
Unsupervised Learning of Disambiguation Rules for Part of
Speech Tagging

Eric BrilP
Depar tment of Computer Science

Johns Hopkins University
brill@cs, j hu. edu

Abstract

In this paper we describe an unsupervised learning algorithm for automatically
training a rule-based part of speech tagger without using a manually tagged corpus. We
compare this algorithm to the Baum-Welch algorithm, used for unsupervised training of
stochastic taggers. Next, we show a method for combining unsupervised and supervised
rule-based training algorithms to create a highly accurate tagger using only a small
amount of manually tagged text.

I n t r o d u c t i o n

There has recently been a great deal of work exploring methods for automatically training
part of speech taggers, as an alternative to laboriously hand-crafting rules for tagging, as
was done in the past [Klein and Simmons, 1963; Harris, 1962]. Almost all of the work in
the area of automatically trained taggers has explored Markov-model based part of speech
tagging [Jelinek, 1985; Church, 1988; Derose, 1988; DeMarcken, 1990; Cutting et al., 1992;
Kupiec, 1992; Charniak et al., 1993; Weischedel et al., 1993; Schutze and Singer, 1994; Lin
et al., 1994; Elworthy, 1994; Merialdo, 1995]. 2 For a Markov-model based tagger, training
consists of learning both lexical probabilities (P (w o r d l t a g)) and contextual probabilities
(P(tag i l tag i_ l . . . tag i -n)) . Once trained, a sentence can be tagged by searching for the tag
sequence that maximizes the product of lexical and contextual probabilities.

The most accurate stochastic taggers use estimates of lexical and contextual proba-
bilities extracted from large manually annotated corpora (eg. [Weischedel et al., 1993;
Charniak et al., 1993]). It is possible to use unsupervised learning to train stochastic
taggers without the need for a manually annotated corpus by using the Baum-Welch al-
gorithm [Baum, 1972; Jelinek, 1985; Cutting et al., 1992; Kupiec, 1992; Elworthy, 1994;
Merialdo, 1995]. This algorithm works by iteratively adjusting the lexical and contextual
probabilities to increase the overall probability of the training corpus. If no prior knowledge
is available, probabilities are initially either assigned randomly or evenly distributed. Al-
though less accurate than the taggers built using manually annotated corpora, the fact that
they can be trained using only a dictionary listing the allowable parts of speech for each
word and not needing a manually tagged corpus is a huge advantage in many situations. Al-
though a number of manually tagged corpora are available (eg. [Francis and Kucera, 1982;
Marcus et al., 1993]), training on a corpus of one type and then applying the tagger to a
corpus of a different type usually results in a tagger with low accuracy [Weischedel et al.,
1993]. Therefore, if tagged text is needed in training, this would require manually tagging

1This work was funded in part by NSF grant IRI-9502312.
2Some other approaches to tagging are described in [Hindle, 1989; Black et al., 1992].

text each time the tagger is to be apphed to a new language, and even when being applied
to a new type of text.

In [Brill, 1992; Brill, 1994], a rule-based part of speech tagger is described which achieves
highly competitive performance compared to stochastic taggers, and captures the learned
knowledge in a set of simple deterministic rules instead of a large table of statistics. In
addition, the learned rules can be converted into a deterministic finite state transducer.
Tagging with this finite state transducer requires n steps to tag a sequence of length n,
independent of the number of rules, and results in a part of speech tagger ten times faster
than the fastest stochastic tagger [Roche and Schabes, 1995]. One weakness of this rule-
based tagger is that no unsupervised training algorithm has been presented for learning
rules automatically without a manually annotated corpus. In this paper we present such an
algorithm. We describe an algorithm for both unsupervised and weakly supervised training
of a rule-based part of speech tagger, and compare the performance of this algorithm to
that of the Baum-Welch algorithm.

Transformation-Based Error-Driven Learning

The rule-based tagger is based on a learning algorithm called transformation-based error-
driven learning. Transformation-based error-driven learning has been applied to a number
of natural language problems, including part of speech tagging, prepositional phrase at-
tachment disambiguation, speech generation and syntactic parsing [Brill, 1992; Brill, 1994;
Ramshaw and Marcus, 1994; Roche and Schabes, 1995; Brill and Resnik, 1994; Huang et
al., 1994; Brill, 1993a; Brill, 1993b]. Figure 1 illustrates the learning process. First, unan-
notated text is passed through an initial-state annotator. The initial-state annotator can
range in complexity from assigning random structure to assigning the output of a sophis-
ticated manually created annotator. Once text has been passed through the initial-state
annotator, it is then compared to the truth as specified in a manually annotated corpus, and
transformations are learned that can be applied to the output of the initial state annotator
to make it better resemble the truth.

In all of the applications explored to date, the following greedy search is applied: at each
iteration of learning, the transformation is found whose application results in the highest
score; that transformation is then added to the ordered transformation list and the training
corpus is updated by applying the learned transformation. To define a specific application
of transformation-based learning, one must specify the following:

1. The initial state annotator.

2. The space of transformations the learner is allowed to examine.

3. The scoring function for comparing the corpus to the truth and choosing a transfor-
mation.

Once an ordered list of transformations is learned, new text can be annotated by first
applying the initial state annotator to it and then applying each of the learned transforma-
tions, in order.

2

UNANNOTATED

TEXT

STATE

NER RULES

Figure 1: Transformation-Based Error-Driven Learning.

T r a n s f o r m a t i o n - B a s e d P a r t o f S p e e c h T a g g i n g

In transformation-based part of speech tagging, 3 all words are initially tagged with their
most likely tag, as indicated in the training corpus. Below are some of the transformation
templates used by the learner. 4

Change tag a to tag b when:

1. The preceding (following) word is tagged z.

2. The preceding (following) word is w.

3. The word two before (after) is w.

4. One of the two preceding (following) words is tagged z.

5. The current word is w and the preceding (following) word is x.

6. The current word is w and the preceding (following) word is tagged z.

The evaluation measure is simply tagging accuracy. In each learning iteration, the
system learns that transformation whose application results in the greatest reduction of
error. 5 Because the learning algorithm is data-driven, it only needs to consider a small

3For a more detailed description of supervised transformation-based part of speech tagging, see [Brill,
1994].

4In [Brill, 1994], a total of 21 templates are used.
5Note an important difference between Markov-mode] based taggers and the transformation-based tagger:

the former attempts to maximize the probability of a string, whereas the latter attempts to minimize the
number of errors.

3

percentage of all possible transformations when searching for the best one. An example of
a learned transformation is:

Change the tag of a word from VERB to NOUN if the previous word is a DETER-
MINER.

If the word race occurs more frequently as a verb than as a noun in the training corpus,
the initial state annotator will mistag this word as a verb in the sentence: The race was

very exc i t ing . The above transformation will correct this tagging error.
It was shown in [Brill, 1994] that the transformation-based tagger achieves a high rate

of tagging accuracy. The transformation-based tagger captures its learned information in
a set of simple rules, compared to the many thousands of opaque probabilities learned by
Markov-model based taggers. 6 Supervised training is feasible when one has access to a
large manually tagged training corpus from the same domain as that to which the trained
tagger will be applied. We next explore unsupervised and weakly supervised training as a
practical alternative when the necessary resources are not available for supervised training.

U n s u p e r v i s e d L e a r n i n g o f T r a n s f o r m a t i o n s

In supervised training, the corpus is used for scoring the outcome of applying transfor-
mations, in order to find the best transformation in each iteration of learning. In order
to derive an unsupervised version of the learner, an objective function must be found for
training that does not need a manually tagged corpus.

We begin our exploration providing the training algorithm with a minimal amount of
initial knowledge, namely knowing the allowable tags for each word, and nothing else. 7
The relative likelihoods of tags for words is not known, nor is any information about which
tags are likely to appear in which contexts. This would correspond to the knowledge that
could be extracted from an on-line dictionary or through morphological and distributional
analysis.

The unsupervised rule learning algorithm is based on the following simple idea. Given
the sentence:

The can will be crushed.

with no information beyond the dictionary entry for the word can, the best we can do
is randomly guess between the possible tags for can in this context. However, using an
unannotated corpus and a dictionary, it could be discovered that of the words that appear
after T h e in the corpus that have only one possible tag listed in the dictionary, nouns are
much more common than verbs or modals. From this the following rule could be learned:

Change the tag of a word from (m o d a l O R n o u n O R ve rb) to n o u n if the previous
word is The.

SThe transformation-based tagger is available through anonymous ftp to ftp.cs.jhu.edu in
/pub/brill /Programs.

Tin this paper we ignore the problem of unknown words: words appearing in the test set which did n o t

appear in the training set. We plan to explore ways of processing unknown words in future work, either by
initially assigning them all open-class tags, or devising an unsupervised version of the rule-based unknown.
word tagger described in [Brill, 1994].

4

To fully define the learner, we must specify the three components of the learner: the
initial s tate annotator , the set of transformation templates, and the scoring criterion.

In i t i a l S t a t e A n n o t a t o r The unsupervised learner begins with an unannotated text
corpus, and a dictionary listing words and the allowable part of speech tags for each word.
The tags are not listed in any particular order. The initial s tate annotator tags each word in
the corpus with a list of all allowable tags. Below is an example of the initial-state tagging
of a sentence from the Penn Treebank [Marcus et al., 1993], where an underscore is to be
read as or . 8

Rival / JJ_NNP gangs/NNS have/VB_VBP turned/VBD_VBN cities/NNS into/IN combat /NN_VB
zones/NNS ./.

Transformation Templates The learner currently has four transformation templates.
They are:

Change the tag of a word from X to Y if:

1. The previous tag is T.

2. The previous word is W.

3. The next tag is T.

4. The next word is W.

Transformations are used differently in the unsupervised learner than in the supervised
learner. Here, a transformation will reduce the uncertainty as to the correct tag of a word in
a particular context, instead of changing one tag to another. So all learned transformations
will have the form:

Change the tag of a word from X to Y in context C

where X is a set of two or more part of speech tags, and Y is a single part of speech tag,
such that Y E X. Below we list some transformations that were actually learned by the

system.

Change the tag:

From NN_VB_VBP to VBP if the previous tag is NNS
From NN_VB to VB if the previous tag is MD
From JJ_NNP to JJ if the following tag is NNS

8JJ= Adjective, MD = Modal, NNP = Singular Proper Noun, NN = Singular or Mass Noun, POS =
Possessive, VB = Verb, Base Form, VBD = Verb, Past Tense, VBN = Verb, Past Part., VBP = Verb,
Non-3rd Person Sing. Present.

5

Scoring Cr i t e r ion When using supervised transformation-based learning to train a part
of speech tagger, the scoring function is just the tagging accuracy that results from ap-
plying a transformation. With unsupervised learning, the learner does not have a gold
standard training corpus with which accuracy can be measured. Instead, we can try to use
information from the distribution of unambiguous words to find reliable disambiguating
contexts.

In each learning iteration, the score of a transformation is computed based on the
current tagging of the training set. Recall that this is completely unsupervised. Initially,
each word in the training set is tagged with all tags allowed for that word, as indicated in
the dictionary. In later learning iterations, the training set is transformed as a result of
applying previously learned transformations. To score the transformation: Change the tag
of a word from X to Y in context C, where Y E X, we do the following. For each tag Z E X,
Z ~ Y, compute

freq(Y)/ freq(Z) • incontext(Z, C)

where freq(Y) is the number of occurrences of words unambiguously tagged with tag Y in
the corpus, freq(Z) is the number of occurrences of words unambiguously tagged with tag
Z in the corpus, and incontext(Z,C) is the number of times a word unambiguously tagged
with tag Z occurs in context C in the training corpus. 9

Let

n = argmaxz freq(Y)/ freq(Z) * incontext(Z, C)

Then the score for the transformation Change the tag of a word from X to Y in context
Cis:

incontext(Y, C) - freq(Y)/ freq(R) • incontext(R, C)

A good transformation for removing the part of speech ambiguity of a word is one for
which one of the possible tags appears much more frequently as measured by unambiguously
tagged words than all others in the context, after adjusting for the differences in relative
frequency between the different tags. The objective function for this transformation mea-
sures this by computing the difference between the number of unambiguous instances of
tag Y in context C and the number of unambiguous instances of the most likely tag R in
context C, where R E X, R ~ Y, adjusting for relative frequency. In each learning iteration,
the learner searches for the transformation which maximizes this function. Learning stops
when no positive scoring transformations can be found.

Unsupervised Learning: Results

To test the effectiveness of the above unsupervised learning algorithm, we ran a number of
experiments using two different corpora and part of speech tag sets: the Penn Treebank
Wall Street Journal Corpus [Marcus et al., 1993] and the original Brown Corpus [Francis
and Kucera, 1982]. First, a dictionary was created listing all possible tags for each word in
the corpus. This means that the test set contains no unknown words. We have set up the
experiments in this way to facilitate comparisons with results given in other papers, where
the same was done.

9An example of a context is: the previous tag is a determiner.

8

B
8

i i , ,

4oo 6oo 80o looo

Transformagon Number

Figure 2: Test Set Accuracy vs Transformation Number for the Penn Treebank Wall Street
Journal Corpus

P e n n T r e e b a n k R e s u l t s

In this experiment, a training set of 120,000 words and a separate test set of 200,000 words
were used. We measure the accuracy of the tagger by comparing text tagged by the trained
tagger to the gold standard manually annotated corpus. In the case where the tag of a word
is not fully disambiguated by the tagger, a single tag is randomly chosen from the possible
tags, and this tag is then compared to the gold standard. Initial state tagging accuracy
on the training set is 90.7%. After learning 1,151 transformations, training set accuracy
increases to 95.0%. Initial state tagging accuracy on the test set is also 90.7%. Accuracy
increases to 95.1% after applying the learned transformations.

Figure 2 shows test set tagging accuracy as a function of transformation number. In
figure 3, we plot the difference between training and test set accuracies after the apphcation
of each transformation, including a smoothed curve. 1° Notice that there is no overtraining:
the difference in accuracies on training and test set remain within a very narrow range
throughout, with test set accuracy exceeding training set accuracy by a small margin.
Overtraining did not occur when using the original Brown Corpus either. When training a
stochastic tagger using the Baum-Welch algorithm, overtraining often does occur [Meriaido,
1995; Elworthy, 1994], requiring an additional held-out training corpus for determining an
appropriate number of training iterations.

1°The graphs are choppy because after each transformation is applied, correctness for words not yet fully
disambiguated is judged after randomly selecting from the possible tags for that word.

8

o

~9

o

. * % ° . ° . .

• , . * ; • "• , . 2 k • • ° . • ° . • % • ° °g • • •

• * . . ~ • " . • • • • • ~ o • ~ • • o O •

• ~ • • • • . o O $ ~ • •*~• ~,.~ ° ~ , ° l l k . O . . • • • . 2 • • ° • ° ° ~ * • • • ° ° • • • ° ° % • ° • ° • % • e , ~ % . • ~ • • ° • • • °

• . • ° • ~ " ~ : . - o ~ • , • o ' ~ - • . . ~ - o . - % o . ° ~ . - • ~ • o • • o ~ • ~ O o o • •

% • ° P

• , _ ' . - - .

• 0". : . . . : , ~" o° ~

i i i i

0 6o0 800 1000

Translorma~lon Number

Figure 3: Difference Between Training and Test Set Accuracies.

Corpus Training Corpus Size (Words)

Penn Treebank 120K
Brown Corpus 120K
Brown Corpus 350K

% Correct

95.1
95.6
96.0

Table 1: Unsupervised Training: Test Set Accuracy

B r o w n C o r p u s R e s u l t s

In this experiment, we also used a training set of 120,000 words and a separate test set of
200,000 words. Initial state tagging accuracy on the training set is 89.8%. After learning
1,729 transformations and applying them to the training set, accuracy increases to 95.6%.
Initial state tagging accuracy on the test set is 89.9%, with accuracy increasing to 95.6%
after applying the learned transformations. Expanding the training set to 350,000 words
and testing on the same test set, accuracy increases to 96.0%. All unsupervised learning
results are summarized in table 1.

C o m p a r i s o n W i t h O t h e r R e s u l t s

In [Merialdo, 1995], tagging experiments are described training a tagger using the Baum-
Welch algorithm with a dictionary constructed as described above and an untagged corpus.
Experiments were run on Associated Press articles which were manually tagged at the
University of Lancaster. When training on one million words of text, test set accuracy

8

peaks at 86.6%. In [Elworthy, 1994], similar experiments were run. There, a peak accuracy
of 92.0% was attained using the LOB corpus, n Using the Penn Treebank corpus, a peak
accuracy of 83.6% resulted. These results are significantly lower than the results achieved
using unsupervised transformation-based learning.

In [Kupiec, 1992] a novel twist to the Baum-Welch algorithm is presented, where instead
of having contextual probabilities for a tag following one or more previous tags, words are
pooled into equivalence classes, where all words in an equivalence class have the same set
of allowable part of speech assignments. Using these equivalence classes greatly reduces
the number of parameters that need to be estimated. Kupiec ran experiments using the
original Brown Corpus. When training on 440,000 words, test set accuracy was 95.7%,
excluding punctuation. As shown above, test set accuracy using the transformation-based
algorithm described in this paper gives an accuracy of 96.0% when trained on 350,000 words.
Excluding punctuation, this accuracy is 95.6%. Note that since the Baum-Welch algorithm
frequently overtrains, a tagged text would be necessary to figure out what training iteration
gives peak performance.

Weakly Supervised Rule Learning

We have explored a method of training a transformation-based tagger when no information
is known other than a list of possible tags for each word. Next we explore weakly supervised
learning, where a small amount of human intervention is permitted. With Markov-model
based taggers, there have been two different methods proposed for adding knowledge to
a tagger trained using the Baum-Welch algorithm. One method is to manually alter the
tagging model, based on human error analysis. This method is employed in [Kupiec, 1992;
Cutting et al., 1992]. Another approach is to obtain the initial probabilities for the model
directly from a manually tagged corpus instead of using random or evenly distributed initial
probabilities, and then adjust these probabilities using the Baum-Welch algorithm and an
untagged corpus. This approach is described in [Merialdo, 1995; Elworthy, 1994].

A tagged corpus can also be used to improve the accuracy of unsupervised transformation-
based learning. A transformation-based system is a processor and not a classifier. Being
a processor, it can be applied to the output of any initial state annotator. As mentioned
above, in the supervised transformation-based tagger described in [Brill, 1994], each word
is initially tagged with its most likely tag. Here, we use the trained unsupervised part
of speech tagger as the initial state annotator for a supervised learner. Transformations
will then be learned to fix errors made by the unsupervised learner. As shown in figure
4, unannotated text is first passed through the unsupervised initial-state annotator, where
each word is assigned a list of all allowable tags. The output of this tagger is then passed
to the unsupervised learner, which learns an ordered list of transformations. The initial-
state annotator and learned unsupervised transformations are then applied to unannotated
text, which is then input to the supervised learner, along with the corresponding manually
tagged corpus. The supervised learner learns a second ordered list of transformations.

Once the system is trained, fresh text is tagged by first passing it through the unsu-
pervised initial state annotator, then applying each of the unsupervised transformations,
in order, and then applying each of the supervised transformations, in order.

The advantage of combining unsupervised and supervised learning over using supervised

n[Elworthy, 1994] quotes accuracy on ambiguous words, which we have converted to overall accuracy.

I UNTAGGED]
TEXT

INITL~L-STATE [UNSUPERVISED
ANNOTATOR: I / / TRANSFORMATIONS

LEARNER % [

SUPERVISED

TEXT

Figure 4: Combining Unsupervised and Supervised Learning

learning alone is that the combined approach allows us to utifize both tagged and untagged
text in training. Since manually tagged text is costly and time-consuming to generate, it
is often the case that when there is a corpus of manually tagged text available there will
also be a much larger amount of untagged text available, a resource not utilized by purely
supervised training algorithms.

One significant difference between this approach and that taken in using the Baum-
Welch algorithm is that here the supervision influences the learner after unsupervised
training, whereas when using tagged text to bias the initial probabilities for Baum-Welch
training, supervision influences the learner prior to unsupervised training. The latter ap-
proach has the potential weakness of unsupervised training erasing what was learned from
the manually annotated corpus. For example, in [Merialdo, 1995], extracting probability
estimates from a 50,000 word manually tagged corpus gave a test set accuracy of 95.4%.
After applying ten iterations of the Baum-Welch algorithm, accuracy dropped to 94.4%.

Using the transformations learned in the above unsupervised training experiment run
on the Penn Treebank, we apply these transformations to a separate training corpus. New
supervised transformations are then learned by comparing the tagged corpus that results
from applying these transformations with the correct tagging, as indicated in the manually
annotated training corpus.

In table 2, we show tagging accuracy on a separate test set using different sizes of
manually annotated corpora. In each case, a 120,000 word untagged corpus was used for
initial unsupervised training. This table also gives results from supervised training using
the annotated corpus, without any prior unsupervised training. 12 In all cases, the combined
training outperformed the purely supervised training at no added cost in terms of annotated

12The purely supervised learning algorithm is the same as that described in [Brill, 1994], except there the
most likely tag for every word in the dictionary is provided to the learner.

10

% Correct % Correct
Supervised Training Using Unsupervised Not Using Unsup.
Corpus Size (Words) Transformations Transformations

0 95.1 90.8
400 95.4 91.8
1200 95.5 92.9
4000 95.7 93.9
7600 95.8 94.6
10300 96.0 95.1
22300 96.3 95.5
44400 96.6 96.1
61400 96.7 96.3
88200 96.8 96.5

Table 2: Unsupervised + Supervised vs. Purely Supervised Training.

training text.

Conclusions

In this paper, we have presented a new algorithm for unsupervised training of a rule-based
part of speech tagger. The rule-based tagger trained using this algorithm significantly
outperforms the traditional method of applying the Baum-Welch algorithm for unsupervised
training of a stochastic tagger, and achieves comparable performance to a class-based Baum-
Welch training algorithm. In addition, we have shown that by combining unsupervised
and supervised learning, we can obtain a tagger that significantly outperforms a tagger
trained using purely supervised learning. We are encouraged by these results, and expect an
improvement in performance when the number of transformation templates provided to the
unsupervised learner increases beyond the four currently used. We have also demonstrated
that overtraining, a problem in Baum-Welch training, is not a problem in transformation-
based learning.

R e f e r e n c e s

[Baum, 1972] Baum, L. 1972. An inequality and associated maximization technique in
statistical estimation for probabilistic functions of a Markov process. Inequalities 3:1-8.

[Black et al., 1992] Black, E.; Jelinek, F.; Lafferty, J.; Mercer, R.; and Roukos, S. 1992.
Decision tree models applied to the labeling of text with parts-of-speech. In Darpa
Workshop 07, Speech and Natural Language. Harriman, N.Y.

[Brill and Resnik, 1994] Brill, E. and Resnik, P. 1994. A transformation-based approach
to prepositional phrase attachment disambiguation. In Proceedings of the Fifteenth In-
ternational Conference on Computational Linguistics (COLING-1994) , Kyoto, Japan.

]]

[Brill, 1992] Brill, E. 1992. A simple rule-based part of speech tagger. In Proceedings of
the Third Conference on Applied Natural Language Processing, A CL, Trento, Italy.

[Brill, 1993a] Brill, E. 1993a. Automatic grammar induction and parsing free text: A
transformation-based approach. In Proceedings of the 31st Meeting of the Association of
Computational Linguistics, Columbus, Oh.

[Brill, 1993b] Brill, E. 1993b. Transformation-based error-driven parsing. In Proceedings of
the Third International Workshop on Parsing Technologies, Tilburg, The Netherlands.

[Brill, 1994] Brill, E. 1994. Some advances in rule-based part of speech tagging. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle,
Wa.

[Charniak et al., 1993] Charniak, E.; Hendrickson, C.; Jacobson, N.; and Perkowitz, M.
1993. Equations for part of speech tagging. In Proceedings of the Conference of the
A merican Association for Artificial Intelligence (AAA 1-93).

[Church, 1988] Church, K. 1988. A stochastic parts program and noun phrase parser for
unrestricted text. In Proceedings of the Second Conference on Applied Natural Language
Processing, A CL.

[Cutting et al., 1992] Cutting, D.; Kupiec, J.; Pedersen, J.; and Sibun, P. 1992. A prac-
tical part-of-speech tagger. In Proceedings of the Third Conference on Applied Natural
Language Processing, A CL, Trento, Italy.

[DeMarcken, 1990] DeMarcken, C. 1990. Parsing the lob corpus. In Proceedings of the 1990
Conference of the Association for Computational Linguistics.

[Derose, 1988] Derose, S. 1988. Grammatical category disambiguation by statistical opti-
mization. Computational Linguistics 14.

[Elworthy, 1994] Elworthy, D. 1994. Does Baum-Welch re-estimation help taggers. In
Proceedings of the Fourth Conference on Applied Natural Language Processing, A CL.

[Francis and Kucera, 1982] Francis, W. and Kucera, H. 1982. Frequency analysis of English
usage: Lexicon and grammar. Houghton Mifflin, Boston.

[Harris, 1962] Harris, Z. 1962. String Analysis of Language Structure. Mouton and Co.,
The Hague.

[Hindle, 1989] Hindle, D. 1989. Acquiring disambiguation rules from text. In Proceedings
of the 27th Annual Meeting of the Association for Computational Linguistics.

[Huang et al.,
nunciations
ternational

1994] Huang, C.; Son-Bell, M.; and Baggett, D. 1994. Generation of pro-
from orthographies using transformation-based error-driven learning. In In-
Conference on Speech and Language Processing (ICSLP), Yokohama, Japan.

[Jelinek, 1985] Jelinek, F. 1985. Self-Organized Language Modelling for Speech Recognition.
Dordrecht. In Impact of Processing Techniques on Communication, J. Skwirzinski, ed.

12

[Klein and Simmons, 1963] Klein, S. and Simmons, R. 1963. A computational approach to
grammatical coding of English words. JACM 10.

[Kupiec, 1992] Kupiec, J. 1992. Robust part-of-speech tagging using a hidden Markov
model. Computer speech and language 6.

[Linet al., 1994] Lin, Y.; Chiang, T.; and Su, K. 1994. Automatic model refinement with
an apphcation to tagging. In Proceedings of the 15th International Conference on Com-
putational Linguistics.

[Marcus et al., 1993] Marcus, M.; Santorini, B.; and Marcinkiewicz, M. 1993. Building a
large annotated corpus of English: the Penn Treebank. Computational Linguistics 19(2).

[Merialdo, 1995] Merialdo, B. 1995. Tagging english text with a probabilistic model. Com-
putational Linguistics: To Appear.

[Ramshaw and Marcus, 1994] Ramshaw, L. and Marcus, M. 1994. Exploring the statis-
tical derivation of transformational rule sequences for part-of-speech tagging. In The
Balancing Act: Proceedings of the A CL Workshop on Combining Symbolic and Statisti-
cal Approaches to Language, New Mexico State University.

[Roche and Schabes, 1995] Roche, E. and Schabes, Y. 1995. Deterministic part of speech
tagging with finite state transducers. Computational Linguistics: To Appear.

[Schutze and Singer, 1994] Schutze, H. and Singer, Y. 1994. Part of speech tagging using
a variable memory Markov model. In Proceedings of the Association for Computational
Linguistics.

[Weischedel et al., 1993] Weischedel, R.; Meteer, M.; Schwartz, R.; Ramshaw, L.; and Pal-
mucci, J. 1993. Coping with ambiguity and unknown words through probabilistic models.
Computational Linguistics.

13

