
Text Chunking using Transformation-Based Learning

Lance A. Ramshaw
Dept. of Computer Science

Bowdoin College
Brunswick, ME 04011 USA

ramshaw@polar, bowdoin, edu

Mitchell P. Marcus
Computer and Information Science Dept.

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

mit ch©linc, cis. upenn, edu

Abstract

Eric Brill introduced transformation-based learning and showed that it can do part-of-
speech tagging with fairly high accuracy. The same method can be applied at a higher
level of textual interpretation for locating chunks in the tagged text, including non-recursive
"baseNP" chunks. For this purpose, it is convenient to view chunking as a tagging problem
by encoding the chunk structure in new tags attached to each word. In automatic tests using
Treebank-derived data, this technique achieved recall and precision rates of roughly 92% for
baseNP chunks and 88% for somewhat more complex chunks that partition the sentence. Some
interesting adaptations to the transformation-based learning approach are also suggested by
this application.

1 Introduction

Text chunking involves dividing sentences into nonoverlapping segments on the basis of fairly
superficial analysis. Abney (1991) has proposed this as a useful and relatively tractable precursor
to full parsing, since it provides a foundation for further levels of analysis including verb-argument
identification, while still allowing more complex attachment decisions to be postponed to a later
phase. Since chunking includes identifying the non-recursive portions of noun phrases, it can also
be useful for other purposes including index term generation.

Most efforts at superficially extracting segments from sentences have focused on identifying
low-level noun groups, either using hand-built grammars and finite state techniques or using
statistical models like HMMs trained from corpora. In this paper, we target a somewhat higher
level of chunk structure using Brill's (1993b) transformation-based learning mechanism, in which
a sequence of transformational rules is learned from a corpus; this sequence iteratively improves
upon a baseline model for some interpretive feature of the text. This technique has previously
been used not only for part-of-speech tagging (Brill, 1994), but also for prepositional phrase
attachment disambiguation (Brill and Resnik, 1994), and assigning unlabeled binary-branching
tree structure to sentences (Brill, 1993a). Because transformation-based learning uses pattern-
action rules based on selected features of the local context, it is helpful for the values being
predicted to also be encoded locally. In the text-chunking application, encoding the predicted
chunk structure in tags attached to the words, rather than as brackets between words, avoids
many of the difficulties with unbalanced bracketings that would result if such local rules were
allowed to insert or alter inter-word brackets directly.

In this study, training and test sets marked with two different types of chunk structure were
derived algorithmically from the parsed data in the Penn Treebank corpus of Wall Street Journal

82

text (Marcus et al., 1994). The source texts were then run through Brill's part-of-speech tagger
(Brill, 1993c), and, as a baseline heuristic, chunk structure tags were assigned to each word
based on its part-of-speech tag. Rules were then automatically learned that updated these chunk
structure tags based on neighboring words and their part-of-speech and chunk tags. Applying
transformation-based learning to text chunking turns out to be different in interesting ways from
its use for part-of-speech tagging. The much smaller tagset calls for a different organization of
the computation, and the fact that part-of-speech assignments as well as word identities are fixed
suggests different optimizations.

2 Text Chunking

Abney (1991) has proposed text chunking as a useful preliminary step to parsing. His chunks are
inspired in part by psychological studies of Gee and Grosjean (1983) that link pause durations in
reading and naive sentence diagraming to text groupings that they called C-phrases, which very
roughly correspond to breaking the string after each syntactic head that is a content word. Ab-
ney's other motivation for chunking is procedural, based on the hypothesis that the identification
of chunks can be done fairly dependably by finite state methods, postponing the decisions that
require higher-level analysis to a parsing phase that chooses how to combine the chunks.

2.1 E x i s t i n g C h u n k I d e n t i f i c a t i o n T e c h n i q u e s

Existing efforts at identifying chunks in text have been focused primarily on low-level noun group
identification, frequently as a step in deriving index terms, motivated in part by the limited
coverage of present broad-scale parsers when dealing with unrestricted text. Some researchers
have applied grammar-based methods, combining lexical data with finite state or other grammar
constraints, while others have worked on inducing statistical models either directly from the
words or from automatically assigned part-of-speech classes.

On the grammar-based side, Bourigault (1992) describes a system for extracting "termino-
logical noun phrases" from French text. This system first uses heuristics to find "maximal length
noun phrases", and then uses a grammar to extract "terminological units." For example, from
the maximal NP le disque dur de la station de travail it extracts the two terminological phrases
disque dur, and station de travail. Bourigault claims that the grammar can parse "around 95%
of the maximal length noun phrases" in a test corpus into possible terminological phrases, which
then require manual validation. However, because its goal is terminological phrases, it appears
that this system ignores NP chunk-initial determiners and other initial prenominal modifiers,
somewhat simplifying the parsing task.

Voutilalnen (1993), in his impressive NPtool system, uses an approach that is in some ways
similar to the one used here, in that he adds to his part-of-speech tags a new kind of tag that shows
chunk structure; the chunk tag "@>N", for example, is used for determiners and premodifiers,
both of which group with the following noun head. He uses a lexicon that lists all the possible
chunk tags for each word combined with hand-built constraint grammar patterns. These patterns
eliminate impossible readings to identify a somewhat idiosyncratic kind of target noun group
that does not include initial determiners but does include postmodifying prepositional phrases
(including determiners). Voutilainen claims recall rates of 98.5% or better with precision of 95%
or better. However, the sample NPtool analysis given in the appendix of (Voutilainen, 1993),
appears to be less accurate than claimed in general, with 5 apparent mistakes (and one unresolved
ambiguity) out of the 32 NP chunks in that sample, as listed in Table 1. These putative errors,

83

combined with the claimed high performance, suggest that NPtool's definition of NP chunk i.s also
tuned for extracting terminological phrases, and thus excludes many kinds of NP premodifiers,
again simplifying the chunking task.

NPtool parse Apparent correct parse

less [time] [less time]
the other hand the [other hand]

many [advantages] [many advantages]
[b!nary addressing] [binary addressing and

and [instruction formats] instruction formats]
a purely [binary computer] a [purely binary computer]

Table 1: Apparent errors made by Voutilainen's NPtool

Kupiec (1993) also briefly mentions the use of finite state NP recognizers for both English
and French to prepare the input for a program that identified the correspondences between NPs
in bilingual corpora, but he does not directly discuss their performance.

Using statistical methods, Church's Parts program (1988), in addition to identifying parts
of speech, also inserted brackets identifying core NPs. These brackets were placed using a
statistical model trained on Brown corpus material in which NP brackets had been inserted
semi-automatically. In the small test sample shown, this system achieved 98% recall for correct
brackets. At about the same time, Ejerhed (1988), working with Church, performed comparisons
between finite state methods and Church's stochastic models for identifying both non-recursive
clauses and non-recursive NPs in English text. In those comparisons, the stochastic methods
outperformed the hand built finite-state models, with claimed accuracies of 93.5% (clauses) and
98.6% (NPs) for the statistical models compared to to 87% (clauses) and 97.8% (NPs) for the
finite-state methods.

Running Church's program on test material, however, reveals that the definition of NP em-
bodied in Church's program is quite simplified in that it does not include, for example, structures
or words conjoined within NP by either explicit conjunctions like "and" and "or", or implicitly
by commas. Church's chunker thus assigns the following NP chunk structures:

[a Skokie], [hi.] , [subsidiary]
[newer], [big-selling prescriptions drugs]

[the inefficiency] , [waste] and [lack] of [coordination]
[Kidder], [Peabody] ~ [Co]

It is difficult to compare performance figures between studies; the definitions of the target
chunks and the evaluation methodologies differ widely and are frequently incompletely specified.
All of the cited performance figures above also appear to derive from manual checks by the
investigators of the system's predicted output, and it is hard to estimate the impact of the
system's suggested chunking on the judge's determination. We believe that the work reported
here is the first study which has attempted to find NP chunks subject only to the limitation that
the structures recognized do not include recursively embedded NPs, and which has measured
performance by automatic comparison with a preparsed corpus.

84

2.2 D e r i v i n g C h u n k s f r o m T r e e b a n k P a r s e s

We performed experiments using two different chunk structure targets, one that tried to bracket
non-recursive "baseNPs" and one that partitioned sentences into non-overlapping N-type and
V-type chunks, loosely following Abney's model. Training and test materials with chunk tags
encoding each of these kinds of structure were derived automatically from the parsed Wall Street
Journal text in the Penn Treebank (Marcus et al., i994). While this automatic derivation process
introduced a small percentage of errors of its own, it was the only practical way both to provide
the amount of training data required and to aJlow for fully-automatic testing.

The goal of the "baseNP" chunks was to identify essentially the initial portions of non-
recursive noun phrases up to the head, including determiners but not including postmodifying
prepositional phrases or clauses. These chunks were extracted from the Treebank parses, basically
by selecting NPs that contained no nested NPs 1. The handling of conjunction followed that of
the Treebank annotators as to whether to show separate baseNPs or a single baseNP spanning
the conjunction 2. Possessives were treated as a special case, viewing the possessive marker as the
first word of a new baseNP, thus flattening the recursive structure in a useful way. The following
sentences give examples of this baseNP chunk structure:

During [N the third quarter N] , IN Compaq N] purchased [N a former Wang
Laboratories manufacturing facility N] in [N Sterling N], [N Scotland N], which will
be used for IN international service and repair operations N] •

[N The government N] has [N other agencies and instruments N] for pursuing
[N these other objectives N] •

Even IN Mao Tse-tung N] [N's China/v] began in [N 1949 N] with [N a
partnership N] between [N the communists N] and [N a number N] of IN smaller ,
non-communist parties N] •

The chunks in the partitioning chunk experiments were somewhat closer to Abney's model,
where the prepositions in prepositional phrases are included with the object NP up to the head
in a single N-type chunk. This created substantial additional ambiguity for the system, which
had to distinguish prepositions from particles. The handling of conjunction again follows the
Treebank parse with nominal conjuncts parsed in the Treebank as a single NP forming a single
N chunk, while those parsed as conjoined NPs become separate chunks, with any coordinating
conjunctions attached like prepositions to the following N chunk.

The portions of the text not involved in N-type chunks were grouped as chunks termed V-
type, though these "V" chunks included many elements that were not verbal, including adjective
phrases. The internal structure of these V-type chunks loosely followed the Treebank parse,
though V chunks often group together elements that were sisters in the underlying parse tree.
Again, the possessive marker was viewed as initiating a new N-type chunk. The following sen-
tences are annotated with these partitioning N and V chunks:

[N Some bankers N] [v are reporting v] [N more inquiries than usual N] IN about
CDs N] [N since Friday N] •

1This heuristic fails in some cases. For example, Treebank uses the label NAG for some NPs functioning as
premodifiers, like "Bank of England" in "Robin Leigh-Pemberton, Bank of England governor, conceded.."; in such
cases, "governor" is not included in any b~eNP chunk.

2Non-constituent NP conjunction, which Treebank labels NX, is another example that still causes problems.

85

I Training Corpus

Rule Templates

Correct Answers

I Learned Rule Sequence

Baseline System]

~ Derive~d Sc°re I !e I Candidate Rules Cu nt Corpus

~ 1 Select Rule]
¢

Apply Rule
I

Figure 1: Transformation-Based Learning

[N Eastern Airlines N] [N ' creditors N] [V have begun exploring v] [N alternative
approaches N] [N to a Chapter 11 reorganization N] [Y because v] [g they Y][Y are
unhappy v] [g with the carrier N] [g ' s latest proposal N] •

[N Indexing N] [N for the most part N] [v has involved simply buying v] [w and then
holding v] [Y stocks N] [Y in the correct mix N] [Y to mirror V] [g a stock market
barometer g] •

These two kinds of chunk structure derived from the Treebank data were encoded as chunk
tags attached to each word and provided the targets for the transformation-based learning.

3 The Transformation-based Learning Paradigm

As shown in Fig. 1, transformation-based learning starts with a supervised training corpus that
specifies the correct values for some linguistic feature of interest, a baseline heuristic for predicting
initial values for that feature, and a set of rule templates that determine a space of possible
transformational rules. The patterns of the learned rules match to particular combinations of
features in the neighborhood surrounding a word, and their action is to change the system's
current guess as to the feature for that word.

To learn a model, one first applies the baseline heuristic to produce initial hypotheses for
each site in the training corpus. At each site where this baseline prediction is not correct, the
templates are then used to form instantiated candidate rules with patterns that test selected
features in the neighborhood of the word and actions that correct the currently incorrect tag
assignment. This process eventually identifies all the rule candidates generated by that template
set that would have a positive effect on the current tag assignments anywhere in the corpus.

Those candidate rules are then tested against the rest of corpus, to identify at how many
locations they would cause negative changes. One of those rules whose net score (positive changes
minus negative changes) is maximal is then selected, applied to the corpus, and also written
out as the first rule in the learned sequence. This entire learning process is then repeated
on the transformed corpus: deriving candidate rules, scoring them, and selecting one with the
maximal positive effect. This process is iterated, leading to an ordered sequence of rules, with
rules discovered first ordered before those discovered later. The predictions of the model on new

86

i

text are determined by beginning with the baseline heuristic prediction and then applying each
rule in the learned rule sequence in turn.

4 Transformational Text Chunking

This section discusses how text chunking can be encoded as a tagging problem that can be
conveniently addressed using transformational learning. We also note some related adaptations
in the procedure for learning rules that improve its performance, taking advantage of ways in
which this task differs from the learning of part-of-speech tags.

4.1 Encoding Choices

Applying transformational learning to text chunking requires that the system's current hypotheses
about chunk structure be represented in a way that can be matched against the pattern parts of
rules. One way to do this would be to have patterns match tree fragments and actions modify
tree geometries, as in Brill's transformational parser (1993a). In this work, we have found it
convenient to do so by encoding the chunking using an additional set of tags, so that each word
carries both a part-of-speech tag and also a "chunk tag" from which the chunk structure can be

derived.
In the baseNP experiments aimed at non-recursive NP structures, we use the chunk tag set

(I , G, B}, where words marked I are inside some baseNP, those marked O are outside, and the B
tag is used to mark the left most item of a baseNP which immediately follows another baseNP.
In these tests, punctuation marks were tagged in the same way as words.

In the experiments that partitioned text into N and V chunks, we use the chunk tag set {BN,
N, BV, V, P), where BN marks the first word and N the succeeding words in an N-type group
while BY and Y play the same role for V-type groups. Punctuation marks, which are ignored in
Abney's chunk grammar, but which the Treebank data treats as normal lexical items with their
own part-of-speech tags, are unambiguously assigned the chunk tag P. Items tagged P are allowed
to appear within N or V chunks; they are irrelevant as far as chunk boundaries are concerned,
but they are still available to be matched against as elements of the left hand sides of rules.

Encoding chunk structure with tags attached to words rather than non-recursive bracket
markers inserted between words has the advantage that it limits the dependence between different
elements of the encoded representation. While brackets must be correctly paired in order to derive
a chunk structure, it is easy to define a mapping that can produce a valid chunk structure from
any sequence of chunk tags; the few hard cases that arise can be handled completely locally. For
example, in the baseNP tag set, whenever a B tag immediately follows an 0, it must be treated
as an I, and, in the partitioning chunk tag set, wherever a V tag immediately follows an N tag
without any intervening BV, it must be treated as a BV.

4.2 B a s e l i n e S y s t e m

Transformational learning begins with some initial "baseline" prediction, which here means a
basehne assignment of chunk tags to words. Reasonable suggestions for baseline heuristics after
a text has been tagged for part-of-speech might include assigning to each word the chunk tag
that it carried most frequently in the training set, or assigning each part-of-speech tag the chunk
tag that was most frequently associated with that part-of-speech tag in the training. We tested
both approaches, and the baseline heuristic using part-of-speech tags turned out to do better, so

87

it was the one used in our experiments. The part-of-speech tags used by this baseline heuristic,
and then later also matched against by transformational rule patterns, were derived by running
the raw texts in a prepass through Brill's transformational part-of-speech tagger (Brill, 1993c).

4.3 Rule Templates

In transformational learning, the space of candidate rules to be searched is defined by a set of
rule templates that each specify a small number of particular feature sets as the relevant factors
that a rule's left-hand-side pattern should examine, for example, the part-of-speech tag of the
word two to the left combined with the actual word one to the left. In the preliminary scan of the
corpus for each learning pass, it is these templates that are applied to each location whose current
tag is not correct, generating a candidate rule that would apply at least at that one location,
matching those factors and correcting the chunk tag assignment.

When this approach is applied to part-of-speech tagging, the possible sources of evidence for
templates involve the identities of words within a neighborhood of some appropriate size and their
current part-of-speech tag assignments. In the text chunking application, the tags being assigned
are chunk structure tags, while the part-of-speech tags are a fixed part of the environment, like
the lexical identities of the words themselves. This additional class of available information causes
a significant increase in the number of reasonable templates if templates for a wide range of the
possible combinations of evidence are desired. The distributed version of Brill's tagger (Brill,
1993c) makes use of 26 templates, involving various mixes of word and part-of-speech tests on
neighboring words. Our tests were performed using 100 templates; these included almost all of
Brill's combinations, and extended them to include references to chunk tags as well as to words
and part-of-speech tags.

The set of 100 rule templates used here was built from repetitions of 10 basic patterns, shown
on the left side of Table 2 as they apply to words. The same 10 patterns can also be used to match
against part-of-speech tags, encoded as P0, P - l , etc. (In other tests, we have explored mixed
templates, that match against both word and part-of-speech values, but no mixed templates were
used in these experiments.) These 20 word and part-of-speech patterns were then combined with
each of the 5 different chunk tag patterns shown on the right side of the table. The cross product
of the 20 word and part-of-speechpatterns with the 5 chunk tag patterns determined the full set
of 100 templates used.

Pattern

Wo
W-1
W1
W - l , W0
Wo, Wl
W-l, Wl
W_~, W-1
W1, W2
W-1,-2,-3
W1,2,3

Word Patterns Tag Patterns
Meaning Pattern Meaning
current word
word 1 to left
word 1 to right
current word and word to left
current word and word to right
word to left and word to right
two words to left
two words to right
word 1 or 2 or 3 to left
word 1 or 2 or 3 to right

T0
T - l , To
To, T1
T-2, T-1
T1, T2

current tag
current tag and tag to left
current tag and tag to right
two tags to left
two tags to right

Table 2: Patterns used in Templates

88

5 Algorithm Design Issues

The large increase in the number of rule templates in the text chunking application when com-
pared to part-of-speech tagging pushed the training process against the available limits in terms
of both space and time, particularly when combined with the desire to work with the largest
possible training sets. Various optimizations proved to be crucial to make the tests described
feasible.

5.1 O r g a n i z a t i o n o f t h e C o m p u t a t i o n

One change in the algorithm is related to the smaller size of the tag set. In Brill's tagger (Brill,
1993c), an initial calculation in each pass computes the confusion matrix for the current tag
assignments and sorts the entries of that [old-tag x new-tag] matrix, so that candidate rules can
then be processed in decreasing order of the maximum possible benefit for any rule changing,
say, old tag I to new tag J. The search for the best-scoring rule can then be halted when a cell
of the confusion matrix is reached whose maximum possible benefit is less than the net benefit
of some rule already encountered.

The power of that approach is dependent on the fact that the confusion matrix for part-of-
speech tagging partitions the space of candidate rules into a relatively large number of classes,
so that one is likely to be able to exclude a reasonably large portion of the search space. In a
chunk tagging application, with only 3 or 4 tags in the effective tagset, this approach based on
the confusion matrix offers much less benefit.

However, even though the confusion matrix does not usefully subdivide the space of possible
rules when the tag set is this small, it is still possible to apply a similar optimization by sorting
the entire list of candidate rules on the basis of their positive scores, and then processing the
candidate rules (which means determining their negative scores and thus their net scores) in order
of decreasing positive scores. By keeping track of the rule with maximum benefit seen so far, one
can be certain of having found one of the globally best rules when one reaches candidate rules in
the sorted list whose positive score is not greater than the net score of the best rule so far.

5 .2 I n d e x i n g S t a t i c R u l e E l e m e n t s

In earlier work on transformational part-of-speech tagging (Ramshaw and Marcus, 1994), we
noted that it is possible to greatly speed up the learning process by constructing a full, bidirec-
tional index linking each candidate rule to those locations in the corpus at which it applies and
each location in the corpus to those candidate rules that apply there. Such an index allows the
process of applying rules to be performed without having to search through the corpus. Unfortu-
nately, such complete indexing proved to be too costly in terms of physical memory to be feasible
in this application.

However, it is possible to construct a limited index that lists for each candidate rule those
locations in the corpus at which the static portions of its left-hand-side pat tern match. Because
this index involves only the stable word identity and part-of-speech tag values, it does not require
updating; thus it can be stored more compactly, and it is also not necessary to maintain back
pointers from corpus locations to the applicable rules. This kind of partial static index proved to
be a significant advantage in the portion of the program where candidate rules with relatively high
positive scores are being tested to determine their negative scores, since it avoids the necessity
of testing such rules against every location in the corpus.

89

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red.
Baseline 81.9% 78.2% 94.5%

50K 90.4% 47.2% 89.8% 53.1% 96.9% 44.4%
100K 91.8% 54.8% 91.3% 60.0% 97.2% 49.6%
200K 92.3% 57.4% 91.8% 62.4% 97.4% 53.4%

Table 3: BaseNP Chunk Results

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red.
Baseline 60.0% 47.8% 78.0%

50K 86.6% 66.6% 85.8% 72.8% 94.4% 74.4%
100K 88.2% 70.4% 87.4% 75.8% 95.0% 77.3%
200K 88.5% 71.1% 87.7% 76.5% 95.3% 78.5%

Table 4: Partitioning Chunk Results

5 .3 H e u r i s t i c D i s a b l i n g o f U n l i k e l y R u l e s

We also investigated a new heuristic to speed up the computation: After each pass, we disable all
rules whose positive score is significantly lower than the net score of the best rule for the current
pass. A disabled rule is then reenabled whenever enough other changes have been made to the
corpus that it seems possible that the score of that rule might have changed enough to bring it
back into contention for the top place. This is done by adding some fraction of the changes made
in each pass to the positive scores of the disabled rules, and reenabling rules whose adjusted
positive scores came within a threshold of the net score of the successful rule on some pass.

Note that this heuristic technique introduces some risk of missing the actual best rule in a
pass, due to its being incorrectly disabled at the time. However, empirical comparisons between
runs with and without rule disabling suggest that conservative use of this technique can produce
an order of magnitude speedup while imposing only a very slight cost in terms of suboptimality
of the resulting learned rule sequence.

6 R e s u l t s

The automatic derivation of training and testing data from the Treebank analyses allowed for
fully automatic scoring, though the scores are naturally subject to any remaining systematic
errors in the data derivation process as well as to bona fide parsing errors in the Treebank source.
Table 3 shows the results for the baseNP tests, and Table 4 shows the results for the partitioning
chunks task. Since training set size has a significant effect on the results, values are shown for
three different training set sizes. (The test set in all cases was 50K words. Training runs were
halted after the first 500 rules; rules learned after that point affect relatively few locations in the
training set and have only a very slight effect for good or ill on test set performance.)

The first line in each table gives the performance of the baseline system, which assigned a
baseNP or chunk tag to each word on the basis of the POS tag assigned in the.prepass. Perfor-
mance is stated in terms of recall (percentage of correct chunks found) and precision (percentage
of chunks found that are correct), where both ends of a chunk had to match exactly for it to
be counted. The raw percentage of correct chunk tags is also given for each run, and for each
performance measure, the relative error reduction compared to the baseline is listed. The par-

90

titioning chunks do appear to be somewhat harder to predict than baseNP chunks. The higher
error reduction for the former is partly due to the fact that the part-of-speech basehne for that
task is much lower.

6.1 Analysis of I n i t i a l R u l e s

To give a sense of the kinds of rules being learned, the first 10 rules from the 200K baseNP run
are shown in Table 5. It is worth glossing the rules, since one of the advantages of transformation-
based learning is exactly that the resulting model is easily interpretable. In the first of the baseNP
rules, adjectives (with part-of-speech tag J J) that are currently tagged I but that are followed
by words tagged 0 have their tags changed to 0. In Rule 2, determiners that are preceded by two
words both tagged I have their own tag changed to B, marking the beginning of a baseNP that
happens to directly follow another. (Since the tag B is only used when baseNPs abut, the basehne
system tags determiners as I.) Rule 3 takes words which immediately follow determiners tagged
I that in turn follow something tagged 0 and changes their tag to also be I. Rules 4-6 are similar
to Rule 2, marking the initial words of baseNPs that directly follow another baseNP. Rule 7
marks conjunctions (with part-of-speech tag CC) as I if they follow an I and precede a noun,
since such conjunctions are more likely to be embedded in a single baseNP than to separate two
baseNPs, and Rules 8 and 9 do the same. (The word "&" in rule 8 comes mostly from company
names in the Wall St. Journal source data.) Finally, Rule 10 picks up cases hke "including about
four million shares" where "about" is used as a quantifier rather than preposition.

Pass
1. I
2.
3.
4. I
5. I
6. I
7. 0
8. 0
9. 0

10. 0

Old Tag Context New Tag

Table 5:

T1 = 0, P0 = JJ
T_:= I, T_I= I, P o = D T
T-2 = 0, T_i = I, P-1 = DT
T-1 = I, P 0 = W D T
T-1 = I, P0 = PRP
T-1 = I, Wo = who
T-1 = I, P0 = CC, P I = NN
T i = I , W 0 = &
T-1 = I, P0 = CC, P1 = NNS
T-1 = 0, W0 = about

0

B

I

B

B

B

I

I

I

I

First Ten Basenp Chunk Rules

A similar list of the first ten rules for the chunk task can be seen in Table 6. To gloss a few
of these, in the first rule here, determiners (with part-of-speech tag DT), which usually begin N
chunks and thus are assigned the baseline tag BN, have their chunk tags changed to hl if they follow
a word whose tag is also BN. In Rule 2, sites currently tagged N but which fall at the beginning
of a sentence have their tags switched to BN. (The dummy tag Z and word ZZZ indicate that the
locations one to the left are beyond the sentence boundaries.) Rule 3 changes N to BN after a
comma (which is tagged P), and in Rule 4, locations tagged BN are switched to BV if the following
location is tagged V and has the part-of-speech tag VB.

91

Pass
1. BN

2. N

3. N

4. BN

5. N

6. N

7. BV

8. V

9. BV

10. BN

Old Tag Context New Tag
T - 1 = BN, P0 = D T
T-1 =Z , W-1 = ZZZ
T - 1 = P, P - 1 = ~,~

T1 =V, P1 = VB
T-1 = BV, P-1,-2,-3 = VBD
P-1 = VB
T-1 = V, P-1,-2,-3 = RB
T-1 = N, P - 1 , - 2 , - 3 = NN
T-1 = BV, P1,2,3 = VB
T-1 = BN, Po = PRP$

N

BN

BN

BV

BN

BN

V

BV

V

N

Table 6: First Ten Partitioning Chunk Rules

6 . 2 C o n t r i b u t i o n o f L e x i c a l T e m p l a t e s

The fact that this system includes lexical rule templates that refer to actual words sets it apart
from approaches that rely only on part-of-speech tags to predict chunk structure. To explore how
much difference in performance those lexical rule templates make, we repeated the above test runs
omitting templates that refer to specific words. The results for these runs, in Tables 7 and 8, sug-
gest that the lexical rules improve performance on the baseNP chunk task by about 1% (roughly
5% of the overall error reduction) and on the partitioning chunk task by about 5% (roughly
10% of the error reduction). Thus lexical rules appear to be making a limited contribution in
determining baseNP chunks, but a more significant one for the partitioning chunks.

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red.
Baseline 81.9% 78.2% 94.5%

50K 89.6% 42.7% 88.9% 49.2% 96.6% 38.8%
100K 90.6% 48.4% 89.9% 53.7% 96.9% 44.4%
200K 90.7% 48.7% 90.5% 56.3% 97.0% 46.0%

Table 7: BaseNP Chunk Results Without Lexical Templates

Training Recall Error Red. Precision Error Red. Corr. Tag Error Red.
Baseline 60.0% 47.8% 78.0%

50K 81.8% 54.5% 81.4% 64.4% 92.4% 65.4%
100K 82.9% 57.2% 83.0% 67.3% 92.9% 67.9%
200K i 83.6% 58.9% 83.5% 68.4% 93.9% 72.2%

Table 8: Partitioning Chunk Results Without Lexical Templates

6 .3 F r e q u e n t E r r o r C l a s s e s

A rough hand categorization of a sample of the errors from a baseNP run indicates that many
fall into classes that are understandably difficult for any process using only local word and part-
of-speech patterns to resolve. The most frequent single confusion involved words tagged VBG
and VBN, whose baseline prediction given their part-of-speech tag was 0, but which also occur

92

frequently inside baseNPs. The system did discover some rules that allowed it to fix certain classes
of VBG and VBN mistaggings, for example, rules that retagged VBNs as I when they preceded
an NN or NNS tagged I. However, many also remained unresolved, and many of those appear to
be cases that would require more than local word and part-of-speech patterns to resolve.

The second most common class of errors involved conjunctions, which, combined with the
former class, make up half of all the errors in the sample. The Treebank tags the words "and"
and frequently "," with the part-of-speech tag CC, which the baseline system again predicted
would fall most often outside of a baseNP 3. However, the Treebank parses do also frequently
classify conjunctions of Ns or NPs as a single baseNP, and again there appear to be insufficient
clues in the word and tag contexts for the current system to make the distinction. Frequently, in
fact, the actual choice of structure assigned by the Treebank annotators seemed largely dependent
on semantic indications unavailable to the transformational learner.

7 Future Directions

We are planning to explore several different paths that might increase the system's power to
distinguish the linguistic contexts in which particular changes would be useful. One such direction
is to expand the template set by adding templates that are sensitive to the chunk structure. For
example, instead of referring to the word two to the left, a rule pattern could refer to the first
word in the current chunk, or the last word of the previous chunk. Another direction would be
to enrich the vocabulary of chunk tags, so that they could be used during the learning process to
encode contextual features for use by later rules in the sequence.

We would also like to explore applying these same kinds of techniques to building larger
scale structures, in which larger units are assembled or predicate/argument structures derived by
combining chunks. One interesting direction here would be to explore the use of chunk structure
tags that encode a form of dependency grammar, where the tag "N+2" might mean that the
current word is to be taken as pa r to f the unit headed by the N two words to the right.

8 Conclusions

By representing text chunking as a kind of tagging problem, it becomes possible to easily apply
transformation-based learning. We have shown that this approach is able to automatically induce
a chunking model from supervised training that achieves recall and precision of 92% for baseNP
chunks and 88% for partitioning N and V chunks. Such chunking models provide a useful and
feasible next step in textual interpretation that goes beyond part-of-speech tagging, and that
serve as a foundation both for larger-scale grouping and for direct extraction of subunits hke
index terms. In addition, some variations in the transformation-based learning algorithm are
suggested by this application that may also be useful in other settings.

Acknowledgments

We would like to thank Eric Brill for making his system widely available, and Ted Briscoe and
David Yarowsky for helpful comments, including the suggestion to test the system's performance
without lexical rule templates.

aNote that this is one of the cases where Church's chunker allows separate NP fragments to count as chunks.

93

References

Abney, Steven. 1991. Parsing by chunks. In Berwick, Abney, and Tenny, editors, Principle-Based
Parsing. Kluwer Academic Publishers.

Bourigault, D. 1992. Surface grammatical analysis for the extraction of terminological noun
phrases. In Proceedings of the Fifteenth International Conference on Computational Linguis-
tics, pages 977-981.

Brill, Eric. 1993a. Automatic grammar induction and parsing free text: A transformation-based
approach. In Proceedings of the DARPA Speech and Natural Language Workshop, 1993, pages
237-242.

Brill, Eric. 1993b. A Corpus-Based Approach to Language Learning. Ph.D. thesis, University of
Pennsylvania.

Brill, Eric. 1993c. Rule based tagger, version 1.14. Available from ftp.cs.jhu.edu in the directory
/pub/bri l l /programs/.

Brill, Eric. 1994. Some advances in transformation-based part of speech tagging. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages 722-727. (cmp-
lg/9406010).

BriU, Eric and Philip Resnik. 1994. A rule-based approach to prepositional attachment dis-
ambiguation. In Proceedings of the Sixteenth International Conference on Computational
Linguistics. (cmp-lg/9410026).

Church, Kenneth. 1988. A stochastic parts program and noun phrase parser for unrestricted
text. In Second Conference on Applied Natural Language Processing. ACL.

Ejerhed, Eva I. 1988. Finding clauses in unrestricted text by finitary and stochastic methods.
In Second Conference on Applied Natural Language Processing, pages 219-227. ACL.

Gee, James Paul and Francois Grosjean. 1983. Performance structures: A psycholinguistic and
linguistic appraisal. Cognitive Psychology, 15:411-458.

Kupiec, Julian. 1993. An algorithm for finding noun phrase correspondences in bilingual corpora.
In Proceedings of the 31st Annual Meeting of the ACL, pages 17-22.

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: A revised corpus
design for extracting predicate argument structure. In Human Language Technology, ARPA
March 1994 Workshop. Morgan Kaumann.

Ramshaw, Lance A. and Mitchell P. Marcus. 1994. Exploring the statistical derivation of trans-
formational rule sequences for part-of-speech tagging. In Proceedings of the ACL Balancing
Act Workshop on Combining Symbolic and Statistical Approaches to Language, pages 86-95.
(cmp-lg/9406011).

Voutilainen, Atro. 1993. NPTool, a detector of English noun phrases. In Proceedings of the
Workshop on Very Large Corpora, pages 48-57. ACL, June. (cmp-lg/9502010).

94

