
Fernando C. Pere i ra

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974
pere ira©research, att. tom

Beyond Word N-Grams

Yoram Singer

Institute Computer Science
Hebrew University

Jerusalem 91904, Israel
s inger©cs, huj i. ac. il

Nafta l i T i shby

Institute of Computer Science
Hebrew University

Jerusalem 91904, Israel
t ishby©cs, huj i. ac. il

Abstract

We describe, analyze, and experimentally evaluate a new probabilistic model for word-
sequence prediction in natural languages, based on prediction suffi~v trees (PSTs). By using
efficient data structures, we extend the notion of PST to unbounded vocabularies. We also show
how to use a Bayesian approach based on recursive priors over all possible PSTs to efficiently
maintain tree mixtures. These mixtures have provably and practically better performance than
almost any single model. Finally, we evaluate the model on several corpora. The low perplexity
achieved by relatively small PST mixture models suggests that they may be an advantageous
alternative, both theoretically and practically, to the widely used n-gram models.

1 I n t r o d u c t i o n

Finite-state methods for the statistical prediction of word sequences in natural language have
had an important role in language processing research since Markov's and Shannon's pioneering
investigations (C.E. Shannon, 1951). While it has always been clear that natural texts are not
Markov processes of any finite order (Good, 1969), because of very long range correlations between
words in a text such as those arising from subject matter , low-order alphabetic n-gram models have
been used very effectively for such tasks as statistical language identification and spelling correction,
and low-order word n-gram models have been the tool of choice for language modeling in speech
recognition. However, low-order n-gram models fail to capture even relatively local dependencies
that exceed model order, for instance those created by long but frequent compound names or
technical terms. Unfortunately, extending model order to accommodate those longer dependencies
is not practical, since the size of n-gram models is in principle exponential on the order of the
model.

Recently, several methods have been proposed (Ron et al., 1994; Willems et al., 1994) that
are able to model longer-range regularities over small alphabets while avoiding the size explosion
caused by model order. In those models, the length of contexts used to predict particular symbols
is adaptively extended as long as the extension improves prediction above a given threshold. The
key ingredient of the model construction is the prediction suffix tree (PST), whose nodes represent
suffixes of past input and specify a predictive distribution over possible successors of the suffix. It
was shown in (Ron et al., 1994) that under realistic conditions a PST is equivalent to a Markov
process of variable order and can be represented efficiently by a probabilistic finite-state automaton.
For the purposes of this paper, however, we will use PSTs as our start ing point.

The problem of sequence prediction appears more difficult when the sequence elements are words
rather than characters from a small fixed alphabet. The set of words is in principle unbounded, since

95

in natural language there is always a nonzero probabili ty of encountering a word never seen before.
One of the goals of this work is to describe algorithmic and data-s t ructure changes that support the
construction of PSTs over unbounded vocabularies. We also extend PSTs with a wildcard symbol
that can match against any input word, thus allowing the model to capture statistical dependencies
between words separated by a fixed number of irrelevant words.

An even more fundamental new feature of the present derivation is the ability to work with a
mixture of PSTs. Here we adopted two important ideas from machine learning and information
theory. The first is the fact that a mixture over an ensemble of experts (models), when the mixture
weights are properly selected, performs bet ter than almost any individual member of that ensemble
(DeSantis et al., 1988; Cesa-Bianchi et al., 1993). The second idea is that within a Bayesian
framework the sum over exponentially many trees can be computed efficiently using a recursive
structure of the tree, as was recently shown by Willems et al. (1994). Here we apply these ideas
and demonst ra te that the mixture, which can be computed as almost as easily as a single PST,
performs bet ter than the most likely (maximum aposteriori - - MAP) PST.

One of the most important features of the present algorithm that it can work in a fully online
(adaptive) mode. Specifically, updates to the model s tructure and statist ical quantit ies can be
performed adaptively in a single pass over the data. For each new word, frequency counts, mixture
weights and likelihood values associated with each relevant node are appropriately updated. There
is not much difference in learning performance between the online and batch modes, as we will
see. The online mode seems much more suitable for adaptive language modeling over longer test
corpora, for instance in dictation or translation, while the batch algorithm can be used in the
traditional manner of n-gram models in sentence recognition and analysis.

From an information-theoretic perspective, prediction is dual to compression and statistical
modeling. In the coding-theoretic interpretat ion of the Bayesian framework, the assignment of
priors to novel events is rather delicate. This question is especially impor tant when dealing with
a statistically open source such as natural language. In this work we had to deal with two sets of
priors. The first set defines a prior probabil i ty distr ibution over all possible PSTs in a recursive
manner, and is intuitively plausible in relation to the statistical self-similarity of the tree. The
second set of priors deals with novel events (words observed for the first t ime) by assuming a
scalable probabil i ty of observing a new word at each node. For the novel event priors we used a
simple variant of the Good-Turing method, which could be easily implemented online with our da ta
structure. It turns out that the final performance is not terribly sensitive to part icular assumptions
on priors.

Our successful application of mixture PSTs for word-sequence prediction and modeling make
them a valuable approach to language modeling in speech recognition, machine translation and sim-
ilar applications. Nevertheless, these models still fail to represent explicitly grammatical s tructure
and semantic relationships, even though progress has been made in other work on their statistical
modeling. We plan to investigate how the present work may be usefully combined with mod-
els of those phenomena, especially local finite-state syntactic models and distr ibutional models of
semantic relations.

In the next sections we present PSTs and the da ta s tructure for the word prediction problem.
We then describe and briefly analyze the learning algorithm. We also discuss several implementat ion
issues. We conclude with a preliminary evaluation of various aspects of the model On several English
corpora.

96

i

2 P r e d i c t i o n Suf f ix Trees over U n b o u n d e d S e t s

Let U C E* be a set of words over the finite alphabet ~E, which represents here the set of actual and
future words of a natural language. A prediction suffix tree (PST) T over U is a finite tree with
nodes labeled by distinct elements of U* such that the root is labeled by the empty sequence e, and
if s is a son of s' and s' is labeled by a 6 U* then s is labeled by wa for some w 6 U. Therefore, in
practice it is enough to associate each non-root node with the first word in its label, and the full
label of any node can be reconstructed by following the path from the node to the root. In what
follows, we will often identify a PST node with its label.

Each PST node s is has a corresponding.prediction function 7s : U' --+ [0, 1] where U' C U U {¢}
and ¢ represents a novel event, that is the occurrence of a word not seen before in the context
represented by s . The value of 7, is the next-word probability function for the given context s. A
PST T can be used to generate a s tream of words, or to compute prefix probabilities over a given
stream. Given a prefix w l . . . w k generated so far, the context (node) used for prediction is found
by starting from the root of the tree and taking branches corresponding to Wk, wk-1, • • • until a
leaf is reached or the next son does not exist in the tree. Consider for example the PST shown in
Figure 1, where some of the values o f % are:

7 'andthef i rs t ' (wor ld) = 0.1, 7 'andthef i r s t ' (t ime) = 0.6 ,
7,andthefirst,(boy) = 0.2 , 7,andthefirst,(~b) ---- 0.i .

When observing the text ~... long ago and the first', the matching path from the root ends

at the node 'and the first'. Then we predict that the next word is time with probability

0.6 and some other word not seen in this context with probability 0.1. The prediction probability

distribution 7s is estimated from empirical counts. Therefore, at each node we keep a data structure
to track of the number of times each word appeared in that context.

A wildcard symbol, '*', is available in node labels to allow a particular word position to be
ignored in prediction. For example, the text ' . . . bu t t h i s was' is matched by the node label
' t h i s *', which ignores the most recently read word 'was'. Wildcards allow us to model conditional
dependencies of general form P(z t lx t_ i l , z t - i 2 , . . . , z t - i~) in which the indices il < i2 < . . . < iL
are not necessarily consecutive.

We denote by C T (W l " .wn) = w , - k " . w , = s the context (and hence a corresponding node
in the tree) used for predicting the word wn+l with a given PST T. Wildcards provide a useful
capability in language modeling since syntactic structure may make a word strongly dependent on
another a few words back but not on the words in between.

One can easily verify that every s tandard n-gram model can be represented by a PST, but the
opposite is not true. A tr igram model, for instance, is a PST of depth two, where the leaves are
all the observed bigrams of words. The prediction function at each node is the tr igram conditional
probabili ty of observing a word given the two preceding words.

3 T h e L e a r n i n g A l g o r i t h m

Within the framework of online learning, it is provably (see e.g. (DeSantis et al., 1988; Cesa-Bianchi
et al., 1993)) and experimentally known that the performance of a weighted ensemble of models,
each model weighted according to its performance (the posterior probabil i ty of the model), is not
worse and generally much bet ter than any single model in the ensemble. Although there might
be exponentially many different PSTs in the ensemble, it has been recently shown (Willems et al.,
1994) that a mixture of PSTs can be efficiently computed for small alphabets.

97

3 2

Figure 1: A small example of a PST of
words for language modeling. The num-
bers on the edges are the weights of the
sub-trees start ing at the pointed node.
These weights are used for tracking a
mixture of PSTs. The special string
* represents a 'wild-card' tha t can be
matched with any observed word.

Here, we will use the Bayesian formalism to derive an online learning procedure for mixtures of
PSTs of words. The mixture elements are drawn from some pre-specified set T, which in our case
is typically the set of all PSTs with maximal depth < D for some suitably chosen D.

For each PST T E T and each observation sequence w l , . . . , wn, T 's likelihood (or evidence)
P (w l , . . . , wnlT) on tha t observation sequence is given by:

n

P (w l , . . . , w , I T) - - I I 7 0 ~ (, o l wi_l)(wi), (1)
i : l

where CT(wo) = e is the null (empty) context. The probability of the next word, given the past n
observations, is provided by Bayes formula,

P(Wl, • . . , wn-1, w,) (2)
P(w~'lwl"" "'wn-1) = P(wl , . . . ,wn -1)

_ ETeTPo(T)P(Wl , ' " ,wn- I ,Wnl T)
-- ~ T e T P o (T) P (w l , . . . , wn-1 IT) ' (3)

where Po(T) is the prior probability of the PST, T.
A nMve computat ion of (3) would be infeasible, because of the size of 7". Instead, we use a

recursive method in which the relevant quantities for a PST mixture are computed efficiently from
related quantities for sub-PSTs. In particular, the PST prior Po(T) is defined as follows. A node s
has a probability c~, of being a leaf and a probability 1 - a , of being an internal node. In the latter
case, its sons are either a single wildcard, with probability rio, or actual words with probability
1 - f~. To keep the derivation simple, we assume here tha t the probabilities as are independent
of s and tha t there are no wildcards, tha t is, f~, -- 0, c~ -- c~ for all s. Context-dependent priors
and trees with wildcards can be obtained by a simple extension of the present derivation. Let us
also assume tha t all the trees have maximal depth D. Then Po(T) = a '~ (1 - a) ~2 , where n~ is the
number of leaves of T of depth less than the maximal depth and n2 is the number of internal nodes
of T.

To evaluate the likelihood of the whole mixture we build a tree of maximal depth D containing
all observation sequence suffixes of length up to D. Thus the tree contains a node s iff s --
(wi-k+l , . . . ,wi) with 1 < k _< D, 1 < i < n. At each node s we keep two variablesJ The first,

~In practice, we keep only a rat io re la ted to the two variables, as explained in detail in the next section.

98

!

Ln(s), accumulates the likelihood of the node seen as a leaf. That is, Ln(s) is the product of the
predictions of the node on all the observation-sequence suffixes that ended at that node:

Ln(s) = IX P(wi]s) : H 7,(w/) . (4)
{ i l eT(Wl wi--1):s, i_<i_<n} { i l OT(Wl wi -1)= , , l<i~n}

For each new observed word wn, the likelihood values Ln(s) are derived from their previous values
L~-i (s). Clearly, only the nodes labeled by w,~_l, wn-2w,~-l, . . . , w,~-D..'w,~-i will need likeli-
hood updates. For those nodes, the update is simply multiplication by the node's prediction for
wn; for the rest of the nodes the likelihood values do not change:

Ln-l(S) Ts(wn) s ~ C (w l , . . . , w n - 1) , I s [< D L,~(s)
i ~ - i (s) otherwise , (5)

The second variable, denoted by Lmixn(s), is the likelihood of the mixture of all possible trees
that have a subtree rooted at s on the observed suffixes (all observations that reached s). Lmixn(s)
is calculated recursively as follows:

Lmiz~(s) = o~L,~(s) + (1 - c~) IX Lmixn(us) , (6)
ueU

The recursive computat ion of the mixture likelihood terminates at the leaves:

Lmiz,~(s) = L,~(s) if Isl = D . (7)

In summary, the mixture likelihood values are updated as follows:

Lmiz~(s) = {
L~(s)
o~Ln(s) + (1 - or) [Iueu rmixn(us)
Lmix,~_l(s)

s = C (w l , . . . , w , _ i) , Is] = D
s = C (w l , . . . , W , _ l) , Isl < D
otherwise

(8)

At first sight it would appear that the update of Lmixn would require contributions from an
arbitrarily large subtree, since U may be arbitrarily large. However, only the subtree rooted at
(wn_ls[_ 1 s) is actually affected by the update. Thus the following simplification holds:

IX Lmiz,~(us)= Lmiz,~(Wn_l,l_lS) × H Lmiz~(us). (9)
uEU uEU, u~tOn_i,I_ x

Note that Lmizn(s) is the likelihood of the weighted mixture of trees rooted at s on all past
observations, where each tree in the mixture is weighted with its proper prior. Therefore,

Lrniz,~(e) = ~ Po(T)P(wl,...,wnIT) ,
T E T

(I0)

where T is the set of trees of maximal depth D and e is the null context (the root node). Combining
Equations (3) and (10), we see that the prediction of the whole mixture for next word is the ratio
of the likelihood values Lmi~n(e) and Lmixn_l(e) at the root node:

P(wnlwl, . . ., wn-1) = Lmix,~(e)/Lmiz,~_l(e) . (li)

A given observation sequence matches a unique path from the root to a leaf. Therefore the t ime
for the above computat ion is linear in the tree depth (maximal context length). After predicting

99

the next word the counts are updated simply by increasing by one the count of the word, if the
word already exists, or by inserting a new entry for the new word with initial count set to one.
Based on this scheme several n-gram estimation methods, such as Katz 's backoff scheme (Katz,
1987), can be derived. Our learning algorithm has, however, the advantages of not being limited
to a constant context length (by setting D to be arbitrarily large) and of being able to perform
online adaptat ion. Moreover, the interpolation weights between the different prediction contexts
are automatical ly determined by the performance of each model on past observations.

In summary, for each observed word we follow a path from the root of the tree (back in the
text) until a longest context (maximal depth) is reached. We may need to add new nodes, with
new entries in the da ta structure, for the first appearance of a word. The likelihood values of the
mixture of subtrees (Equation 8) are returned from each level of that recursion up to the root node.
The probabil i ty of the next word is then the ratio of two consecutive likelihood values returned at
the root.

For prediction without adaptat ion, the same method is applied except that nodes are not added
and counts are not updated. If the prior probabil i ty of the wildcard, j3, is positive, then at each
level the recursion splits, with one path continuing through the node labeled with the wildcard and
the other through the node corresponding to the proper suffix of the observation. Thus, the update
or prediction t ime is in that case o(2D) . Since D is usually very small (most currently used word
n-grams models are trigrams), the update and prediction t imes are essentially linear in the text
length.

It remains to describe how the probabilities, P (w l s) = 7s(w) are es t imated from empirical
counts. This problem has been studied for more than thir ty years and so far the most common
techniques are based on variants of the Good-Turing (GT) method (Good, 1953; Church and Gale,
1991). Here we give a description of the est imation method that we implemented and evaluated.
We are currently developing an alternative approach for cases when there is a known (arbitrarily
large) bound on the maximal size of the vocabulary U.

Let n l , n 2 , . . s s . ,nr,S respectively, be the counts of occurrences of words wl, w2, • . . , w~, at a given
context (node) s, where r" is the total number of different words that have been observed at node
s. The total text size in that context is thus n" = ~ 1 n~. We need est imates of 7,(wl) and of

7,(w0) the probabil i ty of observing a new word w0 at node s. The GT method sets 7,(w0) - t_~- , - - n s ,

where tl is the total number of words that were observed only once in that context. This method
has several justifications, such as a Poisson assumption on the appearance of new words (Fisher et
al., 1943). It is, however, difficult to analyze and requires keeping track of the rank of each word.
Our learning scheme and da ta structures favor instead any method that is based only on word
counts. In source coding it is common to assign to novel events the probabil i ty ~+r" In this case

the probabil i ty 7,(wl) of a word that has been observed n~ times is set to n~ As reported in
(Wit ten and Bell, 1991), the performance of this method is similar to the GT est imation scheme,
yet it is simpler since only the number of different words and their counts are kept.

Finally, a careful analysis should be made when predicting novel events (new words). There
are two cases of novel events: Ca) an occurrence 'of an entirely new word~ that has never been seen
before in any context; (b) an occurrence of a word that has been observed in some context, but is
new in the current context.

The following coding interpretat ion may help to understand the issue. Suppose some text is
communicated over a channel and is encoded using a PST. Whenever an entirely new word is
observed (first case) it is necessary to first send an indication of a novel event and then transfer the
identity of that word (using a lower level coder, for instance a PST over the alphabet E in which the
words in U are written. In the second case it is only necessary to transfer the identity of the word,

100

by referring to the shorter context in which the word has already appeared. Thus, in the second
case we incur an additional description cost for a new word in the current context. A possible
solution is to use a shorter context (one of the ancestors in the PST) where the word has already
appeared, and multiply the probabil i ty of the word in that shorter context by the probabil i ty that
the word is new. This product is the probabili ty of the word.

In the case of a completely new word, we need to multiply the probabili ty of a novel event by an
additional factor Po(wn) interpreted as the prior probabili ty of the word according to a lower-level
model. This additional factor is multiplied at all the nodes along the path from the root to the
maximal context of this word (a leaf of the PST). In that case, however, the probabil i ty of the next
word wn+l remains independent of this additional prior, since it cancels out nicely:

Lmizn+l(e) × Po(w,~) Lmixn+l(e) (12)
P(wn+l[wl,...,w~) = Lrnix~(e) × Po(w,~) - Lmix,~(e)

Thus, an entirelY new word can be treated simply as a word that has been observed at all the nodes
of the PST. Moreover, in many language modeling applications we need to predict only that the
next event is a new word, without specifying the word itself. In such cases the update derivation
remains the same as in the first case above.

4 Efficient I m p l e m e n t a t i o n of P S T s of Words

Natural language is often bursty (Church, this volume), that is, rare or new words may appear and
be used relatively frequently for some stretch of text only to drop to a much lower frequency of
use for the rest of the corpus. Thus, a PST being build online may only need to store information
about those words for a short period. It may then be advantageous to prune PST nodes and remove
small counts corresponding to rarely used words. Pruning is performed by removing all nodes from
the suffix tree whose counts are below a threshold, after each batch of K observations. We used a
pruning frequency K of 1000000 and a pruning threshold of 2 in some of our experiments.

Pruning during online adaptat ion has two advantages. First, it improves memory use. Second,
and less obvious, predictive power may be improved. Rare words tend to bias the prediction
functions at nodes with small counts, especially if their appearance is restricted to a small portion
of the text. When rare words are removed from the suffix tree, the est imates of the prediction
probabilities at each node are readjusted reflect bet ter the probabili ty est imates of the more frequent
words. Hence, part of the bias in the estimation may be overcome.

To support fast insertions, searches and deletions of PST nodes and word counts we used a
hybrid da ta structure. When we know in advance a (large) bound on vocabulary size, we represent
the root node by arrays of word counts and possible sons subscripted by word indices. At other
nodes, we used splay trees (Sleator and Tarjan, 1985) to store both the counts and the branches to
longer contexts. Splay trees support search, insertion and deletion in amortized O(log(n)) t ime per
operation. Furthermore, they reorganize themselves to so as to decrease the cost of accessing to
the most frequently accessed elements, thus speeding up access to counts and subtrees associated
to more frequent words. Figure 2 illustrates the hybrid da ta structure:

The likelihood values Lmix,~(s) and L,~ (s) decrease exponentially fast with n, potentially caus-
ing numerical problems even if log representation is used. Moreover, we are only interested in the
predictions of the mixtures; the likelihood values are only used to weigh the predictions of different
nodes. Let ~s(w,~) be the prediction of the weighted mixture of all subtrees rooted below s (includ-
ing s itself) for w,~. By following the derivation presented in the previous section it can be verified

101

I I i [...........
. °

. . . . o °

Figure 2: The hy-
brid da ta s t ructure
tha t represents the
suffix tree and
the predict ion func-
t ions at each node.

that ,

where

Define

"~,(w,~+l) = qn(s)7,(w,~+l) + (1 - q,~(s))'~(~,_l,i ,) (' I O n + l) , (13)

= o~L,~(s)/(o~Lr~(S)+(1-a)IILmixn(us)) (14)
uEU

(1 - a) l-Iueu Lmixn(us)
= 1 / (1 + aLr,(S)) (15)

o~Ln(s)
Rn(s) = log (1 - c 0 N-~-L-mi~en(us)] (16)

Sett ing Ro(s) = log(c~/(1 - c 0) for all s, Rn(s) is upda ted as follows:

R,~+l(S) = Rn(s)+ log (7 , (W n + l)) - log ('~(w,_r,i,)(w,~+l)) , (17)

and qn(s) = 1/(1 + e-n"(')) . Thus, the probabil i ty of w,~+l is p ropagated along the pa th corre-
sponding to suffixes of the observation sequence towards the root as follows,

{ ~ , , , (w . + a) s = C (w ~ , . . . , w .) , Isl = D
(18)

Finally, the predict ion of the complete mixture of PSTs for Wn is s imply given by ~ (wn) .

5 E v a l u a t i o n

We tested our a lgor i thm in two modes. In online mode, model s t ructure and parameters (counts)
are upda ted after each observation. In batch mode, the s t ructure and parameters are held fixed
after the training phase, making it easier to compare the model to s tandard n-gram models. Our
initial experiments used the Brown corpus, the Gutenberg Bible, and Milton 's Paradise Lost as
sources of t raining and test material . We have also carried out a prel iminary evaluation on the
ARPA North-American Business News (NAB) corpus.

102

For batch training, we parti t ioned randomly the da ta into training and testing sets. We then
trained a model by running the online algorithm on the training set, and the resulting model, kept
fixed, was then used to predict the test data.

As a simple check of the model, we used it to generate text by performing random walks over
the PST. A single step of the random walk was performed by going down the tree following the
current context and stop at a node with the probability assigned by the algorithm to that node.
Once a node is chosen, a word is picked randomly by the node's prediction function. A result of
such a random walk is given in Figure 3. The PST was trained on the Brown corpus with maximal
depth of five. The output contains several well formed (meaningless) clauses and also cliches such
as "conserving our rich natural heritage," suggesting that the model captured some longer-term
statistical dependencies.

every year public sentiment for conserving our rich natural heritage is growing but that heritage
is shrinking even faster no joyride much of its contract if the present session of the cab driver in
the early phases conspiracy but lacking money from commercial sponsors the stations have had
to reduce its vacationing

Figure 3: Text created by a random walk over a PST trained on the Brown corpus.

In online mode the advantage of PSTs with large maximal depth is clear. The perplexity of the
model decreases significantly as a function of the depth. Our experiments so far suggest that the
resulting models are fairly insensitive to the choice of the prior probability, a, and a prior which
favors deep trees performed well. Table 1 summarizes the results on different texts, for trees of
growing maximal depth. Note that a maximal depth 0 corresponds to a 'bag of words' model (zero
order), 1 to a bigram model, and 2 to a t r igram model.

In our first batch tests we trained the model on 15% of the da ta and tested it on the rest. The
results are summarized in Table 2. The perplexity obtained in the batch mode is clearly higher than
that of the online mode, since a small portion of the da ta was used to train the models. Yet, even
in this case the PST of maximal depth three is significantly bet ter than a full t r igram model. In
this mode we also checked the performance of the single most likely (maximum aposteriori) model
compared to the mixture of PSTs. This model is found by pruning the tree at the nodes that
obtained the highest confidence value, Ln(s), and using only the leaves for prediction. As shown
in the table, the performance of the MAP model is consistently worse than the performance of the
mixture of PSTs.

As a simple test of for applicability of the model for language modeling, we checked it on text
which was corrupted in different ways. This situation frequently occurs in speech and handwrit ing
recognition systems or in machine translation. In such systems the last stage is a language model,
usually a t r igram model, that selects the most likely alternative between the several options passed
by the previous; stage. Here we used a PST with maximal depth 4, trained on 90% of the text of
Paradise Lost. Several sentences that appeared in the test da ta were corrupted in different ways.
We then used the model in the batch mode to evaluate the likelihood of each of the alternatives. In
Table 3 we demonstra te one such case, where the first alternative is the correct one. The negative
log likelihood and the posterior probability, assuming that the listed sentences are all the possible
alternatives, are provided. The correct sentence gets the highest probability according to the model.

Finally, we trained a depth two PST on randomly selected sentences from the NAB corpus
totaling approximately 32.5 million words and tested it on two corpora: a separate randomly
selected set of sentences from the NAB corpus, totaling around 2.8 million words, and a s tandard

103

Tezt Maximal Number of Perplexity Perplezity Perplexity
Depth Nodes (a = 0.5) (a = 0.999) (a = 0.001)

Bible
(Gutenberg

Project)

Paradise Lost
by

John Milton

Brown
Corpus

0
1
2
3
4
5
0
1
2
3
4
5

1
7573

76688
243899
477384
743830

1
8754

59137
128172
199629
271359

1
12647
76957
169172
267544
367096

282.1
84.6
55.9
42.9
37.8
36.5

423.0
348.7
251.1
221.2
212.5
209.3
452.8
276.5
202.9
165.8
160.5
158.7

282.1
84.6
58.2
50.9
49.8
49.6
423.0
348.7
289.7
285.3
275.2
265.6
452.8
276.5
232.6
224.0
223.9
223.8

282.1
84.6
55.5
42.5
37.5
35.6
423.0
348.7
243.9
206.4
202.1
201.6
452.8
276.5
197.1
165.6
159.7
158.7

Table 1: The perplexity of PSTs for the online mode.

ARPA NAB development test set of around 8 thousand words. The PST perplexity on the first
test set was 168, and on the second 223. In comparison, a t r igram backoff model built form
the same training set has perplexity of 247.7 on the second test set. Further experiments using
longer maximal depth and allowing comparisons with existing n-gram models trained on the full
(280 million word) NAB corpus will require improved da ta structures and pruning policies to s tay
within reasonable memory limits.

6 C o n c l u s i o n s a n d F u r t h e r W o r k

PSTs are able to capture longer correlations than tradit ional fixed order n-grams, support ing bet ter
generalization ability from limited training data. This is especially noticeable when phrases longer
than a typical n-gram order appear repeatedly in the text. The PST learning algorithm allocates
a proper node for the phrase whereas a bigram or t r igram model captures only a t r u n c a t e d version
of the statistical dependencies among words in the phrase.

Our current learning algorithm is able to handle modera te size corpora, but we hope to adapt
it to work with very large training corpora (100s of millions of words). The main obstacle to those
applications is the space required for the PST. More extensive pruning may be useful for such large
training sets, but the most promising approach may involve a batch training algorithm that builds
a compressed representation of the PST final from an efficient representation, such as a suffix array,
of the relevant subsequences of the training corpus.

104

T e z t Mazimal Depth Perplezity (or = 0.5) Perplezity (MAP Model)
Bible

(Gutenberg
Project)

Paradise Lost
by

John Milton

Brown
Corpus

0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5

411.3
172.9
149.8
141.2
139.4
139.0
861.1
752.8
740.3
739.3
739.3
739.3
564.6
407.3
396.1
394.9
394.5
394.4

411.3
172.9
150.8
143.7
142.9
142.7
861.1
752.8
746.9
747.7
747.6
747.5
564.6
408.3
399.9
399.4
399.2
399.1

Table 2: The perplexity of PSTs for the batch mode.

Negative Log. Likl. Posterior Probability
from god and over wrath grace shall abound 74.125 0.642
from god but over wrath grace shall abound
from god and over worth grace shall abound
from god and over wrath grace will abound
before god and over wrath grace shall abound
from god and over wrath grace shall a bound
from god and over wrath grape shall abound

82.500
75.250
78.562
83.625
78.687
81.812

0.002
0.295
0.030
0.001
0.027
0.003

Table 3: The likelihood induced by a PST of maximal depth 4 for different corrupted sentences.

References

T.C. Bell, J .G. Cleary, I.H. Witten. 1990. Text Compression. Prentice Hall.

P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C. Lai, R.L. Mercer. 1990. Class-based n-gram
models of natural language. In Proceedings of the IBM Natural Language ITL, pages 283-298,
Paris, France, March.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold, R.E. Schapire, M. K. Warmuth. 1993.
How to use expert advice. Proceedings of the 24th Annual ACM Symposium on Theory of
Computing (STOC).

K.W. Church and W.A. Gale. 1991. A comparison of the enhanced Good-Turing and deleted
estimation methods for estimating probabilities of English bigrams. Computer Speech and
Language, 5:19-54.

105

A. DeSantis, G. Markowski, M.N. Wegman. 1988. Learning Probabilistic Prediction Functions.
Proceedings of the 1988 Workshop on Computat ional Learning Theory, pp. 312-328.

R.A. Fisher, A.S. Corbet, C.B. Williams. 1943. The relation between the number of species and
the number of individuals in a random sample of an animal population. J. Animal Ecology,
Vol. 12, pp. 42-58.

G.I. Good. 1953. The population frequencies of species and the estimation of population parame-
ters. Biometrika, 40(3):237-264.

G.I. Good. 1969. Statistics of Language: Introduction. Encyclopedia of Linguistics, Information
and Control. A. R. Meetham and R. A. Hudson, editors, pages 567-581. Pergamon Press,
Oxford, England.

D. Hindle. 1990. Noun classification from predicate-argument structures. In 28th Annual Meeting
of the Association for Computational Linguistics, pages 268-275, Pit tsburgh, Pennsylvania.
Association for Computat ional Linguistics, Morristown, New Jersey.

D. Hindle. 1993. A parser for text corpora. In B.T.S. Atkins and A. Zampoli, editors, Computa-
tional Approaches to the Lexicon. Oxford University Press, Oxford, England. To appear.

S.M. Katz. 1987. Estimation of probabilities from sparse data for the language model component
of a speech recognizer. IEEE Trans. on ASSP 35(3):400-401.

R.E. Krichevsky and V.K. Trofimov. 1981. The performance of universal encoding. IEEE Trans.
on Inform. Theory, pp. 199-207.

P. Resnik. 1992. WordNet and distributional analysis: A class-based approach to lexical discovery.
In AAAI Workshop on Statistically-Based Natural-Language-Processing Techniques, San Jose,
California, July.

J. Rissanen. 1986. A universal prior for integers and estimation by minimum description length.
The Annals of Statistics, 11(2):416-431.

D. Ron, Y. Singer, N. Tishby. 1994. The power of amnesia: learning probabilistic au tomata with
variable memory length. Machine Learning (to appear in COLT94 special issue).

C.E. Shannon 1951. Prediction and Entropy of Printed English. Bell Sys. Tech. J., Vol. 30, No. 1,
pp. 50-64.

D.D. Sleator and R.E. Tarjan. 1985. Self-Adjusting Binary Search Trees. Journal of the ACM,
Vol. 32, No. 3, pp. 653-686.

F.M.J. Willems, Y.M. Shtarkov, T.J. Tjalkens. 1994. The context tree weighting method: basic
properties. Submitted to IEEE Trans. on Inform. Theory.

I.H. Witten and T.C. Bell. 1991. The zero-frequency problem: estimating the probabilities of novel
events in adaptive text compression. IEEE Trans. on Inform. Theory, 37(4):1085-1094.

106

