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Summary 

Acquiring linguistically plausible phrase-structure grammars from ordinary text has 
proven difficult for standard induction techniques, and researchers have turned to su- 
pervised training from bracketed corpora. We examine why previous approaches have 
failed to acquire desired grammars, concentrating our analysis on the inside-outside 
algorithm (Baker, 1979), and propose that  with a representation of phrase structure 
centered on head relations such supervision may not be necessary. 

1. I N T R O D U C T I O N  

Researchers investigating the acquisition of phrase-structure grammars from raw text have had 
only mixed success. In particular, unsupervised learning techniques, such as the inside-outside al- 
gorithm (Baker, 1979) for estimating the parameters of stochastic context-free grammars (SCFGs), 
tend to produce grammars that  structure text in ways contrary to our linguistic intuitions. One 
effective way around this problem is to use hand-structured text like the Penn Treebank (Marcus, 
1991) to train the learner: (Pereira and Schabes, 1992) demonstrate that  the inside-outside algo- 
rithm can learn grammars effectively given such constraint; from a bracketed corpus (Brill, 1993) 
successfully learns rules that iteratively transform a default phrase-structure into a better one for 
a particular sentence. 

The necessity of bracketed corpora for training is grating to our sensibilities, for several reasons. 
First, bracketed corpora are not easy to come by. Second, there is a sense that  in learning from 
them, little of interest is going on. In the case of the acquisition of stochastic context-free grammars, 
the parameters can be read off of a fully-bracketed corpus by simply counting. Finally, the inability 
of current models to learn (without supervision) the parameters we desire suggests that  our models 
are mismatched to the problem. 

This paper examines why some previous approaches have failed to acquire desired grammars 
without supervision, and proposes that  with a different conception of phrase-structure supervision 
might not be necessary. In particular, we examine some reasons why SCFGs are poor models to 
use for learning human language, especially when combined with the inside-outside algorithm. We 
argue that  head-driven grammatical formalisms like dependency grammars (Mel~uk, 1988) or link 
grammars (Sleator and Temperley, 1991) are better suited to the task. 
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2. L I N G U I S T I C  A N D  S T A T I S T I C A L  B A S I S  O F  P H R A S E  S T R U C T U R E  

Let us look at a particular example. In English, the word sequence "walking on ice" is generally 
assumed to have an internal structure similar to (A). 1 

VP VP PP NP 

(A) V PP (B) V NP (C) V PP (D) V NP 
A A A A 
P N P N P N P N 

VP PP NP NP 

(E) VP N (F) PP N (G) VP N (H) PP N 

V P V P V P V P 

Why (A) and not one of (B-H)? An introductory linguistics book might suggest the following 
answers: 

on ice can move and delete as one unit, whereas walking on can not. Thus, "it is on ice that 
I walked" and "it is walking that I did on ice" and "it is ice that I walked on" are sentences 
but  there in no equivalent form for relocating walking on. Similarly, "they walked and jumped 
on ice" is grammatical  but  "they walked on and jumped on ice" is awkward. Therefore, 
if movement and conjunction is of single constituents, phrase-structures (A-D) explain this 
evidence but  (E-H) do not. 

In languages like German where case is overtly manifested in affix and determiner choice, the 
noun ice clearly receives case from the preposition rather than the verb. It seems to make for 
a simpler theory of language if case is assigned through the government relation, which holds 
between the preposition and noun in (A-D) but  not in (E-H). 

The phrase walking on ice acts like a verb: it can conjoin with a verb ( "John walked on ice 
and sang"), and takes verbal modifiers ( "John walked on ice slowly"). So it makes little sense 
to call it a prepositional phrase or noun phrase, as in (C) or (D). on ice does not behave as 
a noun, so (A) is a bet ter  description than (B). 

These deductive steps leading to (A) require some assumptions about  language: that  constituent 
structure and category labels introduce specific constraints on sentence buildi~ng operations, and 
that  the range of hypothetical grammars is small (our enumeration A-H was over grammars of 
binary rules where the category of a phrase is tied to the category of one of its constituents, its 
head). 

aWe will be defiberately vague about what such dominance and precedence relations represent; obviously different 
researchers have very different conceptions about the relevence and implications of heirarchical phrase-structure. The 
specific use of the representations is somewhat irrelevent to our immediate discussion, though various interpretaions 
will be discussed throughout the paper. 
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Statistical phrase-structure models of language 2, such as SCFGs, are motivated by different 
assumptions about language, principally that a phrase grouping several words is a constraint on 
co-occurrence that makes it possible to better predict one of those words given another. In terms of 
language acquisition and parsing, if we assume that a sequence of words has been generated from 
a phrase-structure grammar, it suggests that  we can recover internal structure by grouping sub- 
sequences of words with high mutual  information. This is the approach taken by (Magerman and 
Marcus, 1990) for parsing sentences, who use mutual  information rather than a grammar to recon- 
struct phrase-structure. The hope is that  by searching for a phrase-structure or phrase-structure 
grammar that  maximizes the likelihood of an observed sequence, we will find the generating struc- 
ture or grammar itself. 

Unfortunately, there is anecdotal and quantitative evidence that  simple techniques for esti- 
mating phrase-structure grammars by minimizing entropy do not lead to the desired grammars 
(grammars that agree with structure (A), for instance). (Pereira and Schabes, 1992) explore this 
topic, demonstrating that  a stochastic context free grammar trained on part-of-speech sequences 
from English text can have an entropy as low or lower than another but bracket the text much 
more poorly (tested on hand-annotations). And (Magerman and Marcus, 1990) provide evidence 
that  grouping sub-sequences of events with high mutual  information is not always a good heuristic; 
they must include in their parsing algorithm a list of event sequences (such as noun-preposition) 
that  should not be grouped together in a single phrase, in order to prevent their method from 
mis-bracketing. To understand why, we can look at an example from a slightly different domain. 

(Ofivier, 1968) seeks to acquire a lexicon from unsegmented (spaceless) character sequences by 
treating each word as a stochastic context free rule mapping a common nonterminal (call it W) to a 
sequence of letters; a sentence is a sequence of any number of words and the probabifity of a sentence 
is the product over each word of the probabifity of W expanding to that  word. Learning a lexicon 
consists of finding a grammar that reduces the entropy of a training character sequence. Olivier's 
learning algorithm soon creates rules such as W ~ THE and W ~ TOBE. But it also hypothesizes 
words like edby. edby is a common English character sequence that  occurs in passive constructions 
fike "She was passed by the runner". Here -ed and by occur together not because they are part 
of a common word, but because Engfish syntax and semantics places these two morphemes side- 
by-side. At a syntactic level, this is exactly why the algorithm of (Magerman and Marcus, 1990) 
has problems: English places prepositions after nouns not because they are in the same phrase, 
but because prepositional phrases often adjoin to noun phrases. Any greedy algorithm (such as 
(Magerman and Marcus, 1990) and the context-free grammar induction method of (Stolcke, 1994)) 
that  builds phrases by grouping events with high mutual  information will consequently fail to derive 
linguistically-plausible phrase structure in many situations. 

3. I N C O R P O R A T I N G  H E A D E D N E S S  I N T O  L A N G U A G E  M O D E L S  

The conclusion of the above section might lead us to is that  basing phrase-structure grammar 
induction on minimization of entropy is a poor idea. However, in this paper we will not discuss 
whether statistical induction is the proper way to view language acquisition: our current goal is 
only to better understand why current statistical methods produce the "wrong" answer and to 

2While this paper concentrates on the acquisition of syntax, similar or identical statistical models to those discussed 
here have been used to acquiring words and morphemes from sequences of characters (Olivier, 1968; Wolff, 1982; Brent, 
1993; Cartwright and Brent, 1994) and syllables from phonemes (Ellison, 1992), among other language appfications. 
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explore ways of fixing them. 

Let us look again at (A), reproduced below, and center discussion on an extended stochastic 
context-free grammar model in which a binary context-free rule Z ~ A B with terminal parts- 
of-speech on the right hand side first generates a word a chosen from a distribution pA(a), then 
generates a word b from a distribution p~(b). 3 If we call these two random variables A and B, then 
the entropy of the sequence AB is H(A) ÷ H(B[A) = H(A) + H(B) - I(A, B) (where H(X) is 
the entropy of a random variable X and I(X, Y) is the mutual information between two random 
variables X and Y). The point here is that  using such a context free rule to model a sequence of two 
words reduces the entropy of the language from a model that treats the two words as independent, 
by precisely the mutual  information between the two words. 

VP 

(A) V PP 

P N 

In English, verbs and prepositions in configuration (A) are closely coupled semantically, prob- 
ably more closely than prepositions and nouns, and we would expect that  the mutual  information 
between the verb and preposition would be greater than between the preposition and noun, and 
greater still than between the verb and the noun. 

I(V, P) > I(P, N) > I(V, N) 

Under our hypothesized model, structure (A) has entropy H(V) + H(P) + H(NIP) = H(V) ÷ 
H(P) ÷ H(N) - I(P, N), which is higher than the entropy of structures (E-H), H(V) + H(P) + 
H(N) - I(V, P), and we wouldn't expect a learning mechanism based on such a model to settle on 
(A). 

However, this simple class of models only uses phrases to capture relations between adjacent 
words. In (A), it completely ignores the relation between the verb and the prepositional phrase, 
save to predict that  a prepositional phrase (any prepositional phrase) will follow the verb. We 
modify our language model, assuming that nonterminals exhibit the distributional properties of 
their heads. We will write a phrase Z that  is headed by a word z as (Z, z). Each grammar rule will 
look like either (Z', z) ~ (Z, z)(Y, y) or (Z', z) ~ (Y, y)(Z, z) (abbreviated Z' ~ Z Y and Z' ~ Y 
Z) and the probability model is 

Z Y) = 

= ( 1 )  

3Our notation here is that  pA(a) is the probabifity of word a being generated by a terminal part-of-speech A, and 
p~ (b) is the probability of the terminal part-of-speech B generating the word b given that  previous word generated 
in the same phrase is a. 
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p((Y, y>(Z,z>l<Z' , z'>,Z' ~ Y Z) = 

= 

= ( 2 )  

Of course, this class of models is strongly equivalent to ordinary context free grammars. We could 
substitute, for every rule Z' :::v Z Y, a large number of word-specific rules 

(Z', z~) ~ (Z, zi)(Y, yj) 

with probabilities p(Z' ~ Z Y) z, • p y  ( y j ) .  

Using our new formalism, the head properties of (A) look like 

(VP, v) 

(V,v) (ep,p) 

(P,p) (N,n) 

and the entropy is 

H(V) + H(P]V) + H(N]P) = H(V) + H(P) + H(N)  - I(V, P) - [(P, N). 

The grammar derived from (A) is optimal under this model of language, though (C), (F), and 
(H) are equally good. They could be distinguished from (A) in longer sentences because they pass 
different head information out of the phrase. In fact, the grammar model derived from (A) is as 
good as any possible model that  does not condition N on V. Under this class of models there is no 
benefit to grouping two words with high mutual  information together in the same minimal phrase; 
it is sufficient for both to be the heads of phrases that  are adjacent at some level. 

There is of course no reason why the best head-driven statistical model of a given language 
must coincide with a grammar derived by a linguist. The above class of models makes no mention 
of deletion or movement of phrases, and only information about the head of a phrase is being 
passed beyond that  phrase's borders. The government-binding framework usually supposes that  an 
inflection phrase is formed of inflection and the verb phrase. But the verb is likely to have a higher 
mutual  information with the subject than inflection does. So it seems unlikely that  this structure 
would be learned using our scheme. The effectiveness of the class of models can only be verified by 
empirical tests. 

4. S O M E  E X P E R I M E N T S  

We have built a stochastic, feature-based Earley parser (de Marcken, 1995) that  can be trained 
using the inside-outside algorithm. Here we describe some tests that  explore the interaction of the 
head-driven tanguage models described above with this parser and training method. 
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For all the tests described here, we learn a grammar  by starting with an exhaustive set of 
stochastic context-free rules of a certain form, and estimate probabilities for these rules from a 
test corpus. This is the same general procedure as used by (Lari and Young, 1990; Briscoe and 
Waegner, 1992; Pereira and Schabes, 1992) and others. For parts-of-speech Y and Z, the rules we 
include in our base grammar  are 

S:=~ZP ZP:=~ZPYP ZP:=~YP ZP 
Z P ~  ZYP ZP ~ Y P Z  Z P ~ Z  

where S is the root nonterminal. As is ususal with stochastic context-free grammars,  every rule 
has an associated probability, and the probabilities of all the rules that  expand a single nonteminal 
must sum to one. Furthermore, each word and phrase has an associated head word (represented as 
a feature value that  is propagated from the Z or ZP on the right hand side of the above rules to 
the left hand side). The parser is given the part  of speech of each word. 

For binary rules, as per equations (1) and (2), the distribution of the non-head word is condi- 
tioned on the head (a bigram). Initially, all word bigrams are initialized to uniform distributions, 
and context-free rule probabilities are initialized to a small random perturbation of a uniform 
distribution. 

4 .1.  A V e r y  S i m p l e  S e n t e n c e  

We created a test corpus of 1000 sentences, each 3 words long with a constant part-of-speech 
pat tern ABC. Using 8 equally probable words per part-of-speech, we chose a word distribution over 
the sentences with the following characteristics: 

I(A,B) = 1 bit. I(B,C) = 0.188 bits. I(A,C) = 0 bits. 

In other words, given knowledge of the first word in the sentence, predicting the second word is 
as difficult as guessing between four equally-likely words, and knowing the second word makes 
predicting the third as difficult as guessing between seven words. Knowing the first gives no 
information about the third. This is qualitatively similar to the distribution we assumed for verbs, 
nouns, and prepositions in configuration (A), and has entropy rate 3 + ( 3 - 1 ) + ( 3 - - . 1 8 8 )  : 2.604 bits 

3 
per word. Across 20 runs, the training algorithm converged to three different grammars:  4 

Grammar: 

Count: 
Cross-Entropy Rate: 

S S S 
I I I 

CP CP AP 

AP C BP C A BP 

A BP AP B B CP 
I J i 

B A C 
12 2 6 

2.648 bits/word 2.570 bits/word 2.570 bits/word 

4Le., after the cross-entropy had ceased to decrease on a given run, the parser set t led on one of these str t lctures 
as the Viterbi  parse of each sentences in the corpus. The cross-entropy rate  of the two best  g rammars  is lower than 
the source entropy rate  because the corpus is finite and randomly generated,  and has been be overfitted. 

19  



One fact is immediately striking: even with such simple sentences and rule sets, more often than 
not the inside-outside algorithm converges to a suboptimal grammar.  To understand why, let us 
ignore recursive rules (ZP :=*- ZP YP) for the moment. Then there are four possible parses of ABC 
(cross-entropy rate with source given below- lower is bet ter  model): 

S S S S 
I I r I 

AP AP CP CP 

(I) A BP (J) A CP (K) AP C (L) BP C 

B CP BP C A BP AP B 
I I I I 

C B B A 
= 2.604 H = 2.937 H = 2.667 H = 2.604 

During the first pass of the inside-outside algorithm, assuming near-uniform initial rule prob- 
abilities, each of these parses will have equal posterior probabilities. They are equally probable 
because they use the same number of expansions 5 and because word bigrams are uniform at the 
start  of the parsing process. Thus, the est imated probability of a rule after the first pass is directly 
proportional to how many of these parse trees the rule features in. The rules that  occur more than 
one time are: 

AP ~ A BP (parses I,K) 
CP ~ BP C (parses J,L) 
BP ~ B (parses J,K) 

Therefore, on the second iteration, these three rules will have higher probabilities than the others 
and will cause parses J and K to be favored over I and L (with K favored over J because I(A, B) + 
I(A, C) > I(B, C) +I(A, C)). It is to be expected then, that  the inside-outside algorithm favors the 
suboptimal parse K: at its start  the inside-outside algorithm is guided by tree counting arguments,  
not mutual  information between words. This suggests that  the inside-outside algorithm is likely 
to be highly sensitive to the form of grammar and how many different analyses it permits of a 
sentence. 

Why, later, does the algorithm not move towards a global opt imum? The answer is that  the 
inside-outside algorithm is supremely unsuited to learning with this representation. To understand 
this, notice that  to move from the initially favored parse (K) to one of the optimal ones (I and L), 
three nonterminals must have their most probable rules switched: 

(K) (L) 
A P  : : , - A B P  , A P  ~ A  

B P  ~ B  ~ B P : : v - A P B  

C P ~ A P C  - - - ,  C P ~ B P C  

SThis is why we can safely ignore recursive rules in this discussion. Any parse that involves one will have a bigger 
tree and be significantly less probable. 
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To simplify the present analysis, let us assume the probability of S ~ CP is held constant at 1, 
and that  the rules not listed above have probability 0. In this case, we can write the probabilities 
of the left three rule as pA, pS and pC and the probabihties of the right rhree rules as 1 -pA ,  1 --pB 
and 1 - pC. Now, for a given sentence abc there are only two parses with non-zero probabilities, K 
and L. The probability of abc under parse K is pApBpCp(c)p(alc)p(bla), and the probabihty under 
parse L is (1 - pA)(1 -- pS)(1 -- pC)p(c)p(blc)p(alb). Thus, the posterior probabihty of parse K is 6 

p(Klabc) 
pApB pC p( c )p( a[c )p( b[a ) 

pApSpCp(c)p(alc)p(b]a) + (1 -- pA)(1 -- pS)(1 -- pC)p(c)p(b[c)p(a[b) 
1 

1 + (1--PA)(1--PS)(1--pC)P(bIc)p(atb) 
pApBpCp( alc)p( bla ) 

1 
(1--pA)(1-PS)(1-pC)p(clb ) 

1 + pApBpCp(cla) 

Since the inside-outside algorithm reestimates pA, pB and pC directly from the sums of the posterior 
probabilities of K and L over the corpus, the probability update  rule from one iteration to the next 
is 

pA,pS,pC~ 
1 + (1--pA)(1--pB)(1--pC) 

pA pB p C OL 

where a is the mean value of p(clb)/p(cla), ~ in the above test. Figure 4.1 graphically depicts 
the evolution of this dynamical system. What  is striking in this figure is that  the inside-outside 
algorithm is so a t t racted to grammars whose terminals concentrate probability on small numbers of 
rules that  it is incapable of performing real search. Instead, it zeros in on the nearest such grammar,  
only biased shghtly by its relative merits. We now have an explanation for why the inside-outside 
algorithm converges to the suboptimal parse K so often: the first ignorant iteration of the algorithm 
biases the parameters  towards K, and subsequently there is an overwhelming tendency to move to 
the nearest deterministic grammar.  This is a strong indication that  the algorithm is a poor choice 
for estimating grammars that  have competing rule hypotheses. 

4 .2 .  M u l t i p l e  E x p a n s i o n s  o f  a N o n t e r m i n a l  

For this test, the sentences were four words long (ABCD),  and we chose a word distribution 
with the following characteristics: 

I (A ,B)=  l b i t .  I (A ,D)= l b i t .  I (C,D)= O bits. 
I (A ,C)= l b i t .  I (B ,C)=  0bi t s .  I (B ,D)= 0bi t s .  

It might seem that  a minimal-entropy grammar for this corpus would be 

Sin the following derivation, understand that for word bigrams p(a]b) p(bla ) because p ( a )  = p ( b )  = 1 
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I i 

0 . 9 ~ ~  . . . . . . . . .  

0 . 8 _ I  ~ ~ ~ ~ ~ ~ ~ . . . . . . . . . . . .  ~ ~  . . . . . . . . . . . .  

0 1 7 ~ ~  . . . . .  . , , ' T t  ~ ~ ~ ~ ~ ~ ~ ~ , ' ' ' 

0 . 6  ~ ~ ~ ~ ~ ~ ~ * . . . . .  

0 . 3  ~ ~ ~ ~ • ~ ~ ~ - -  ~ ~ ~ \ \ 

o.2 

0.1 ~ \ 

i i i i 

o., ols o) 
p(AP ->  A BP) 

Figure 4.1: The dynamical properties of the inside-outside algorithm. The x-axis is pA and the y-axis is pB. 
= 2 and The vectors represent the motion of the parameters from one iteration to the next when a = p(cl~) 

pC = .5. Notice that the upper right corner (grammar K) and the lower left (grammar L) are stationary 
points (local maxima), and that the region of attraction for the global optimum L is bigger than for K, but 
that there is still a very substantial set of starting points from which the algorithm will converge to the 
suboptimal grammar, o~ = 2 is plotted instead of o~ = -~ because this better depicts the asymmetry mutual 
information between words introduces; with c~ = { the two regions of attraction would be of almost equal 
area. 

S ~  DP D P ~ A P D  AP ~ A P C P  
AP ~ A B P  CP ~ C  BP ~ B  

since this grammar  makes the head A available to predict B, C, and D. Without  multiple expansions 
rules for AP, it is impossible to get this. But  the gain of one bit in word prediction is offset by 
a loss of at least two bits from uncertainty in the expansion of AP. Even if p (AP ~ A BP) = 
p(AP ~ AP CP) = 1/2, the probability of the structure ABCD under the above grammar  is one- 
quarter  that  assigned by a grammar with no expansion ambiguity. So, the grammar  

S = ~ D P  D P ~ C P D  CP: :v -APC 
A P ~ A B P  B P ~  B 

assigns higher probabilities to the corpus, even though it fails to model the dependency between 
A and D. This is a general problem with SCFGs: there is no way to optimally model multiple 
ordered adjunction without increasing the number of nonterminals. Not surprisingly, the learning 
algorithm never converges to the recursive grammar during test runs on this corpus. 

What  broader implication does this deficiency of SCFGs have for context-free grammar  based 
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language acquisition? It suggests if we were to estimate a grammar  from English text,  that  the 
sequence Det Adj Noun PP is far more likely to get the interpretation 

Det-P Noun-P 

Det Adj-P Det Noun-P 
than 

Adj Noun-P Adj Noun-P 

Noun PP Noun PP 

and therefore that ,  for many subject and object noun phrases, the noun will never enter into a 
bigram relationship with the verb. Obviously sufficient mutual  information between nouns and 
verbs, adjectives, and determiners would force the global optimum to include multiple expansions 
of the Noun-P category, but it seems likely (given the characteristics of the inside-outside algorithm) 
that  before such mutual  information could be inferred from text, the inside-outside algorithm would 
enter a local opt imum that  does not pass the noun feature out. 

4 .3.  T e s t i n g  o n  t h e  P e n n  T r e e b a n k  

To test whether head-driven language models do indeed converge to linguistically-motivated 
grammars  better  than SCFGs, we replicated the experiment of (Pereira and Schabes, 1992) on the 
ATIS section of the Penn Treebank. The 48 parts-of-speech in the Treebank were collapsed to 25, 
resulting in 2550 grammar  rules. 

Word head features were created by assigning numbers a common feature; other words found in 
any case variation in the CELEX English-language database were given a feature particular to their 
lemma (thus mapping c a r  and c a r s  to the same feature); and all other (case-sensitve) words received 
their own unique feature. Treebank part-of-speech specifications were not used to constrain parses. 

Bigrams were estimated using a backoff to a unigram (see (de Marcken, 1995)), and unigrams 
backing off to a uniform distribution over all the words in the ATIS corpus. The backoff parameter  
was not optimized. Sentences 25 words or longer were skipped. 

We ran four experiments, training a grammar  with and without bracketing and with and without 
use of features. Without  features, we are essentially replicating the two experiments run by (Pereira 
and Schabes, 1992), except that  they use a different set of initial rules (all 4095 CNF grammar  rules 
over 15 nonterminals and the 48 Treebank terminal categories). Every tenth sentence of the 1129 
sentences in the ATIS portion of the Treebank was set aside for testing. Training was over 1060 
sentences (1017 of which 57 were skipped because of length), 5895 words, testing over 98 sentences 
(112, 14 skipped), 911 words. 

After training, all but the 500 most probable rules were removed from the grammar,  and 
probabilities renormalized. The statistics for these smaller grammars  are given below. 
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Training Grammar 
Bracketed No Features 
Bracketed No Features 
Unbracketed No Features 
Unbracketed No Features 
Bracketed Features 
Bracketed Features 
Unbracketed Featuies 
Unbracketed Features 

Corpus Perplexity Bracketing 
Train 55.68 90.1% 
Test 95.15 88.5% 
Train 56.34 72.4% 
Test 92.91 72.7% 
Train 19.95 92.0% 
Test 68.88 90.7% 
Train 19.31 73.3% 
Test 72.12 74.8% 

• There are several notable qualities to these numbers. The first is that, in contrast to the results 
of (Pereira and Schabes, 1992), unbracketed training does improve bracketing performance (from 
a baseline of about 50% to 72.7% without features and 74.8% with features). Unfortunately, this 
performance is achieved by settling on an uninteresting right-branching rule set (save for sentence- 
final punctuation). Note that our figures for bracketed training match very closely to the 90.36% 
bracketing accuracy reported in their paper. 

Of greater interest is that although use of head features improves bracketing performance, it 
does so only by an insignificant amount (though obviously it greatly reduces perplexity). There are 
many possible explanations for this result, but the two we prefer are that either the inside-outside 
algorithm, as might be expected given our arguments, failed to find a grammar that propagated 
head features optimally, or that there was insufficient mutual information in the small corpus for 
our enhancement to traditional SCFGs to have much impact. 

We have replicated the above experiments on the first 2000 sentences of the Wall Street Journal 
section of the Treebank, which has a substantially different character than the ATIS text. However, 
the vocabulary is so much larger that is is not possible to gather useful statistics over such a small 
sample. The reason we have not tested extensively on much larger corpora is that, using head 
features but no bracketing constraint, statistics must be recorded for every word pair in every 
sentence. The number of such statistics grows quadratically with sentence length, and is prohibitive 
over large corpora using our current techniques. More recent experiments, however, indicate that 
expanding the corpus size by an order of magnitude has little affect on our results. 

5. C O N C L U S I O N S  

We have argued that there is little reason to believe SCFGs of the sort commonly used for 
grammar induction will ever converge to linguistically plausible grammars, and we have suggested 
a modification (namely, incorporating mutual information between phrase heads) that should help 
fix the problem. We have also argued that the standard context-free grammar estimation proce- 
dure, the inside-outside algorithm, is essentially incapable of finding an optimal grammar without 
bracketing help. 

We now suggest that a representation that explicitly represents relations between phrase heads, 
such as link grammars (Sleator and Temperley, 1991), is far more amenable to language acquisition 
problems. Let us look one final time at the sequence V P N. There are only three words here, 
and therefore three heads. Assuming a head-driven bigram model as before, there are only three 
possibile anlayses of this sequence, which we write by listing the pairs of words that enter into 
predictive relationships: 
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Head Relations 
V-P, V-N 
V-P, P-N 
V-N, P-N 

Equivalent Phrase Structures 
E,G 
A,C,F,H 
B,D 

To map back into traditional phrase structure grammars,  linking two heads X-Y is the same as 
specifying that  there is some phrase XP headed by X which is a sibling to some phrase YP headed 
by Y. Of course, using this representation all of the optimal phrase structure grammars  (A,C,F 
and H) are identical. Thus we have a representation which has factored out many details of phrase 
structure that  are unimportant  as far as minimizing entropy is concerned. 

Simplifying the search space reaps additional benefits. A greedy approach to g rammar  acqui- 
sition that  iteratively hypothesizes relations between the words with highest mutual  information 
will first link V to P, then P to N, producing exactly the desired result for this example. And the 
distance in parse or g rammar  space between competing proposals is at most one relation (switching 
V-P to V-N, for instance), whereas three different rule probabilities may need to be changed in the 
SCFG representation. This suggests that  learning algorithms based on this representation are far 
less likely to encounter local maximums. Finally, since what would have been multiple parse hy- 
potheses are now one, a Viterbi learning scheme is more likely to estimate accurate counts. This is 
important ,  given the computational complexity of estimating long-distance word-pair probabilities 
from unbracketed corpora. 

We have implemented a statistical parser and training mechanism based on the above notions, 
but results are too preliminary to include here. Stochastic l ink-grammar based models have been 
discussed (Lafferty et al., 1992) but the only test results we have seen (Della-Pietra et ai., 1994) 
assume a very restricted subset of the model and do not explore the "phrase structures" that  result 
from training on English text. 
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