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Abstract 

Eric Brill introduced transformation-based learning and showed that it can do part-of- 
speech tagging with fairly high accuracy. The same method can be applied at a higher 
level of textual interpretation for locating chunks in the tagged text, including non-recursive 
"baseNP" chunks. For this purpose, it is convenient to view chunking as a tagging problem 
by encoding the chunk structure in new tags attached to each word. In automatic tests using 
Treebank-derived data, this technique achieved recall and precision rates of roughly 92% for 
baseNP chunks and 88% for somewhat more complex chunks that partition the sentence. Some 
interesting adaptations to the transformation-based learning approach are also suggested by 
this application. 

1 Introduction 

Text chunking involves dividing sentences into nonoverlapping segments on the basis of fairly 
superficial analysis. Abney (1991) has proposed this as a useful and relatively tractable precursor 
to full parsing, since it provides a foundation for further levels of analysis including verb-argument 
identification, while still allowing more complex attachment decisions to be postponed to a later 
phase. Since chunking includes identifying the non-recursive portions of noun phrases, it can also 
be useful for other purposes including index term generation. 

Most efforts at superficially extracting segments from sentences have focused on identifying 
low-level noun groups, either using hand-built grammars and finite state techniques or using 
statistical models like HMMs trained from corpora. In this paper, we target a somewhat higher 
level of chunk structure using Brill's (1993b) transformation-based learning mechanism, in which 
a sequence of transformational rules is learned from a corpus; this sequence iteratively improves 
upon a baseline model for some interpretive feature of the text. This technique has previously 
been used not only for part-of-speech tagging (Brill, 1994), but also for prepositional phrase 
attachment disambiguation (Brill and Resnik, 1994), and assigning unlabeled binary-branching 
tree structure to sentences (Brill, 1993a). Because transformation-based learning uses pattern- 
action rules based on selected features of the local context, it is helpful for the values being 
predicted to also be encoded locally. In the text-chunking application, encoding the predicted 
chunk structure in tags attached to the words, rather than as brackets between words, avoids 
many of the difficulties with unbalanced bracketings that would result if such local rules were 
allowed to insert or alter inter-word brackets directly. 

In this study, training and test sets marked with two different types of chunk structure were 
derived algorithmically from the parsed data in the Penn Treebank corpus of Wall Street Journal 

82 



text (Marcus et al., 1994). The source texts were then run through Brill's part-of-speech tagger 
(Brill, 1993c), and, as a baseline heuristic, chunk structure tags were assigned to each word 
based on its part-of-speech tag. Rules were then automatically learned that  updated these chunk 
structure tags based on neighboring words and their part-of-speech and chunk tags. Applying 
transformation-based learning to text chunking turns out to be different in interesting ways from 
its use for part-of-speech tagging. The much smaller tagset calls for a different organization of 
the computation,  and the fact that  part-of-speech assignments as well as word identities are fixed 
suggests different optimizations. 

2 Text Chunking 

Abney (1991) has proposed text chunking as a useful preliminary step to parsing. His chunks are 
inspired in part by psychological studies of Gee and Grosjean (1983) that  link pause durations in 
reading and naive sentence diagraming to text groupings that  they called C-phrases, which very 
roughly correspond to breaking the string after each syntactic head that  is a content word. Ab- 
ney's other motivation for chunking is procedural, based on the hypothesis that  the identification 
of chunks can be done fairly dependably by finite state methods, postponing the decisions that  
require higher-level analysis to a parsing phase that  chooses how to combine the chunks. 

2.1 E x i s t i n g  C h u n k  I d e n t i f i c a t i o n  T e c h n i q u e s  

Existing efforts at identifying chunks in text have been focused primarily on low-level noun group 
identification, frequently as a step in deriving index terms, motivated in part by the limited 
coverage of present broad-scale parsers when dealing with unrestricted text. Some researchers 
have applied grammar-based methods, combining lexical data with finite state or other grammar 
constraints, while others have worked on inducing statistical models either directly from the 
words or from automatically assigned part-of-speech classes. 

On the grammar-based side, Bourigault (1992) describes a system for extracting "termino- 
logical noun phrases" from French text. This system first uses heuristics to find "maximal length 
noun phrases", and then uses a grammar to extract "terminological units." For example, from 
the maximal NP le disque dur de la station de travail it extracts the two terminological phrases 
disque dur, and station de travail. Bourigault claims that  the grammar can parse "around 95% 
of the maximal length noun phrases" in a test corpus into possible terminological phrases, which 
then require manual validation. However, because its goal is terminological phrases, it appears 
that  this system ignores NP chunk-initial determiners and other initial prenominal modifiers, 
somewhat simplifying the parsing task. 

Voutilalnen (1993), in his impressive NPtool system, uses an approach that  is in some ways 
similar to the one used here, in that  he adds to his part-of-speech tags a new kind of tag that  shows 
chunk structure; the chunk tag "@>N", for example, is used for determiners and premodifiers, 
both of which group with the following noun head. He uses a lexicon that  lists all the possible 
chunk tags for each word combined with hand-built constraint grammar patterns. These patterns 
eliminate impossible readings to identify a somewhat idiosyncratic kind of target noun group 
that  does not include initial determiners but does include postmodifying prepositional phrases 
(including determiners). Voutilainen claims recall rates of 98.5% or better with precision of 95% 
or better. However, the sample NPtool analysis given in the appendix of (Voutilainen, 1993), 
appears to be less accurate than claimed in general, with 5 apparent mistakes (and one unresolved 
ambiguity) out of the 32 NP chunks in that  sample, as listed in Table 1. These putative errors, 
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combined with the claimed high performance, suggest that NPtool's definition of NP chunk i.s also 
tuned for extracting terminological phrases, and thus excludes many kinds of NP premodifiers, 
again simplifying the chunking task. 

NPtool parse Apparent correct parse 

less [time] [less time] 
the other hand the [other hand] 

many [advantages] [many advantages] 
[b!nary addressing] [binary addressing and 

and [instruction formats] instruction formats] 
a purely [binary computer] a [purely binary computer] 

Table 1: Apparent errors made by Voutilainen's NPtool 

Kupiec (1993) also briefly mentions the use of finite state NP recognizers for both English 
and French to prepare the input for a program that identified the correspondences between NPs 
in bilingual corpora, but he does not directly discuss their performance. 

Using statistical methods, Church's Parts program (1988), in addition to identifying parts 
of speech, also inserted brackets identifying core NPs. These brackets were placed using a 
statistical model trained on Brown corpus material in which NP brackets had been inserted 
semi-automatically. In the small test sample shown, this system achieved 98% recall for correct 
brackets. At about the same time, Ejerhed (1988), working with Church, performed comparisons 
between finite state methods and Church's stochastic models for identifying both non-recursive 
clauses and non-recursive NPs in English text. In those comparisons, the stochastic methods 
outperformed the hand built finite-state models, with claimed accuracies of 93.5% (clauses) and 
98.6% (NPs) for the statistical models compared to to 87% (clauses) and 97.8% (NPs) for the 
finite-state methods. 

Running Church's program on test material, however, reveals that the definition of NP em- 
bodied in Church's program is quite simplified in that it does not include, for example, structures 
or words conjoined within NP by either explicit conjunctions like "and" and "or", or implicitly 
by commas. Church's chunker thus assigns the following NP chunk structures: 

[a Skokie], [hi.] , [subsidiary] 
[newer], [big-selling prescriptions drugs] 

[the inefficiency] , [waste] and [lack] of [coordination] 
[Kidder], [Peabody] ~ [Co] 

It is difficult to compare performance figures between studies; the definitions of the target 
chunks and the evaluation methodologies differ widely and are frequently incompletely specified. 
All of the cited performance figures above also appear to derive from manual checks by the 
investigators of the system's predicted output, and it is hard to estimate the impact of the 
system's suggested chunking on the judge's determination. We believe that the work reported 
here is the first study which has attempted to find NP chunks subject only to the limitation that 
the structures recognized do not include recursively embedded NPs, and which has measured 
performance by automatic comparison with a preparsed corpus. 
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2.2 D e r i v i n g  C h u n k s  f r o m  T r e e b a n k  P a r s e s  

We performed experiments using two different chunk structure targets, one that tried to bracket 
non-recursive "baseNPs" and one that partitioned sentences into non-overlapping N-type and 
V-type chunks, loosely following Abney's model. Training and test materials with chunk tags 
encoding each of these kinds of structure were derived automatically from the parsed Wall Street 
Journal text in the Penn Treebank (Marcus et al., i994). While this automatic derivation process 
introduced a small percentage of errors of its own, it was the only practical way both to provide 
the amount of training data required and to aJlow for fully-automatic testing. 

The goal of the "baseNP" chunks was to identify essentially the initial portions of non- 
recursive noun phrases up to the head, including determiners but not including postmodifying 
prepositional phrases or clauses. These chunks were extracted from the Treebank parses, basically 
by selecting NPs that contained no nested NPs 1. The handling of conjunction followed that of 
the Treebank annotators as to whether to show separate baseNPs or a single baseNP spanning 
the conjunction 2. Possessives were treated as a special case, viewing the possessive marker as the 
first word of a new baseNP, thus flattening the recursive structure in a useful way. The following 
sentences give examples of this baseNP chunk structure: 

During [N the third quarter N] , IN Compaq N] purchased [N a former Wang 
Laboratories manufacturing facility N] in [N Sterling N],  [N Scotland N],  which will 
be used for IN international service and repair operations N] • 

[N The government N] has [N other agencies and instruments N] for pursuing 
[N these other objectives N] • 

Even IN Mao Tse-tung N] [N's  China/v] began in [N 1949 N] with [N a 
partnership N] between [N the communists N] and [N a number N] of IN smaller , 
non-communist parties N] • 

The chunks in the partitioning chunk experiments were somewhat closer to Abney's model, 
where the prepositions in prepositional phrases are included with the object NP up to the head 
in a single N-type chunk. This created substantial additional ambiguity for the system, which 
had to distinguish prepositions from particles. The handling of conjunction again follows the 
Treebank parse with nominal conjuncts parsed in the Treebank as a single NP forming a single 
N chunk, while those parsed as conjoined NPs become separate chunks, with any coordinating 
conjunctions attached like prepositions to the following N chunk. 

The portions of the text not involved in N-type chunks were grouped as chunks termed V- 
type, though these "V" chunks included many elements that were not verbal, including adjective 
phrases. The internal structure of these V-type chunks loosely followed the Treebank parse, 
though V chunks often group together elements that were sisters in the underlying parse tree. 
Again, the possessive marker was viewed as initiating a new N-type chunk. The following sen- 
tences are annotated with these partitioning N and V chunks: 

[N Some bankers N] [v are reporting v] [N more inquiries than usual N] IN about 
CDs N] [N since Friday N] • 

1This heuristic fails in some cases. For example, Treebank uses the label NAG for some NPs functioning as 
premodifiers, like "Bank of England" in "Robin Leigh-Pemberton, Bank of England governor, conceded.."; in such 
cases, "governor" is not included in any b~eNP chunk. 

2Non-constituent NP conjunction, which Treebank labels NX, is another example that still causes problems. 
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Figure 1: Transformation-Based Learning 

[N Eastern Airlines N] [N ' creditors N] [V have begun exploring v] [N alternative 
approaches N] [N to a Chapter 11 reorganization N] [Y because v] [g they Y][Y are 
unhappy v] [g with the carrier N] [ g ' s  latest proposal N] • 

[N Indexing N] [N for the most part N] [v has involved simply buying v] [w and then 
holding v] [Y stocks N] [Y in the correct mix N] [Y to mirror V] [g a stock market 
barometer g] • 

These two kinds of chunk structure derived from the Treebank data  were encoded as chunk 
tags attached to each word and provided the targets for the transformation-based learning. 

3 The Transformation-based Learning Paradigm 

As shown in Fig. 1, transformation-based learning starts with a supervised training corpus that  
specifies the correct values for some linguistic feature of interest, a baseline heuristic for predicting 
initial values for that  feature, and a set of rule templates that  determine a space of possible 
transformational rules. The patterns of the learned rules match to particular combinations of 
features in the neighborhood surrounding a word, and their action is to change the system's 
current guess as to the feature for that  word. 

To learn a model, one first applies the baseline heuristic to produce initial hypotheses for 
each site in the training corpus. At each site where this baseline prediction is not correct, the 
templates are then used to form instantiated candidate rules with patterns that  test selected 
features in the neighborhood of the word and actions that  correct the currently incorrect tag 
assignment. This process eventually identifies all the rule candidates generated by that  template 
set that  would have a positive effect on the current tag assignments anywhere in the corpus. 

Those candidate rules are then tested against the rest of corpus, to identify at how many 
locations they would cause negative changes. One of those rules whose net score (positive changes 
minus negative changes) is maximal is then selected, applied to the corpus, and also written 
out as the first rule in the learned sequence. This entire learning process is then repeated 
on the transformed corpus: deriving candidate rules, scoring them, and selecting one with the 
maximal positive effect. This process is iterated, leading to an ordered sequence of rules, with 
rules discovered first ordered before those discovered later. The predictions of the model on new 
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text are determined by beginning with the baseline heuristic prediction and then applying each 
rule in the learned rule sequence in turn. 

4 Transformational Text Chunking 

This section discusses how text chunking can be  encoded as a tagging problem that can be 
conveniently addressed using transformational learning. We also note some related adaptations 
in the procedure for learning rules that improve its performance, taking advantage of ways in 
which this task differs from the learning of part-of-speech tags. 

4.1 Encoding Choices 

Applying transformational learning to text chunking requires that the system's current hypotheses 
about chunk structure be represented in a way that can be matched against the pattern parts of 
rules. One way to do this would be to have patterns match tree fragments and actions modify 
tree geometries, as in Brill's transformational parser (1993a). In this work, we have found it 
convenient to do so by encoding the chunking using an additional set of tags, so that each word 
carries both a part-of-speech tag and also a "chunk tag" from which the chunk structure can be 

derived. 
In the baseNP experiments aimed at non-recursive NP structures, we use the chunk tag set 

( I ,  G, B}, where words marked I are inside some baseNP, those marked O are outside, and the B 
tag is used to mark the left most item of a baseNP which immediately follows another baseNP. 
In these tests, punctuation marks were tagged in the same way as words. 

In the experiments that partitioned text into N and V chunks, we use the chunk tag set {BN, 
N, BV, V, P), where BN marks the first word and N the succeeding words in an N-type group 
while BY and Y play the same role for V-type groups. Punctuation marks, which are ignored in 
Abney's chunk grammar, but which the Treebank data treats as normal lexical items with their 
own part-of-speech tags, are unambiguously assigned the chunk tag P. Items tagged P are allowed 
to appear within N or V chunks; they are irrelevant as far as chunk boundaries are concerned, 
but they are still available to be matched against as elements of the left hand sides of rules. 

Encoding chunk structure with tags attached to words rather than non-recursive bracket 
markers inserted between words has the advantage that it limits the dependence between different 
elements of the encoded representation. While brackets must be correctly paired in order to derive 
a chunk structure, it is easy to define a mapping that can produce a valid chunk structure from 
any sequence of chunk tags; the few hard cases that arise can be handled completely locally. For 
example, in the baseNP tag set, whenever a B tag immediately follows an 0, it must be treated 
as an I,  and, in the partitioning chunk tag set, wherever a V tag immediately follows an N tag 
without any intervening BV, it must be treated as a BV. 

4.2 B a s e l i n e  S y s t e m  

Transformational learning begins with some initial "baseline" prediction, which here means a 
basehne assignment of chunk tags to words. Reasonable suggestions for baseline heuristics after 
a text has been tagged for part-of-speech might include assigning to each word the chunk tag 
that it carried most frequently in the training set, or assigning each part-of-speech tag the chunk 
tag that was most frequently associated with that part-of-speech tag in the training. We tested 
both approaches, and the baseline heuristic using part-of-speech tags turned out to do better, so 
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it was the one used in our experiments. The part-of-speech tags used by this baseline heuristic, 
and then later also matched against by transformational rule patterns, were derived by running 
the raw texts in a prepass through Brill's transformational part-of-speech tagger (Brill, 1993c). 

4.3 Rule  Templates  

In transformational learning, the space of candidate rules to be searched is defined by a set of 
rule templates that each specify a small number of particular feature sets as the relevant factors 
that a rule's left-hand-side pattern should examine, for example, the part-of-speech tag of the 
word two to the left combined with the actual word one to the left. In the preliminary scan of the 
corpus for each learning pass, it is these templates that are applied to each location whose current 
tag is not correct, generating a candidate rule that would apply at least at that one location, 
matching those factors and correcting the chunk tag assignment. 

When this approach is applied to part-of-speech tagging, the possible sources of evidence for 
templates involve the identities of words within a neighborhood of some appropriate size and their 
current part-of-speech tag assignments. In the text chunking application, the tags being assigned 
are chunk structure tags, while the part-of-speech tags are a fixed part of the environment, like 
the lexical identities of the words themselves. This additional class of available information causes 
a significant increase in the number of reasonable templates if templates for a wide range of the 
possible combinations of evidence are desired. The distributed version of Brill's tagger (Brill, 
1993c) makes use of 26 templates, involving various mixes of word and part-of-speech tests on 
neighboring words. Our tests were performed using 100 templates; these included almost all of 
Brill's combinations, and extended them to include references to chunk tags as well as to words 
and part-of-speech tags. 

The set of 100 rule templates used here was built from repetitions of 10 basic patterns, shown 
on the left side of Table 2 as they apply to words. The same 10 patterns can also be used to match 
against part-of-speech tags, encoded as P0, P - l ,  etc. (In other tests, we have explored mixed 
templates, that match against both word and part-of-speech values, but no mixed templates were 
used in these experiments.) These 20 word and part-of-speech patterns were then combined with 
each of the 5 different chunk tag patterns shown on the right side of the table. The cross product 
of the 20 word and part-of-speechpatterns with the 5 chunk tag patterns determined the full set 
of 100 templates used. 

Pattern 

Wo 
W-1 
W1 
W - l ,  W0 
Wo, Wl 
W-l, Wl 
W_~, W-1 
W1, W2 
W-1,-2,-3 
W1,2,3 

Word Patterns Tag Patterns 
Meaning Pattern Meaning 
current word 
word 1 to left 
word 1 to right 
current word and word to left 
current word and word to right 
word to left and word to right 
two words to left 
two words to right 
word 1 or 2 or 3 to left 
word 1 or 2 or 3 to right 

T0 
T - l ,  To 
To, T1 
T-2, T-1 
T1, T2 

current tag 
current tag and tag to left 
current tag and tag to right 
two tags to left 
two tags to right 

Table 2: Patterns used in Templates 
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5 Algorithm Design Issues 

The large increase in the number of rule templates in the text chunking application when com- 
pared to part-of-speech tagging pushed the training process against the available limits in terms 
of both space and time, particularly when combined with the desire to work with the largest 
possible training sets. Various optimizations proved to be crucial to make the tests described 
feasible. 

5.1 O r g a n i z a t i o n  o f  t h e  C o m p u t a t i o n  

One change in the algorithm is related to the smaller size of the tag set. In Brill's tagger (Brill, 
1993c), an initial calculation in each pass computes the confusion matrix for the current tag 
assignments and sorts the entries of that  [old-tag x new-tag] matrix, so that  candidate rules can 
then be processed in decreasing order of the maximum possible benefit for any rule changing, 
say, old tag I to new tag J. The search for the best-scoring rule can then be halted when a cell 
of the confusion matrix is reached whose maximum possible benefit is less than the net benefit 
of some rule already encountered. 

The power of that  approach is dependent on the fact that  the confusion matrix for part-of- 
speech tagging partitions the space of candidate rules into a relatively large number of classes, 
so that  one is likely to be able to exclude a reasonably large portion of the search space. In a 
chunk tagging application, with only 3 or 4 tags in the effective tagset, this approach based on 
the confusion matrix offers much less benefit. 

However, even though the confusion matrix does not usefully subdivide the space of possible 
rules when the tag set is this small, it is still possible to apply a similar optimization by sorting 
the entire list of candidate rules on the basis of their positive scores, and then processing the 
candidate rules (which means determining their negative scores and thus their net scores) in order 
of decreasing positive scores. By keeping track of the rule with maximum benefit seen so far, one 
can be certain of having found one of the globally best rules when one reaches candidate rules in 
the sorted list whose positive score is not greater than the net score of the best rule so far. 

5 .2 I n d e x i n g  S t a t i c  R u l e  E l e m e n t s  

In earlier work on transformational part-of-speech tagging (Ramshaw and Marcus, 1994), we 
noted that  it is possible to greatly speed up the learning process by constructing a full, bidirec- 
tional index linking each candidate rule to those locations in the corpus at which it applies and 
each location in the corpus to those candidate rules that  apply there. Such an index allows the 
process of applying rules to be performed without having to search through the corpus. Unfortu- 
nately, such complete indexing proved to be too costly in terms of physical memory to be feasible 
in this application. 

However, it is possible to construct a limited index that  lists for each candidate rule those 
locations in the corpus at which the static portions of its left-hand-side pat tern match. Because 
this index involves only the stable word identity and part-of-speech tag values, it does not require 
updating; thus it can be stored more compactly, and it is also not necessary to maintain back 
pointers from corpus locations to the applicable rules. This kind of partial static index proved to 
be a significant advantage in the portion of the program where candidate rules with relatively high 
positive scores are being tested to determine their negative scores, since it avoids the necessity 
of testing such rules against every location in the corpus. 
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Training Recall Error Red. Precision Error Red. Corr. Tag Error Red. 
Baseline 81.9% 78.2% 94.5% 

50K 90.4% 47.2% 89.8% 53.1% 96.9% 44.4% 
100K 91.8% 54.8% 91.3% 60.0% 97.2% 49.6% 
200K 92.3% 57.4% 91.8% 62.4% 97.4% 53.4% 

Table 3: BaseNP Chunk Results 

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red. 
Baseline 60.0% 47.8% 78.0% 

50K 86.6% 66.6% 85.8% 72.8% 94.4% 74.4% 
100K 88.2% 70.4% 87.4% 75.8% 95.0% 77.3% 
200K 88.5% 71.1% 87.7% 76.5% 95.3% 78.5% 

Table 4: Partitioning Chunk Results 

5 .3  H e u r i s t i c  D i s a b l i n g  o f  U n l i k e l y  R u l e s  

We also investigated a new heuristic to speed up the computation: After each pass, we disable all 
rules whose positive score is significantly lower than the net score of the best rule for the current 
pass. A disabled rule is then reenabled whenever enough other changes have been made to the 
corpus that it seems possible that the score of that rule might have changed enough to bring it 
back into contention for the top place. This is done by adding some fraction of the changes made 
in each pass to the positive scores of the disabled rules, and reenabling rules whose adjusted 
positive scores came within a threshold of the net score of the successful rule on some pass. 

Note that this heuristic technique introduces some risk of missing the actual best rule in a 
pass, due to its being incorrectly disabled at the time. However, empirical comparisons between 
runs with and without rule disabling suggest that conservative use of this technique can produce 
an order of magnitude speedup while imposing only a very slight cost in terms of suboptimality 
of the resulting learned rule sequence. 

6 R e s u l t s  

The automatic derivation of training and testing data from the Treebank analyses allowed for 
fully automatic scoring, though the scores are naturally subject to any remaining systematic 
errors in the data derivation process as well as to bona fide parsing errors in the Treebank source. 
Table 3 shows the results for the baseNP tests, and Table 4 shows the results for the partitioning 
chunks task. Since training set size has a significant effect on the results, values are shown for 
three different training set sizes. (The test set in all cases was 50K words. Training runs were 
halted after the first 500 rules; rules learned after that point affect relatively few locations in the 
training set and have only a very slight effect for good or ill on test set performance.) 

The first line in each table gives the performance of the baseline system, which assigned a 
baseNP or chunk tag to each word on the basis of the POS tag assigned in the.prepass. Perfor- 
mance is stated in terms of recall (percentage of correct chunks found) and precision (percentage 
of chunks found that are correct), where both ends of a chunk had to match exactly for it to 
be counted. The raw percentage of correct chunk tags is also given for each run, and for each 
performance measure, the relative error reduction compared to the baseline is listed. The par- 
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titioning chunks do appear to be somewhat harder to predict than baseNP chunks. The higher 
error reduction for the former is partly due to the fact that the part-of-speech basehne for that 
task is much lower. 

6.1 Analysis  of I n i t i a l  R u l e s  

To give a sense of the kinds of rules being learned, the first 10 rules from the 200K baseNP run 
are shown in Table 5. It is worth glossing the rules, since one of the advantages of transformation- 
based learning is exactly that the resulting model is easily interpretable. In the first of the baseNP 
rules, adjectives (with part-of-speech tag J J) that are currently tagged I but that are followed 
by words tagged 0 have their tags changed to 0. In Rule 2, determiners that are preceded by two 
words both tagged I have their own tag changed to B, marking the beginning of a baseNP that 
happens to directly follow another. (Since the tag B is only used when baseNPs abut, the basehne 
system tags determiners as I.) Rule 3 takes words which immediately follow determiners tagged 
I that in turn follow something tagged 0 and changes their tag to also be I. Rules 4-6 are similar 
to Rule 2, marking the initial words of baseNPs that directly follow another baseNP. Rule 7 
marks conjunctions (with part-of-speech tag CC) as I if they follow an I and precede a noun, 
since such conjunctions are more likely to be embedded in a single baseNP than to separate two 
baseNPs, and Rules 8 and 9 do the same. (The word "&" in rule 8 comes mostly from company 
names in the Wall St. Journal source data.) Finally, Rule 10 picks up cases hke "including about 
four million shares" where "about" is used as a quantifier rather than preposition. 

Pass 
1. I 
2. 
3. 
4. I 
5. I 
6. I 
7. 0 
8. 0 
9. 0 

10. 0 

Old Tag Context New Tag 

Table 5: 

T1 = 0, P0 = JJ 
T_:=  I, T_I=  I, P o = D T  
T-2 = 0, T_i = I, P-1 = DT 
T-1 = I,  P 0 = W D T  
T-1 = I, P0 = PRP 
T-1 = I, Wo = who 
T-1 = I, P0 = CC, P I =  NN 
T i = I ,  W 0 = &  
T-1 = I,  P0 = CC, P1 = NNS 
T-1 = 0, W0 = about 

0 

B 

I 

B 

B 

B 

I 

I 

I 

I 

First Ten Basenp Chunk Rules 

A similar list of the first ten rules for the chunk task can be seen in Table 6. To gloss a few 
of these, in the first rule here, determiners (with part-of-speech tag DT), which usually begin N 
chunks and thus are assigned the baseline tag BN, have their chunk tags changed to hl if they follow 
a word whose tag is also BN. In Rule 2, sites currently tagged N but which fall at the beginning 
of a sentence have their tags switched to BN. (The dummy tag Z and word ZZZ indicate that the 
locations one to the left are beyond the sentence boundaries.) Rule 3 changes N to BN after a 
comma (which is tagged P), and in Rule 4, locations tagged BN are switched to BV if the following 
location is tagged V and has the part-of-speech tag VB. 
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Pass 
1. BN 

2. N 

3. N 

4. BN 

5. N 

6. N 

7. BV 

8. V 

9. BV 

10. BN 

Old Tag Context New Tag 
T - 1  = BN, P0 = D T  
T-1 =Z ,  W-1 = ZZZ 
T - 1  = P, P - 1  = ~,~ 

T1 =V, P1 = VB 
T-1 = BV, P-1,-2,-3 = VBD 
P-1 = VB 
T-1 = V, P-1,-2,-3 = RB 
T-1 = N, P - 1 , - 2 , - 3  = NN 
T-1 = BV, P1,2,3 = VB 
T-1 = BN, Po = PRP$ 

N 

BN 

BN 

BV 

BN 

BN 

V 

BV 

V 

N 

Table 6: First Ten Partitioning Chunk Rules 

6 . 2  C o n t r i b u t i o n  o f  L e x i c a l  T e m p l a t e s  

The fact that  this system includes lexical rule templates that  refer to actual words sets it apart 
from approaches that  rely only on part-of-speech tags to predict chunk structure. To explore how 
much difference in performance those lexical rule templates make, we repeated the above test runs 
omitting templates that  refer to specific words. The results for these runs, in Tables 7 and 8, sug- 
gest that  the lexical rules improve performance on the baseNP chunk task by about 1% (roughly 
5% of the overall error reduction) and on the partitioning chunk task by about 5% (roughly 
10% of the error reduction). Thus lexical rules appear to be making a limited contribution in 
determining baseNP chunks, but a more significant one for the partitioning chunks. 

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red. 
Baseline 81.9% 78.2% 94.5% 

50K 89.6% 42.7% 88.9% 49.2% 96.6% 38.8% 
100K 90.6% 48.4% 89.9% 53.7% 96.9% 44.4% 
200K 90.7% 48.7% 90.5% 56.3% 97.0% 46.0% 

Table 7: BaseNP Chunk Results Without  Lexical Templates 

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red. 
Baseline 60.0% 47.8% 78.0% 

50K 81.8% 54.5% 81.4% 64.4% 92.4% 65.4% 
100K 82.9% 57.2% 83.0% 67.3% 92.9% 67.9% 
200K i 83.6% 58.9% 83.5% 68.4% 93.9% 72.2% 

Table 8: Partitioning Chunk Results Without Lexical Templates 

6 .3  F r e q u e n t  E r r o r  C l a s s e s  

A rough hand categorization of a sample of the errors from a baseNP run indicates that  many 
fall into classes that  are understandably difficult for any process using only local word and part- 
of-speech patterns to resolve. The most frequent single confusion involved words tagged VBG 
and VBN, whose baseline prediction given their part-of-speech tag was 0, but which also occur 
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frequently inside baseNPs. The system did discover some rules that allowed it to fix certain classes 
of VBG and VBN mistaggings, for example, rules that retagged VBNs as I when they preceded 
an NN or NNS tagged I. However, many also remained unresolved, and many of those appear to 
be cases that would require more than local word and part-of-speech patterns to resolve. 

The second most common class of errors involved conjunctions, which, combined with the 
former class, make up half of all the errors in the sample. The Treebank tags the words "and" 
and frequently "," with the part-of-speech tag CC, which the baseline system again predicted 
would fall most often outside of a baseNP 3. However, the Treebank parses do also frequently 
classify conjunctions of Ns or NPs as a single baseNP, and again there appear to be insufficient 
clues in the word and tag contexts for the current system to make the distinction. Frequently, in 
fact, the actual choice of structure assigned by the Treebank annotators seemed largely dependent 
on semantic indications unavailable to the transformational learner. 

7 Future Directions 

We are planning to explore several different paths that might increase the system's power to 
distinguish the linguistic contexts in which particular changes would be useful. One such direction 
is to expand the template set by adding templates that are sensitive to the chunk structure. For 
example, instead of referring to the word two to the left, a rule pattern could refer to the first 
word in the current chunk, or the last word of the previous chunk. Another direction would be 
to enrich the vocabulary of chunk tags, so that they could be used during the learning process to 
encode contextual features for use by later rules in the sequence. 

We would also like to explore applying these same kinds of techniques to building larger 
scale structures, in which larger units are assembled or predicate/argument structures derived by 
combining chunks. One interesting direction here would be to explore the use of chunk structure 
tags that encode a form of dependency grammar, where the tag "N+2" might mean that the 
current word is to be taken as pa r to f  the unit headed by the N two words to the right. 

8 Conclusions 

By representing text chunking as a kind of tagging problem, it becomes possible to easily apply 
transformation-based learning. We have shown that this approach is able to automatically induce 
a chunking model from supervised training that achieves recall and precision of 92% for baseNP 
chunks and 88% for partitioning N and V chunks. Such chunking models provide a useful and 
feasible next step in textual interpretation that goes beyond part-of-speech tagging, and that 
serve as a foundation both for larger-scale grouping and for direct extraction of subunits hke 
index terms. In addition, some variations in the transformation-based learning algorithm are 
suggested by this application that may also be useful in other settings. 
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aNote that this is one of the cases where Church's chunker allows separate NP fragments to count as chunks. 
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