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Abstract 

We describe, analyze, and experimentally evaluate a new probabilistic model for word- 
sequence prediction in natural languages, based on prediction suffi~v trees (PSTs). By using 
efficient data structures, we extend the notion of PST to unbounded vocabularies. We also show 
how to use a Bayesian approach based on recursive priors over all possible PSTs to efficiently 
maintain tree mixtures. These mixtures have provably and practically better performance than 
almost any single model. Finally, we evaluate the model on several corpora. The low perplexity 
achieved by relatively small PST mixture models suggests that they may be an advantageous 
alternative, both theoretically and practically, to the widely used n-gram models. 

1 I n t r o d u c t i o n  

Finite-state methods for the statistical prediction of word sequences in natural  language have 
had an important  role in language processing research since Markov's  and Shannon's pioneering 
investigations (C.E. Shannon, 1951). While it has always been clear that  natural  texts are not 
Markov processes of any finite order (Good, 1969), because of very long range correlations between 
words in a text such as those arising from subject  matter ,  low-order alphabetic n-gram models have 
been used very effectively for such tasks as statistical language identification and spelling correction, 
and low-order word n-gram models have been the tool of choice for language modeling in speech 
recognition. However, low-order n-gram models fail to capture even relatively local dependencies 
that  exceed model order, for instance those created by long but  frequent compound names or 
technical terms. Unfortunately, extending model order to accommodate  those longer dependencies 
is not practical, since the size of n-gram models is in principle exponential on the order of the 
model. 

Recently, several methods have been proposed (Ron et al., 1994; Willems et al., 1994) that  
are able to model longer-range regularities over small alphabets while avoiding the size explosion 
caused by model order. In those models, the length of contexts used to predict particular symbols 
is adaptively extended as long as the extension improves prediction above a given threshold. The 
key ingredient of the model construction is the prediction suffix tree (PST),  whose nodes represent 
suffixes of past  input and specify a predictive distribution over possible successors of the suffix. It 
was shown in (Ron et al., 1994) that  under realistic conditions a PST is equivalent to a Markov 
process of variable order and can be represented efficiently by a probabilistic finite-state automaton.  
For the purposes of this paper, however, we will use PSTs as our start ing point. 

The problem of sequence prediction appears more difficult when the sequence elements are words 
rather than characters from a small fixed alphabet.  The set of words is in principle unbounded, since 
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in natural  language there is always a nonzero probabili ty of encountering a word never seen before. 
One of the goals of this work is to describe algorithmic and data-s t ructure  changes that  support  the 
construction of PSTs  over unbounded vocabularies. We also extend PSTs  with a wildcard symbol  
that  can match against any input word, thus allowing the model to capture statistical dependencies 
between words separated by a fixed number of irrelevant words. 

An even more fundamental  new feature of the present derivation is the ability to work with a 
mixture of PSTs. Here we adopted two important  ideas from machine learning and information 
theory. The first is the fact that  a mixture over an ensemble of experts (models), when the mixture 
weights are properly selected, performs bet ter  than almost any individual member  of that  ensemble 
(DeSantis et al., 1988; Cesa-Bianchi et al., 1993). The second idea is that  within a Bayesian 
framework the sum over exponentially many trees can be computed efficiently using a recursive 
structure of the tree, as was recently shown by Willems et al. (1994). Here we apply these ideas 
and demonst ra te  that  the mixture,  which can be computed as almost as easily as a single PST,  
performs bet ter  than the most  likely (maximum aposteriori - -  MAP)  PST. 

One of the most  important  features of the present algorithm that  it can work in a fully online 
(adaptive) mode. Specifically, updates  to the model s tructure and statist ical  quantit ies can be 
performed adaptively in a single pass over the data.  For each new word, frequency counts, mixture 
weights and likelihood values associated with each relevant node are appropriately updated.  There 
is not much difference in learning performance between the online and batch modes, as we will 
see. The online mode seems much more suitable for adaptive language modeling over longer test 
corpora, for instance in dictation or translation, while the batch algorithm can be used in the 
traditional manner of n-gram models in sentence recognition and analysis. 

From an information-theoretic perspective, prediction is dual to compression and statistical 
modeling. In the coding-theoretic interpretat ion of the Bayesian framework, the assignment of 
priors to novel events is rather delicate. This question is especially impor tant  when dealing with 
a statistically open source such as natural  language. In this work we had to deal with two sets of 
priors. The first set defines a prior probabil i ty distr ibution over all possible PSTs  in a recursive 
manner, and is intuitively plausible in relation to the statistical self-similarity of the tree. The 
second set of priors deals with novel events (words observed for the first t ime) by assuming a 
scalable probabil i ty of observing a new word at each node. For the novel event priors we used a 
simple variant of the Good-Turing method,  which could be easily implemented online with our da ta  
structure. It turns out  that  the final performance is not terribly sensitive to part icular assumptions 
on priors. 

Our successful application of mixture PSTs  for word-sequence prediction and modeling make 
them a valuable approach to language modeling in speech recognition, machine translation and sim- 
ilar applications. Nevertheless, these models still fail to represent explicitly grammatical  s tructure 
and semantic relationships, even though progress has been made in other work on their statistical 
modeling. We plan to investigate how the present work may be usefully combined with mod- 
els of those phenomena, especially local finite-state syntactic models and distr ibutional  models of 
semantic relations. 

In the next sections we present PSTs  and the da ta  s tructure for the word prediction problem. 
We then describe and briefly analyze the learning algorithm. We also discuss several implementat ion 
issues. We conclude with a preliminary evaluation of various aspects of the model On several English 
corpora. 

96  



i 

2 P r e d i c t i o n  Suf f ix  Trees  over  U n b o u n d e d  S e t s  

Let U C E* be a set of words over the finite alphabet ~E, which represents here the set of actual and 
future words of a natural  language. A prediction suffix tree (PST) T over U is a finite tree with 
nodes labeled by distinct elements of U* such that  the root is labeled by the empty  sequence e, and 
if s is a son of s' and s' is labeled by a 6 U* then s is labeled by wa for some w 6 U. Therefore, in 
practice it is enough to associate each non-root node with the first word in its label, and the full 
label of any node can be reconstructed by following the path from the node to the root. In what 
follows, we will often identify a PST node with its label. 

Each PST node s is has a corresponding.prediction function 7s : U' --+ [0, 1] where U' C U U {¢} 
and ¢ represents a novel event, that  is the occurrence of a word not seen before in the context 
represented by s .  The value of 7, is the next-word probability function for the given context s. A 
PST T can be used to generate a s tream of words, or to compute  prefix probabilities over a given 
stream. Given a prefix w l . . . w k  generated so far, the context (node) used for prediction is found 
by starting from the root of the tree and taking branches corresponding to Wk, wk-1, • • • until a 
leaf is reached or the next son does not exist in the tree. Consider for example the PST shown in 
Figure 1, where some of the values o f %  are: 

7 'andthef i rs t ' (wor ld)  = 0.1, 7 'andthef i r s t ' ( t ime)  = 0.6 , 
7,andthefirst,(boy) = 0.2 , 7,andthefirst,(~b) ---- 0.i . 

When observing the text ~... long ago and the first', the matching path from the root ends 

at the node 'and the first'. Then we predict that the next word is time with probability 

0.6 and some other word not seen in this context with probability 0.1. The prediction probability 

distribution 7s is estimated from empirical counts. Therefore, at each node we keep a data structure 
to track of the number of times each word appeared in that context. 

A wildcard symbol, '*', is available in node labels to allow a particular word position to be 
ignored in prediction. For example, the text ' . . .  bu t  t h i s  was' is matched by the node label 
' t h i s  *', which ignores the most  recently read word 'was'. Wildcards allow us to model conditional 
dependencies of general form P(z t lx t_ i l ,  z t - i 2 , . . . ,  z t - i~)  in which the indices il < i2 < . . .  < iL 
are not necessarily consecutive. 

We denote by C T ( W l "  .wn) = w , - k "  . w ,  = s the context (and hence a corresponding node 
in the tree) used for predicting the word wn+l with a given PST T. Wildcards provide a useful 
capability in language modeling since syntactic structure may make a word strongly dependent on 
another a few words back but  not on the words in between. 

One can easily verify that  every s tandard n-gram model can be represented by a PST, but  the 
opposite is not true. A tr igram model, for instance, is a PST of depth two, where the leaves are 
all the observed bigrams of words. The prediction function at each node is the tr igram conditional 
probabili ty of observing a word given the two preceding words. 

3 T h e  L e a r n i n g  A l g o r i t h m  

Within the framework of online learning, it is provably (see e.g. (DeSantis et al., 1988; Cesa-Bianchi 
et al., 1993)) and experimentally known that  the performance of a weighted ensemble of models, 
each model weighted according to its performance (the posterior probabil i ty of the model),  is not 
worse and generally much bet ter  than any single model in the ensemble. Although there might 
be exponentially many different PSTs  in the ensemble, it has been recently shown (Willems et al., 
1994) that  a mixture of PSTs  can be efficiently computed for small alphabets.  
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Figure 1: A small example of a PST of 
words for language modeling. The num- 
bers on the edges are the weights of the 
sub-trees start ing at the pointed node. 
These weights are used for tracking a 
mixture of PSTs. The special string 
* represents a 'wild-card' tha t  can be 
matched with any observed word. 

Here, we will use the Bayesian formalism to derive an online learning procedure for mixtures of 
PSTs of words. The mixture elements are drawn from some pre-specified set T, which in our case 
is typically the set of all PSTs with maximal  depth < D for some suitably chosen D. 

For each PST T E T and each observation sequence w l , . . . ,  wn, T 's  likelihood (or evidence) 
P ( w l , . . . ,  wnlT) on tha t  observation sequence is given by: 

n 

P ( w l ,  . . . ,  w ,  I T )  - -  I I  7 0 ~ ( , o l  ..... wi_l)(wi), (1) 
i : l  

where CT(wo) = e is the null (empty) context. The probability of the next word, given the past n 
observations, is provided by Bayes formula, 

P(Wl, • . . ,  wn-1, w,)  (2) 
P(w~'lwl"" "'wn-1) = P(wl , . . . ,wn -1 )  

_ ETeTPo(T)P(Wl , ' " ,wn- I ,Wnl  T) 
-- ~ T e T P o ( T ) P ( w l , . . . ,  wn-1 IT) ' (3) 

where Po(T) is the prior probability of the PST, T. 
A nMve computat ion of (3) would be infeasible, because of the size of 7". Instead, we use a 

recursive method in which the relevant quantities for a PST mixture are computed efficiently from 
related quantities for sub-PSTs. In particular, the PST prior Po(T) is defined as follows. A node s 
has a probability c~, of being a leaf and a probability 1 - a ,  of being an internal node. In the latter 
case, its sons are either a single wildcard, with probability rio, or actual words with probability 
1 - f~. To keep the derivation simple, we assume here tha t  the probabilities as are independent 
of s and tha t  there are no wildcards, tha t  is, f~, -- 0, c~ -- c~ for all s. Context-dependent priors 
and trees with wildcards can be obtained by a simple extension of the present derivation. Let us 
also assume tha t  all the trees have maximal  depth D. Then Po(T) = a '~ (1 - a) ~2 , where n~ is the 
number of leaves of T of depth less than the maximal  depth and n2 is the number of internal nodes 
of T. 

To evaluate the likelihood of the whole mixture we build a tree of maximal  depth D containing 
all observation sequence suffixes of length up to D. Thus the tree contains a node s iff s -- 
(wi-k+l , . . . ,wi)  with 1 < k _< D, 1 < i < n. At each node s we keep two variablesJ The first, 

~In practice,  we keep only a rat io re la ted to the  two variables, as explained in detail  in the next  section. 
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Ln(s), accumulates the likelihood of the node seen as a leaf. That  is, Ln(s) is the product of the 
predictions of the node on all the observation-sequence suffixes that  ended at that  node: 

Ln(s) = IX P(wi]s) : H 7,(w/) . (4) 
{ i l eT(Wl ..... wi--1):s,  i_<i_<n} { i  l OT(Wl . . . . .  wi -1 )= , ,  l<i~n} 

For each new observed word wn, the likelihood values Ln(s) are derived from their previous values 
L~-i  (s). Clearly, only the nodes labeled by w,~_l, wn-2w,~-l, . . . ,  w,~-D..'w,~-i will need likeli- 
hood updates. For those nodes, the update is simply multiplication by the node's prediction for 
wn; for the rest of the nodes the likelihood values do not change: 

Ln-l(S) Ts(wn) s ~ C ( w l , . . . , w n - 1 ) ,  I s [ < D  L,~(s) 
i ~ - i  (s) otherwise , (5) 

The second variable, denoted by Lmixn(s), is the likelihood of the mixture of all possible trees 
that  have a subtree rooted at s on the observed suffixes (all observations that  reached s). Lmixn(s) 
is calculated recursively as follows: 

Lmiz~(s) = o~L,~(s) + (1 - c~) IX Lmixn(us) , (6) 
ueU 

The recursive computat ion of the mixture likelihood terminates at the leaves: 

Lmiz,~(s) = L,~(s) if Isl = D .  (7) 

In summary, the mixture likelihood values are updated as follows: 

Lmiz~(s) = { 
L~(s) 
o~Ln(s) + (1 - or) [Iueu rmixn(us)  
Lmix,~_l(s) 

s = C ( w l , . . . , w , _ i ) ,  Is] = D 
s = C ( w l , . . . , W , _ l ) ,  Isl < D 
otherwise 

(8) 

At first sight it would appear that  the update of Lmixn would require contributions from an 
arbitrarily large subtree, since U may be arbitrarily large. However, only the subtree rooted at 
(wn_ls[_ 1 s) is actually affected by the update. Thus the following simplification holds: 

IX Lmiz,~(us)= Lmiz,~(Wn_l,l_lS) × H Lmiz~(us). (9) 
uEU uEU, u~tOn_i,I_ x 

Note that  Lmizn(s) is the likelihood of the weighted mixture of trees rooted at s on all past 
observations, where each tree in the mixture is weighted with its proper prior. Therefore, 

Lrniz,~(e) = ~ Po(T)P(wl,...,wnIT) , 
T E T  

(I0) 

where T is the set of trees of maximal  depth D and e is the null context (the root node). Combining 
Equations (3) and (10), we see that  the prediction of the whole mixture for next word is the ratio 
of the likelihood values Lmi~n(e) and Lmixn_l(e) at the root node: 

P(wnlwl, . . ., wn-1) = Lmix,~(e)/Lmiz,~_l(e) . (li) 

A given observation sequence matches a unique path from the root to a leaf. Therefore the t ime 
for the above computat ion is linear in the tree depth (maximal context length). After predicting 
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the next word the counts are updated simply by increasing by one the count of the word, if the 
word already exists, or by inserting a new entry for the new word with initial count set to one. 
Based on this scheme several n-gram estimation methods,  such as Katz 's  backoff scheme (Katz, 
1987), can be derived. Our learning algorithm has, however, the advantages of not being limited 
to a constant  context length (by setting D to be arbitrarily large) and of being able to perform 
online adaptat ion.  Moreover, the interpolation weights between the different prediction contexts 
are automatical ly determined by the performance of each model on past  observations. 

In summary,  for each observed word we follow a path from the root of the tree (back in the 
text) until a longest context (maximal depth) is reached. We may need to add new nodes, with 
new entries in the da ta  structure, for the first appearance of a word. The likelihood values of the 
mixture of subtrees (Equation 8) are returned from each level of that  recursion up to the root node. 
The probabil i ty of the next word is then the ratio of two consecutive likelihood values returned at 
the root. 

For prediction without  adaptat ion,  the same method is applied except that  nodes are not added 
and counts are not updated.  If the prior probabil i ty of the wildcard, j3, is positive, then at each 
level the recursion splits, with one path continuing through the node labeled with the wildcard and 
the other through the node corresponding to the proper suffix of the observation. Thus, the update  
or prediction t ime is in that  case o(2D) .  Since D is usually very small (most currently used word 
n-grams models are trigrams), the update  and prediction t imes are essentially linear in the text 
length. 

It remains to describe how the probabilities, P ( w l s  ) = 7s(w) are es t imated from empirical 
counts. This problem has been studied for more than thir ty years and so far the most  common 
techniques are based on variants of the Good-Turing (GT) method (Good, 1953; Church and Gale, 
1991). Here we give a description of the est imation method that  we implemented and evaluated. 
We are currently developing an alternative approach for cases when there is a known (arbitrarily 
large) bound on the maximal size of the vocabulary U. 

Let n l , n 2 , . . s  s . ,nr,S respectively, be the counts of occurrences of words wl, w2, • . . ,  w~, at a given 
context (node) s, where r" is the total  number of different words that  have been observed at node 
s. The total  text size in that  context is thus n" = ~ 1  n~. We need est imates of 7,(wl)  and of 

7,(w0) the probabil i ty of observing a new word w0 at node s. The GT method sets 7,(w0) - t_~- , - -  n s  , 

where tl is the total  number of words that  were observed only once in that  context.  This method 
has several justifications, such as a Poisson assumption on the appearance of new words (Fisher et 
al., 1943). It is, however, difficult to analyze and requires keeping track of the rank of each word. 
Our learning scheme and da ta  structures favor instead any method  that  is based only on word 
counts. In source coding it is common to assign to novel events the probabil i ty ~+r" In this case 

the probabil i ty 7,(wl) of a word that  has been observed n~ times is set to n~ As reported in 
(Wit ten and Bell, 1991), the performance of this method is similar to the GT est imation scheme, 
yet it is simpler since only the number of different words and their counts are kept. 

Finally, a careful analysis should be made when predicting novel events (new words). There 
are two cases of novel events: Ca) an occurrence 'of  an entirely new word~ that  has never been seen 
before in any context; (b) an occurrence of a word that  has been observed in some context,  but  is 
new in the current context.  

The following coding interpretat ion may help to understand the issue. Suppose some text  is 
communicated over a channel and is encoded using a PST. Whenever an entirely new word is 
observed (first case) it is necessary to first send an indication of a novel event and then transfer the 
identity of that  word (using a lower level coder, for instance a PST over the alphabet  E in which the 
words in U are written. In the second case it is only necessary to transfer the identity of the word, 
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by referring to the shorter context in which the word has already appeared. Thus, in the second 
case we incur an additional description cost for a new word in the current context.  A possible 
solution is to use a shorter context (one of the ancestors in the PST)  where the word has already 
appeared, and multiply the probabil i ty of the word in that  shorter context by the probabil i ty that  
the word is new. This product  is the probabili ty of the word. 

In the case of a completely new word, we need to multiply the probabili ty of a novel event by an 
additional factor Po(wn) interpreted as the prior probabili ty of the word according to a lower-level 
model. This additional factor is multiplied at all the nodes along the path from the root to the 
maximal context of this word (a leaf of the PST).  In that  case, however, the probabil i ty of the next 
word wn+l remains independent of this additional prior, since it cancels out nicely: 

Lmizn+l(e) × Po(w,~) Lmixn+l(e) (12) 
P(wn+l[wl,...,w~) = Lrnix~(e) × Po(w,~) - Lmix,~(e) 

Thus, an entirelY new word can be treated simply as a word that  has been observed at all the nodes 
of the PST. Moreover, in many language modeling applications we need to predict only that  the 
next event is a new word, without  specifying the word itself. In such cases the update  derivation 
remains the same as in the first case above. 

4 Efficient I m p l e m e n t a t i o n  of  P S T s  of  Words  

Natural language is often bursty (Church, this volume), that  is, rare or new words may appear and 
be used relatively frequently for some stretch of text only to drop to a much lower frequency of 
use for the rest of the corpus. Thus, a PST being build online may only need to store information 
about  those words for a short period. It may then be advantageous to prune PST nodes and remove 
small counts corresponding to rarely used words. Pruning is performed by removing all nodes from 
the suffix tree whose counts are below a threshold, after each batch of K observations. We used a 
pruning frequency K of 1000000 and a pruning threshold of 2 in some of our experiments. 

Pruning during online adaptat ion has two advantages. First, it improves memory  use. Second, 
and less obvious, predictive power may be improved. Rare words tend to bias the prediction 
functions at nodes with small counts, especially if their appearance is restricted to a small portion 
of the text. When rare words are removed from the suffix tree, the est imates of the prediction 
probabilities at each node are readjusted reflect bet ter  the probabili ty est imates of the more frequent 
words. Hence, part  of the bias in the estimation may be overcome. 

To support  fast insertions, searches and deletions of PST nodes and word counts we used a 
hybrid da ta  structure. When we know in advance a (large) bound on vocabulary size, we represent 
the root node by arrays of word counts and possible sons subscripted by word indices. At other 
nodes, we used splay trees (Sleator and Tarjan, 1985) to store both the counts and the branches to 
longer contexts. Splay trees support  search, insertion and deletion in amortized O(log(n)) t ime per 
operation. Furthermore,  they reorganize themselves to so as to decrease the cost of accessing to 
the most  frequently accessed elements, thus speeding up access to counts and subtrees associated 
to more frequent words. Figure 2 illustrates the hybrid da ta  structure: 

The likelihood values Lmix,~(s) and L,~ (s) decrease exponentially fast with n, potentially caus- 
ing numerical problems even if log representation is used. Moreover, we are only interested in the 
predictions of the mixtures; the likelihood values are only used to weigh the predictions of different 
nodes. Let ~s(w,~) be the prediction of the weighted mixture of all subtrees rooted below s (includ- 
ing s itself) for w,~. By following the derivation presented in the previous section it can be verified 
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Figure 2: The  hy- 
brid da ta  s t ructure  
tha t  represents the 
suffix tree and 
the  predict ion func- 
t ions at each node. 

that ,  

where 

Define 

"~,(w,~+l) = qn(s)7,(w,~+l ) + (1 - q,~(s))'~(~,_l,i , ) ( ' I O n + l )  , (13) 

= o~L,~(s)/(o~Lr~(S)+(1-a)IILmixn(us)) (14) 
uEU 

(1 - a) l-Iueu Lmixn(us) 
= 1 / ( 1 +  aLr,(S) ) (15) 

o~Ln(s) 
Rn(s) = log (1 - c 0 N-~-L-mi~en(us) ] (16) 

Sett ing Ro(s) = log(c~/(1 - c 0 )  for all s, Rn(s) is upda ted  as follows: 

R,~+l(S) = Rn(s)+ log ( 7 , ( W n + l ) ) -  log ('~(w,_r,i,)(w,~+l)) , (17) 

and qn(s) = 1/(1 + e-n"( ' ) ) .  Thus,  the probabil i ty of w,~+l is p ropagated  along the pa th  corre- 
sponding to suffixes of the observation sequence towards the root as follows, 

{ ~ , , , ( w . + a )  s = C ( w ~ , . . . , w . ) ,  Isl = D 
(18) 

Finally, the predict ion of the complete  mixture  of PSTs  for Wn is s imply given by ~ (wn) .  

5 E v a l u a t i o n  

We tested our a lgor i thm in two modes.  In online mode,  model  s t ructure  and parameters  (counts) 
are upda ted  after each observation. In batch mode,  the s t ructure  and parameters  are held fixed 
after the training phase, making it easier to compare  the model  to s tandard  n-gram models.  Our 
initial experiments  used the Brown corpus, the Gutenberg Bible, and Milton 's  Paradise Lost as 
sources of t raining and test  material .  We have also carried out a prel iminary evaluation on the 
ARPA North-American Business News (NAB) corpus. 
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For batch training, we parti t ioned randomly the da ta  into training and testing sets. We then 
trained a model by running the online algorithm on the training set, and the resulting model, kept 
fixed, was then used to predict the test data. 

As a simple check of the model, we used it to generate text by performing random walks over 
the PST. A single step of the random walk was performed by going down the tree following the 
current context and stop at a node with the probability assigned by the algorithm to that  node. 
Once a node is chosen, a word is picked randomly by the node's prediction function. A result of 
such a random walk is given in Figure 3. The PST was trained on the Brown corpus with maximal 
depth of five. The output  contains several well formed (meaningless) clauses and also cliches such 
as "conserving our rich natural  heritage," suggesting that  the model captured some longer-term 
statistical dependencies. 

every year public sentiment for conserving our rich natural  heritage is growing but that  heritage 
is shrinking even faster no joyride much of its contract  if the present session of the cab driver in 
the early phases conspiracy but lacking money from commercial sponsors the stations have had 
to reduce its vacationing 

Figure 3: Text created by a random walk over a PST trained on the Brown corpus. 

In online mode the advantage of PSTs with large maximal  depth is clear. The perplexity of the 
model decreases significantly as a function of the depth. Our experiments so far suggest that  the 
resulting models are fairly insensitive to the choice of the prior probability, a,  and a prior which 
favors deep trees performed well. Table 1 summarizes the results on different texts, for trees of 
growing maximal  depth. Note that  a maximal depth 0 corresponds to a 'bag of words' model (zero 
order), 1 to a bigram model, and 2 to a t r igram model. 

In our first batch tests we trained the model on 15% of the da ta  and tested it on the rest. The 
results are summarized in Table 2. The perplexity obtained in the batch mode is clearly higher than 
that  of the online mode, since a small portion of the da ta  was used to train the models. Yet, even 
in this case the  PST of maximal  depth three is significantly bet ter  than a full t r igram model. In 
this mode we also checked the performance of the single most likely (maximum aposteriori) model 
compared to the mixture of PSTs. This model is found by pruning the tree at the nodes that  
obtained the highest confidence value, Ln(s), and using only the leaves for prediction. As shown 
in the table, the performance of the MAP model is consistently worse than the performance of the 
mixture of PSTs. 

As a simple test of for applicability of the model for language modeling, we checked it on text 
which was corrupted in different ways. This situation frequently occurs in speech and handwrit ing 
recognition systems or in machine translation. In such systems the last stage is a language model, 
usually a t r igram model, that  selects the most likely alternative between the several options passed 
by the previous; stage. Here we used a PST with maximal  depth 4, trained on 90% of the text of 
Paradise Lost. Several sentences that  appeared in the test da ta  were corrupted in different ways. 
We then used the model in the batch mode to evaluate the likelihood of each of the alternatives. In 
Table 3 we demonstra te  one such case, where the first alternative is the correct one. The negative 
log likelihood and the posterior probability, assuming that  the listed sentences are all the possible 
alternatives, are provided. The correct sentence gets the highest probability according to the model. 

Finally, we trained a depth two PST on randomly selected sentences from the NAB corpus 
totaling approximately 32.5 million words and tested it on two corpora: a separate randomly 
selected set of sentences from the NAB corpus, totaling around 2.8 million words, and a s tandard 
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Tezt Maximal Number of Perplexity Perplezity Perplexity 
Depth Nodes (a = 0.5) (a = 0.999) (a = 0.001) 

Bible 
(Gutenberg 

Project) 

Paradise Lost 
by 

John Milton 

Brown 
Corpus 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

1 
7573 

76688 
243899 
477384 
743830 

1 
8754 

59137 
128172 
199629 
271359 

1 
12647 
76957 
169172 
267544 
367096 

282.1 
84.6 
55.9 
42.9 
37.8 
36.5 

423.0 
348.7 
251.1 
221.2 
212.5 
209.3 
452.8 
276.5 
202.9 
165.8 
160.5 
158.7 

282.1 
84.6 
58.2 
50.9 
49.8 
49.6 
423.0 
348.7 
289.7 
285.3 
275.2 
265.6 
452.8 
276.5 
232.6 
224.0 
223.9 
223.8 

282.1 
84.6 
55.5 
42.5 
37.5 
35.6 
423.0 
348.7 
243.9 
206.4 
202.1 
201.6 
452.8 
276.5 
197.1 
165.6 
159.7 
158.7 

Table 1: The perplexity of PSTs  for the online mode. 

ARPA NAB development test set of around 8 thousand words. The PST perplexity on the first 
test set was 168, and on the second 223. In comparison, a t r igram backoff model  built  form 
the same training set has perplexity of 247.7 on the second test  set. Further  experiments using 
longer maximal  depth and allowing comparisons with existing n-gram models trained on the full 
(280 million word) NAB corpus will require improved da ta  structures and pruning policies to s tay 
within reasonable memory  limits. 

6 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

PSTs are able to capture longer correlations than tradit ional fixed order n-grams, support ing bet ter  
generalization ability from limited training data.  This is especially noticeable when phrases longer 
than a typical n-gram order appear repeatedly in the text.  The PST learning algorithm allocates 
a proper node for the phrase whereas a bigram or t r igram model captures only a t r u n c a t e d  version 
of the statistical dependencies among words in the phrase. 

Our current learning algorithm is able to handle modera te  size corpora, but  we hope to adapt  
it to work with very large training corpora (100s of millions of words). The main obstacle to those 
applications is the space required for the PST. More extensive pruning may  be useful for such large 
training sets, but  the most  promising approach may involve a batch training algorithm that  builds 
a compressed representation of the PST final from an efficient representation, such as a suffix array, 
of the relevant subsequences of the training corpus. 
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T e z t  Mazimal Depth Perplezity (or = 0.5) Perplezity (MAP Model) 
Bible 

(Gutenberg 
Project) 

Paradise Lost 
by 

John Milton 

Brown 
Corpus 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

411.3 
172.9 
149.8 
141.2 
139.4 
139.0 
861.1 
752.8 
740.3 
739.3 
739.3 
739.3 
564.6 
407.3 
396.1 
394.9 
394.5 
394.4 

411.3 
172.9 
150.8 
143.7 
142.9 
142.7 
861.1 
752.8 
746.9 
747.7 
747.6 
747.5 
564.6 
408.3 
399.9 
399.4 
399.2 
399.1 

Table 2: The perplexity of PSTs for the batch mode. 

Negative Log. Likl. Posterior Probability 
from god and over wrath grace shall abound 74.125 0.642 
from god but over wrath grace shall abound 
from god and over worth grace shall abound 
from god and over wrath grace will abound 
before god and over wrath grace shall abound 
from god and over wrath grace shall a bound 
from god and over wrath grape shall abound 

82.500 
75.250 
78.562 
83.625 
78.687 
81.812 

0.002 
0.295 
0.030 
0.001 
0.027 
0.003 

Table 3: The likelihood induced by a PST of maximal depth 4 for different corrupted sentences. 
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