = COMP: XCOMP : XCOMP : XCOMP : OBLy).

These three situations can be illustrated as in figure 3:

3. Pre_path 2. Matching 1. Not yet matching
-+ 4>

e ————
FS ANA

Fig. 3: The three possible situations

The matching process can be done on each level while withdrawing in the
recursion. To keep track of which of the three situations we are in, we
introduce two flags: match? and resolved?. These flags can be in one of
two states: true or false. Initially, and in situation 1 above, they are both
false. From the first level of matching an onwards (situation 2) match? =
true. We should try to resolve the anaphor only on this level. If we succeed
in resolving the anaphor, resolved? is set to true, and all higher levels of
IO succeed without any further ado. If we are in situation 2, and no longer
have a match between path and reg_exp, 10 should fail on this level.
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Now we are in a position to describe the algorithm:

10 1.

10 2.

[We have reached the anaphor]
If fstruc is identical with ana, terminate with path set to
the empty path.

[Search a step further down in the f-structure]}

Follow a grammatical function gf from fstruc. Call the f-
structure which gf picks out for temp. Set path to the
concatenation of gf and the variable path_rest and call 10
recursively with temp and path_rest, and the other
parameters unchanged. Let us assume that we seek depth
first. If fstruc contains no grammatical function, continue
in the last possible alternative continuation. Eventually we
will reach the anaphor ana.

On each level on the way back in the recursion we do the

following:
a) If resolved? is true, terminate with success.
b) Make a resolution try if
1) the flag resolved? is false and
2) we are in a legal binding domain (there is a

match between path and reg_exp, and
match? is set to true)
If the resolution succeeds, set resolved? to true. In
any case, terminate with success (if resolution fails
on this level, we should anyway try on a higher
level).
c) If match? is true, and we don't have a match
between path and reg_exp, terminate with failure
(we are in situation 3 above, and have not succeeded
in resolution of the anaphor inside the legal binding
domain).
d) Otherwise, if path is a suffix of reg_exp, terminate
with success.
(Both resolved? and match? are false. This
means that we have not yet reached a legal binding
domain on our way out)
e) Otherwise, terminate with failure. (No suffix of this
path between FS and ana will ever satisfy

reg_exp.)

Pr oceedi ngs of NODALI DA 1995

76



4 Advantages using Prolog

There are two obvious advantages in using Prolog to implement the
described algorithm?. First, there is the depth-first searching machine
inherent in the proof resolution of Prolog. This can be utilized in step 102,
where we pick out a reachable f-structure temp, following an edge labelled
gf from fstruc. Prolog will search through the graph until the anaphoric
element is found, without any special machinery.

The search mechanism of Prolog has also one further advantage.
Backtracking to the last alternative continuation will give us all possible
solutions, one at a time, in a "don't know" indeterministic way. This goes
together well with the notion of functional uncertainty.

Second, the logical variables of Prolog are utilized in the recursive call on
IO with the variable dynamic parameter path_rest in 102. This parameter
will be instantiated through unification if the goal succeeds. We would have
difficulties in modelling this dynamic instantiation with the same elegance
and descriptive power in any other programming language.

The Prolog variable, preliminarily distributed as the value of the IND
feature from the lexicon, ensures that structures sharing this variable will
continue to share this property, regardless of the course of the processing
history: syntactic and semantic analysis, noun phrase processing including
anaphoric resolution, foci and knowledge base updating, etc.

Indexing is done on the functional description of the clause. But as the
representations of the discourse referents share the same Prolog variable as
value of the index feature both in the functional and the semantic
representation, the instantiation will affect all structures simultaneously and
in the same way.

Sometimes we try to unify two AGR features where neither have an
instantiated index. This happens if an anaphor has a pronominal as its
antecedent. If the unification succeeds, the two structures in question will
share the same Prolog variable as value of the IND feature. When the
pronominal is resolved later on, both structures will be instantiated with the
same index value.

Logical variables can also be utilized to model the two flags in IO. Both
flags are first false, then eventually true, but never changing back to false
again. This we can model in Prolog, letting false be a logical variable, and
true the constant true. We check the value of a flag asking if it is a variable

7 1 have troughout this paper considered acyclic f-structures only. Jan Tore Lgnning
(p.c.) has pointed out to me, that Prolog is not the best programming language for
representing cyclic graphs, in that it is impossible for a Prolog variable to contain itself.
The algorithm presented in the preceding section might handle cyclicity by naming the f-
structures in the path, checking in each step that we do not pass through the same f-
structure twice. The interaction of cycles with uncertainty paths may pose other problems,
however.
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or not. Once instantiated to true, a flag will keep this value in the actual
environment.

5 The Prolog code

The program consists of two predicates: inside_out/6 and check/6.
Inside_out/6 has two entries, while check/6 has three entries. The arguments
in both cases come in this order: fstruc, ana, path, reg_exp, match?,
resolved?.

inside_out(Ana, Ana, [], RegExp, Match, Resolved) :- !.

inside_out(FS, Ana, [GF | Path], RegExp, Match, Resolved) :-
follow(FS, GF, Temp),
inside_out(Temp, Ana, Path, RegExp, Match, Resolved),
check(FS, Ana, [GF | Path], RegExp, Match, Resolved).

The flags (and the resolution of the anaphor) are handled inside the
check/6 goal. If Resolved is set to true on an earlier level, we continue to
withdraw:

check(_, _, _, _, _, Resolved) :- nonvar(Resolved), !.

We are in situation 2: We have a match between Path and RegExp. We
set Match to true, and try to resolve the anaphor. If resolution succeeds on
this level, Resolved is set to true, otherwise it remains a variable. In any
case, the goal will succeed, so we can continue to withdraw:

check(FS, Ana, Path, RegExp, Match, Resolved) :-
match(Path, RegExp),
!

.y

Match = true,
resolve(FS, Ana, Path, Resolved).

We are in situation 1: Both Resolved and Match are variables, and we do
not have a match yet. The Path so far is a suffix of one of the described
paths in RegExp. The check/6 goal succeeds, and we continue to withdraw:

check(_, _, Path, RegExp, Match, _) :-
var(Match),
suffix(Path, RegExp).

This procedure tries out a solution on the level nearest to the anaphor
first. If this solution is in conflict with other constraints, we back-track to
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the continuation inside entry 2, where Resolved remains a variable. On the
successive levels, entry 2 will be evoked as long as we have a match.

If we reach situation 3 without any resolution (Match is true, and
Resolved is still a variable) check/6 fails on this level, and due to this,
inside_out/6 fails on the same level.

If we reach a situation where both Resolved and Match are still variables,
and Path neither matches RegExp nor a suffix of RegExp, check/6 fails
immediately.

To give a flavor of the approach taken, I include an example of the
resolve/4 goal in the [seg] case:

resolve(FS, Ana, _, Resolved) :-
(follow(FS, subj, Ant); follow(FS, poss, Ant)),
not(contained(Ana, Ant)),
Ant : agr === Ana : agr,
Resolved = true.

resolve(_, _, _, _).

The f-command restriction is guaranteed by the first two lines: In line one
we follow a path of length one (subj or poss) to identify the f-structure of
the antecedent (Ant), and in line two the goal fails if Ana is contained in (or
identical to) Ant. Resolution amounts to unification of the AGR features,
and if all these goals succeed, Resolved is set to true.

If any of the goals fails, the second entry for resolve/4 succeeds, and the
Resolve flag remains a Prolog variable.

6 Conclusion

I have presented a Prolog implementation of inside-out functional
uncertainty with an application to intrasentential anaphora resolution. The
main predicate inside_out/6 and the subgoal check/6 take care of the binding
constraints. It turns out that the inside-out functional uncertainty approach is
well suited for an efficient implementation of intrasentential anaphora
resolution. This is so because, for this application, we only have to concern
ourselves with the f-structures and the grammatical functions legitimated by
other defining equations in the linguistic description, as they are projected
from the c-structure tree and the lexical entries of the morphemes occuring in
the string. Thus we can take the complete and coherent f-structures as input
to the resolution algorithm. Although not a functional programming
language, Prolog is well suited for implementation of the algorithm in
question.
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