
Generating Event Descriptions
with SAGE: a Simulation and Generation Environment

Marie Meteer
BBN Systems and Technologies

Cambridge, MA 02138
MMETEER@BBN.COM
FAX: (617) 648-1735

A B S T R A C T

The SAGE system (Simulation and Generat ion
Environment) was developed to address issues at the
interface between conceptual modelling and natural
language generation. In this paper, I describe SAGE and
its components in the context of event descriptions. I
show how kinds of information, such as the
Reichenbachian temporal points and event structure, which
are usually treated as unified systems, are often best
represented at multiple levels in the overall system. S A G E
is composed of a knowledge representation language and
simulator, which form the underlying model and constitute
the "speaker"; a graphics component, which displays the
actions of the simulator and provides an anchor for locative
and deictic relations; and the generator SPOKESMAN, which
produces a textual narration of events.

1. I N T R O D U C T I O N

In Text Generation, some of the most interesting issues
lie at the interface between the conceptual model (the
underlying program) and the generator. It is well
recognized that one cannot produce sophisticated text from
an impoverished underlying model (McKeown & Swartout
1988). McDonald (1993) makes an even stronger claim:

Nevertheless, the influence it [the application program]
wields in defining the situation and the semantic model
from which the generator works is so strong that it
must be designed in concert with the generator if high
quality results are to be achieved.

In fact, some of the best results in text generation have
come from efforts where the model and the generator were
developed in tandem, from Davey's early work on describing
tic-tac-toe games (Davey 1974) to Dale's recent work on
generating recipes (Dale 1990). Dale found that in order to
generate referring expressions in recipes, he had to work on
the representation of the underlying objects and their state
changes in order to be able to correctly generate the number
of the noun phrases in examples such as "Grate one
carrot...Add the carrots to the stew". The most impressive
results to date in event generation is the NAOS system
(Novak 1987, Neumann 1989), which produces natural
language descriptions of object movements in a street
scene. It is designed to take is input from a vision system
observing traffic, which captures both temporal and spatial

relationships among the objects in the scene. The focus of
the work has been on representing events and the relations
among them and then connecting those events to case
frames for expressing them in natural language.

In narration, temporal and aspectual information must
be available in the underlying model in order to describe
events. For example, using the well recognized
Reichenbachian model, three different temporal points,
point of event (E), point of speech (S), and point of
reference (R), are needed in order to adequately account for
the English tense system, as shown in the following
examples:

1. Peter drove to work. (E = R < S)
2. Peter had driven to work. (E < R < S)

Such problems are generally treated as unified systems
in linguistics within studies of semantics or the lexicon.
However, in generation research, the issue is not just what
distinctions there are, but at what level (model, text
planner, syntactic component) should the information
needed to make these distinctions be represented. Taking
the temporal points in the Reichenbachian model as an
example, two of the points, E and S, are facts of the
model, when the event took place and the time the speaker
is producing the utterance. However, the third point, the
reference time, is a fact of the discourse, a choice to be
made by the speaker. (1) and (2) above are distinguished by
the reference time, but otherwise could describe the same
event and be spoken at the same time.

While most studies of events are done within the realm
of linguistics, where the focus in on the expression of
event descriptions, it is clear that the way events are
modelled is also an essential element. Bach (1988)
describes "how certain metaphysical assumptions are
essential to an understanding of English tenses and aspects.
These assumptions have to do with the way reality---or our
experience--is structured."

From a generation perspective, there are two basic
questions to be answered. First, what information is
needed in order to produce the distinctions available in
language, and secondly, what distinctions are facts of
language (and thus should be in the generator) and which
are better represented at the model level?

99

• . 7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

The problem of finding a general way to research such
questions has led to the development of SAGE, a
"Simulation and Generation Environment", which provides
components for both conceptual modelling and text
production. In SAGE, a frame-based knowledge
representation component models objects and their
properties, an event-based simulator models the actions of
multiple agents, and a graphics component provides models
of the physical geography in the virtual world, in addition
to providing a visual interface to the objects, agents, and
actions. Text generation is provided by the SPOKESMAN
system. SPOKESMAN is data directed in that it links to the
other components both through mappings from concepts in
the knowledge representation and through instances of
objects and events created by the simulator.

In this paper, I describe the components of SAGE and
how they are integrated, focusing on the generation of
event descriptions. In Section Two, I look at what
information is needed to generate events through analysis
of events and a review of the linguistic literature. In
Section Three, I describe the architecture of SAGE and its
representational levels, including where in the overall
system event information is represented and in Section
Four I illustrate these issues using paragraphs generated in
SAGE, such as the following:

Fluffy wants to catch a mouse. He is looking for her.
The mouse wants to get cheese. She is leaving a mouse-house.

She is going toward it.
Fluffy is chasing the mouse. He is going toward her. He caught

her.
The mouse didn't get the cheese.

The overall methodology applied in this research
tooapproach the problem from two directions, as depicted

in Figure 1. One direction is that from a situation
modelled in some application program to the expression of
some set of goals from that program in a natural language
(in this case, English). The second direction is the use of
text analysis to work backwards from the way something is
said to what decision points led to that text, what
alternative choices were not made, which decisions were
constrained by the syntax or lexicon of the language, and
what information is needed in the application program in
order to make these decisions.

Underlying Program
in a particular situation with a set of

goals to accomplish

How to realize those goals
through language

Expressibility

Expressiveness

How to account for the competence
people demonstrate through their
use of language

Figure 1:

An appropriate
T E X T

Bi-directional approach
research

to generation

This methodology is exemplified in the work presented
here in the first direction by the use of SAGE to model
situations and generate text (described in Section 3 and
exemplified in Section 4) and in the second direction,
through the analysis of events and projection of that
analysis onto the decisions of the generator (described in
Section 2).

2 . E V E N T S

In this section, we address the problem of representing
and describing events. The goal is to identify the
information that needs to be represented in order to take
advantage of all the resources a language provides for
describing events (which involves determining which
distinctions language supports) and determining at what
level the information should be represented and the
decisions made to make those distinctions.

We first outline six different kinds of information
needed for the expression of events: linear time, event
type, temporal modifiers, event structure, argument
structure, and agency. In section three, we describe the
architecture of SAGE and show where the decisions
supporting the distinctions in the expression of events are
made.

2 .1 Information for Events

First, in order to generate events, there needs to be a
model of linear time. Most of the current work on tenses
is based on a Reichenbachian-style analysis, which
involves three temporal notions: point of speech, point of
the event, and point of reference, as we showed above in
examples (I) and (2).

Another well recognized distinction is that of event
types, such as state, process, transition, exemplified by the
following examples:

3. The mouse is under the table. (state)
4. Fluffy ran. (process)
5. Peter found his keys. (transition----achievement)
6. Helga wrote a letter. (transition--accomplishment)

While verbs have an intrinsic type (e.g. wait is a process
and catch is a transition), these types also apply to whole
phrases, since tense, aspect, adjuncts and arguments can
compose with the type of the lexical head to form a new
type:

7. Fluffy ran into the kitchen. (process --> transition)
8. Helga is writing a letter. (transition --> process)
9. The mouse is caught. (transition --> state)
10. Roscoe builds houses. (transition --> iteration)

Four kinds of temporal adverbials can be distinguished and
are linked to the event types. Duration modifies processes,
as in example (l la) , but not transitions (l l b) ; f r a m e
adverbials modify accomplishments, as in (12a), but not
processes (12b); point adverbials modify achievements, as
in (13); and frequency adverbials modify iterative events, as
in (14).

100

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

11. a) Peter waited in the lobby for an hour.
b) * Helga wrote the letter for an hour.

12 a) Helga wrote the letter in an hour.
b) * Peter waited in the lobby in an hour

13. Hank found the pen at four o'clocl~
14. Martha writes letters frequently.

It is also clear that events are not undifferentiated
masses, but rather have subparts that can be picked out by
the choice of phrase type or the addition of adverbial
phrases. Moens & Steedman (1988) identify three
constituents to an event nucleus, a preparatory process,
culmination, and consequent state, whereas Nakhimovsky
(1988) identifies five: preparatory, initial, body, final,
result, exemplified by the following: 1

15. When the children crossed the road,
a) they waited for the teacher to give a signal
b) they stepped onto its concrete surface as if it were
about to swallow them up.
c) they were nearly hit by a car
d) they reached the other side stricken with fear.
e) they found themselves surrounded by strangers.

Pustejovsky (1991) offers a much more compositional
notion of event structure, where a transition is the
composition of a process and a state. This analysis is more
closely tied to the lexicon than Moens and Steedman's or
Nakhimovsky's (and is offered in the context of a generative
theory of lexical semantics). It not only accounts for the
semantics of verbs, but also their compositions with
adjuncts to form new types, as in (7) above.

The participants of an event are those entities that act in
or are acted upon in the event. The argument structure is
the set of participants in the event that are grammaticized
with respect to a particular lexicalization of the event, such
as the agent, theme, source, and goal. For some event
types (especially those that appear as examples in
linguistics papers), the distinction between what is an
argument and what is an adjunct is clear. For example, in
"Fluffy ate a bone in the dining room yesterday", "Fluffy"
(the agent) and "a bone" (the theme) are arguments, whereas
the location and time are adjuncts. For other verbs,
however, the distinction is not so clear, as in "Mickey slid

i n t o home plate", where the location is a necessary
participant to the meaning, yet as a location it would be
treated as an adjunct in most analyses.

Agency in an event is an aslSect of the argument
structure, but since there are some important
generalizations over this participant that is not true of
others, we treat it separately. One of the most widely
discussed syntactic variations is the active/passive, which
vary on the placement/inclusion of the agent. As
discussed in Meteer (1991) there are really many different
motivations for what is often characterized as a single
"switch" in generators. The degree of explicitness of the
agent in different syntactic constructions can be seen in the
following set of examples, from the explicit inclusion of

1 Nakhimovsky, 1988, p.31.

the agent in the subject position in (a), to the movement of
the agent to the by-phrase in (b), to the deletion of the
agent in (c), to an adjectival construction in (d) using the
past participle form of the verb, to a result construction in
(e) that includes no indication of agency. Notice that the
explicitness of the event's tense diminishes along with the
agency.

18. a)
b)
c)
d)
e)

Peter tore the shirt.
The shirt was torn by Peter.
The shirt was torn yesterday.
Peter wore the torn shirt yesterday.
No one noticed the tear in the shirt. (cf No one

noticed the missing button.)

Another argument that agency should be treated
specially is made by Pustejovsky (1991) in his work in
generative lexical semant ics and event structure.
Pustejovsky argues that some distinctions usually
characterized by event type or argument structure are
actually rooted in agency, such as the difference between
verbs that are lexically transitions but have unaccusative
and causative variants ("The door closed" vs. "Thelma
closed the door"). Furthermore, the difference between the
two types of t ransi t ions , accompl i shmen t s vs.
achievements, is based on an agentive/non-agentive
distinction. According to Pustejovsky, accomplishments
(such as build, draw, and leave) include both the act and the
causation in their semantics, whereas in accomplishments
(such as win, find, and arrive) agency is not an intrinsic
part of the semantics of the verb, but is rather based on
something else, such as the configuration of elements
(someone wins when they are at the front in some
competition at a particular moment, given some particular
evaluation function). This is substantiated by the
interaction with "deliberately" and these verbs, shown in
the examples below:

19. a. Helga deliberately drew a picture
b. *Helga deliberately found the pen.

20. a. Peter deliberately left the party.
b. *Peter deliberately arrived at the party.

Having identified the information necessary for the
description of events, the next step in the research is to
determine which levels should be responsible for the
representation of the information. In particular, what
aspects of the event description are

• dependent on the event itself (a fact of the world/model);

• dependent on the discourse context;

• dependent on what linguistic resources are available (e.g.
lexicon and syntax) and constra ints on their
composition.

SAGE allows us to approach these questions
experimentally, using SAGE to provide a context in which
to make the decision about where the information is best
represented and the decisions best made. In the next
section, I describe SAGE, its components, and how they
interact. I also include where in that architecture the
information for event descriptions is represented. In

101

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Section Four I look at these issues more concretely using
an example narration from SAGE.

3 . T H E C O M P O N E N T S OF SAGE

SAGE is a package of integrated tools to aid in
exploring the relationship between simulated events in a
multi-agent environment, the narration of those events by a
text generator, and the animation of the events with simple
graphics. There are three main components to SAGE:

• The. speaker's intensional world is modelled in an
"underlying program" built using the knowledge
representation language VSFL and the event based
simulator SCORE; 2

• The text generator is SPOKESMAN, with the linguistic
component MUMBLE-86 and the text planner Ravel;

• The graphics component is built with the graphics
package in Macintosh Common Lisp and Mac
Quickdraw.

3.1 The Model l ing C o m p o n e n t of SAGE

The underlying program of SAGE, that is, the part in
which objects and events are modelled, is a knowledge
based simulation system with two parts: the knowledge
representation language and the simulator. The objects and
events are modelled primarily in VSFL (the Very Simple
Frame Language), which is an amalgamation of a
knowledge representation language and an object oriented
programming language. As a descendent of KL-ONE
(Brachman & Schmolze 1985), it provides concept and role
hierarchies and multiple inheritance of roles (including role
restrictions and defaults) 3.

The knowledge base in SAGE is what ties together the
main components. It acts as a central resource, providing
definitional information for types and relations. The type
of an object controls its actions in the simulation, the way
it is expressed by the generator, and how it is displayed by
the graphics component. For example, if the generator is
referring to the object #<fluffy>, which is of type dog, it
uses the mapping of concept dog to the class of alternative
expressions for named individual (such as using the name,

2 VSFL ("Very Simple Frame Language") and SCORE CSproket
Core") were developed at BBN Systems and Technologies by
Glenn Abrett and Jeff Palmucci, with assistance from Mark
Burstien, and Stephen Deutsch. VSFL is a reimplementation of
SFL, which is a descendent of KL-One. SCORE is a
reimplementation of the SPROKET simulator. See Abrett, et al.
1989 for a more detailed description of these systems.
3 VSFL is "very simple" in that it does not support automatic
classification and does not have a graphical editor (though it
does have a graphical viewer). Its integration with CLOS
(Common Lisp Object System) supports the creation of
instances and the ability to associate methods with concepts.
The integration with CLOS also provides more efficient slot
accessors and other optimizations.

a pronoun, "I" if fluffy is the speaker, a generic reference "a
dog" if he is being introduced and not known, etc.). The
graphics component uses the fact that the type "dog"
inherits from "agent" and agents are drawn using triangles
pointing in the direction the agent is facing. There is a
core knowledge base which contains the set of concepts
that are used by all domains, such as ACTION, OBJECT,
LOCATION. This is similar to the upper model used in
Penman (Bateman 1989). 4

Events are represented as goals and procedures in the
simulator and are also linked to the knowledge base
through their types, which are concepts in the knowledge
base. This provides a classification of events into the three
main event types: state, process, and transition. The
parameters to those goals/procedures are the roles on the
concept, defining the participants in the event, as well as
associated information, such as location.

The simulator SCORE is an event-based simulator that
supports multiple agents executing parallel goals and
actions. SCORE provides a language for declaratively
representing the plans of agents, where a plan is a partial
ordering of procedures and subgoals for accomplishing
goals and handling contingencies. Goals define the
intentions of agents (goals succeed or fail) and procedures
define a sequence of actions and decision points (procedures
complete or are interrupted). The primitives in this system
are actions, which are simply lisp functions.

The hierarchical structure of the plans, with procedures
defined in terms of subprocedures and actions, defines the
structure of events, in the sense of Nakhimovsky, described
above. The procedure for cross-the-road, for example,
would be defined in terms of prepare-to-cross (look both
ways, wait for traffic, wait for teacher's signal, etc,) step
onto the road, walk across, step on to the other side, with a
consequent change in that agent's state (more specifically,
his location) from one side of the street to another. Note
that in these terms, the constituents of an event is a fact of
the model and the level of granularity that is represented,
and not a linguistic issue. We can describe the event as a
single action "cross the road", but with an animation
component, each of the steps must be modelled as well
(depending, of course, on the granularity of the animation,
since if the "road" is a single line, then a single action
might be adequate to move the agent across it).

When a goal/procedure is run, an instance of the event
concept is created and the parameters are filled with
instances of objects and other events. The start and end
time and instances of subprocedures are filled in as the
procedure runs, providing the event time necessary for the
generation of tense. The simulator passes instances of
actions to both the generator and graphics component,

4 As yet we make not theoretical claim to the significance of
our choice of which concepts live in the core. This is part of
our ongoing research.

102

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

which use the type hierarchy to know how to describe the
action or how to update the display.

3.2 The G e n e r a t i o n C o m p o n e n t o f SAGE

SPOKESMAN is composed of two major components:
the text planner and the linguistic realization component.
The text planner selects the information to be
communicated explicitly, determines what perspectives the
information should be given (e.g. whether something is
viewed as an event, "Peter waited for a long time", or as an
object, "the long wait"), determines the organization of the
information, and chooses a mapping for the information
onto the linguistic resources that the language provides.
The linguistic realization component is MUMBLE-86
(McDonald 1984; Meteer, et al. 1987). It carries out the
planner's specifications to produce an actual text. It
ensures that the text is grammatical and handles all of the
syntactic and morphological decision making.

Both components use multiple levels of representation,
beginning with objects from the application program
through progressively more linguistic representations to
the final text, as shown in Figure 4.

Application Program Objects

~ Composin~ the utterance

Text Structure TEXT PLANNER
~ Mapping to

linguistic resources

Linguistic
Sp~cation Choosing phrases

and attaching them
MUMBLE-86 Surface Structure

Mo~hology

Word Stream

Figure 4: SPOKESMAN

Each representational level is a complete description of
the utterance and provides constraints and context for the
further decisions that go into its construction. This is an
essential part of planning by progressive refinement,
because the representation must constrain the planner so
that it is not allowed to make decisions it will later have to
retract. The representational levels also control the order of
the decisions.

The Text Structure, which is the central representation
level of the text planner, provides a vocabulary for
mapping from the terms of the model level to the
linguistic terms of the generator. It is at this level that the
content lexical items are selected and the semantic category
of the constituents is determined. Events and their
composition are handled in the style of Pustejovsky
(described above). For example, a RUN-TO-LOCATION
procedure in the simulator (which has a type of transition)

is mapped to the composition of the lexical head "run"
(with the agent from the WHO role of the procedure), which
is lexically a process, with a goal locative adjunct (e.g. "to
the kitchen"), which produces a transition as shown in the
Text Structure tree in Figure 5. Constraints on the
transition type indicate that only a frame adverbial (e.g. "in
two minutes"), can be added, and not a duration (e.g. "for
two minutes").

i MATRIX [#<COMPOSITE-EVENT
type: bansttion>

#<EVENT: run I #<RELATION: goaldoca~on
type: process> I Object: #<kitchen>>

i I #<RELATION: agent
#<Jake>)

Figure 5: Text Structure Tree

The speaker could also choose not to express the entire
transition as a kernel unit, but rather pick out only the
process portion, as in "Jake ran", in which case the
composition would also be of type process, which
constrains the temporal adjuncts to be of type duration,
rather than frame. (See Meteer, 1992, for a more complete
description of the vocabulary of terms in the text structure
and its role in the incremental composition of the text
plan .)

Another role of the Text Structure is to keep track of
discourse level information, such as focus and what entities
have been referenced and in what context. As Webber
(1988) points out, tense can be used anaphorically, just as
definite nps and pronouns can, and the speaker must keep
track of the changing temporal focus. It is the
combination of the discourse specific information and the
event time and speech time as defined by the simulator 5
that are needed to correctly generate English tense, as
described above.

4. E X A M P L E

In this section, we look at the underlying structures for
a narration of a simulation in the SAGE system. We focus
on those elements at the interface between the underlying
program and the generator. The simulation begins with
each of the agents located at a position on the map (Figure
6). Fluffy the dog is assigned a goal of catching a mouse
and Jake the mouse is assigned the goal of getting some
cheese, which is located in the kitchen. The following
simple paragraph, generated by Spokesman, describes each
of their goals and actions and is produced incrementally as
they are executed by the simulator:

5 The simulator is the "speaker" in SAGE, since it is the
component that has goals to express information and the
model defined by the knowledge base is the intensional model
of that speaker. The generator defines the possibilities for
expression and executes the speaker's goals.

103

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Fluffy wants to catch a mouse. He is looking for her.
The mouse wants to get cheese. She is leaving a mouse-house.

She is going toward it.
Fluffy is chasing the mouse. He is going toward her. He caught

her.
The mouse didn't get the cheese.

Example paragraph

FluffQ's Wor ld

i
i

L IU I~'-ROOM ~ - L ~

I K Ires CHEESE

D

Figure 6: Map of Fluffy's house

As described in Section 2 above, there are several
different kinds of information needed to generate event
descriptions. Since the underlying program in this case is
an ongoing simulation, the linear time is easily available
in the system. Figure 7 shows a graph of the events as
they are created in the system, marked by their time. Since
the generation is a "play-by-play" narration, the event time,
reference time, and speaker time are usually the same, as is
reflected in the use of the present tense in the text. An
exception to this can be seen at the end of the above
paragraph. Since the actions underlying these sentences are
marked as completed by the simulator, the event time is
before the speaker time, and thus the past tense is used.

Another kind of information needed for generation is the
event type. Note that in SAGE there is not a single notion
of "event type", but rather two: one for the underlying
knowledge base and the other in Ravel, the text planner.
This reflects the difference between:

• a concept's intrinsic type in the domain, which includes
what objects it is related to (e.g. its parents, what slots
it has), and how it functions in the underlying program
(e.g. what methods it has or inherits), and

• a concept's "expression type" in the text planner, which
reflects the fact that the speaker can alter an object's
express ion type through lexical cho ice (e.g.
nominalization) and the choice of tense, aspect and
adjuncts.

Portions of these two types of classification hierarchies
are shown in Figure 8. They are mediated by the mappings
in Ravel, which we describe below.Another kind of
information that is represented in the underlying program
and used by the generator is the difference between a goal,
which represents an agent's intentions, and a procedure,
which represents an agent's actions. In the example
paragraph, this is reflected by the use of the matrix verb
"want to" in the first and third sentences in the case where
the "action" field of the goal event is "start", and by the use
of the past tense in the sentence "He caught her", when the
action field is "succeed" and by the past and negation in the
sentence "The mouse didn't get the cheese" when the action
field is "fail". Instances of goals and procedures are shown
in Figure 9. Each simulation event object has two parts:
(1) the goal o r event wrapper, which indicates the
goal/procedure status, the relationship of this event to other
events (is a super or sub event), and the time stamp; and
(2) the action instance, which is an instance of an action
type from the domain model with the fields filled in,
indicating the various actors and objects acted on and other
related information (note that this information is often but
not always expressed as verb arguments).

[PE FLUFFY-NEY NIL-NIL I
IGE CATCH-GOAL 7 -2

[GE GEI"-FOOD 6 - 2 I

~1! i l l ii !iiiiiiiiiii ii!iiii!iii@ii!i!iiiiiiiiiiiii iiil iiiiiiiiil iii iii iii iiiiiiiiii!iiii!iiiiiiiiilili{iiiiiiiiii iiiiiiiiiiiiiiiiiii!iiiiiiiiiMiiiiiiiiiiiiiiiiiiiiiil¢ ~

Figure 7: Graph of events in executed simulation

104

7th International Generation Workshop • Kermeburtkport, Maine • June 21-24, 1994

Figure 8: Event types in the Domain Model and Text Planner

#<GOAL-EVENT #x3B89F9>
Class : #<STANDARD-CLASS GOAL-EVENT>
Instance slots
ACTION: START
ACTION-INSTANCE: #<CATCH-GOAL #x3B8699>
SUBS: (#<PROCEDURE-EV~T #x3BgCBI>

#<PROCEDURE-EVENT #x3BD431>)
SUPER: (#<PROCEDURE-EV~2~T #x3B8741>)
START-TIME: 0
SUB-TICK-START: 5

#<CATCH-GOAL #x3B8699>
Class : #<STANDARD-CLASS CATCH-GOAL>
Instance slots
WHAT: #<Agent: JAKE>
WHO: #<Agent : FLUFFY>>

#<PROCEDURE-EVENT #x3B9CBI>
Class : #<STANDARD-CLASS PROCEDURE-EVENT>
Instance slots
PROCEDURE - SUB - EV~IqTS :

(#<SPROKET-EVEIqT #x3BA509>
#<SPROKET-EV~T #x3BD049>)

~D-TIME : 1
ACTION-INSTANCE: #<WATCH-FOR #x3B9BD9>
SUPER: (#<GOAL-EVENT #x3B89F9>)
START-TIME: 0
SUB-TICK-START: 6

#<WATCH-FOR #x3B9BD9>
Class : #<STANDARD-CLASS WATCH-FOR>
Instance slots
WHAT: #<Agent: JAY.E>
WHO : #<Agent : FLUFFY>

Figure 9: Instances of goals and procedures in the
s i m u l a t o r

the action field is "start" and just uses the mapping for the
action instance in other cases. The procedure event also
adds nothing to the mapping, but just uses the mapping for
the instance class ("watch-for" in the example above).

(mapping-tables (find-class 'spr: :goal-event)
class-to-text-structure

:condition (eq (spr: :action self) 'spr: :start)
:realization-class state-to-activity-class
:arguments (:agent (spr: :who (core-event-object self))

:event self
:theme (core-event-object self)
:time (determine-tense self)))

: condition (default)
:mapping-function remap-with-same- sel f
:arguments ((core-event-object self))))

obj ec t- to- tree - family
(:argument-structure-class state-with-propositional-

complem~ent
:arg~uuents (" (mumble: :verb "want"))))

(mapping-tables (find-class ' spr : :procedure-event)
class-to-text-structure
(:mapping-function rEmaap-with-same-self
:arguments ((core-event-object self))))

Figure 10: Mapping tables for goals and
procedures in the text planner

Mapping tables for the action types catch and look-for 6
are shown below in Figure 11. Each has two mappings,
one which offers alternatives at the Text Structure level and

The connection from the underlying program to the text
generator is made through the mapping tables. Mapping
tables provide an association between a concept in the
domain hierarchy and the set of linguistic resources that can
be used to express instances of that concept. For example,
the mapping tables shown in Figure 10 connect the goal
and procedure events shown above to choices in the
generator. Note that the mapping is conditional, so the
goal event is mapped to a set o f alternatives for expressing
a state with an activity argument at the level o f the Text
Structure and to a tree family with the verb "want" when

6 I realize there is a confusion here between "look-for" and
"watch-for". "Watch-for" is a child of "look-for" in the
hierarchy (see Figure 8), and was probably introduced
automatically by the system as the name of a procedure of type
"look-for". While confusing, this exemplifies the kind of
naming problems that come up in real systems, and since all of
these examples are directly from running code, I hesitate to
white them out. In fact, it is the relations among the concepts
and their fields that distinguish them, not their symbol names,
and it is the mappings that determine what lexical items are
used to express them (though some mappings use the concept
name as a default lexical item when none is specified.)

105

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

GRRPH£R: TOP MONOLOGUE

C: S T * r t] [. . . . ~ I IT: "G0dilL-i~T ox4lt~fCOII) ~ "J I I]
~] ~ m m T X H m t C: " m J a t s r r m - ~ t ~ r] • I . * ~ t x [v t s x : " 'CATCH-aO~. " x 4 ~ 7 ~ "

~ocmm~-~mT x4sm9 I t

qAR~qI~RT THEME C: TRAmSrFmW-EVENT ~MATR. EVENT: "cGET-4~D

: LEmrr ~L£AW--14OtmmmL£

Figure 12: Text Structure

a second which offers choices at the linguistic specification
level. Specifically, each realization class that is mapped to
at the CLASS-TO-TEXT-STRUCTURE-MAPPING offers
alternatives of different semantic expression categories (for
example expressing the transition "catch" as a process by
using the progressive aspect) and the opportunity to leave
out optional arguments (even though they are available in
the underlying structure, the speaker can choose to leave
them out). The argument structure class inspects the
choices that have been made in semantic category and
arguments and-selects the appropriate tree family. The
specific elementary tree will not be selected until the level
of the surface structure in Mumble-86, when syntactic
context is available.

(mapping-tables (spr: :concept 'spr: :catch)
class-to-text-structure

(:realization-class transition-event-class
:arguments (:agent (spr: :who (core-event-object self))

:event (core-event-object self)
:theme (spr: :what (core-event-object self)
:time (determine-tense self)))

object-to-tree-family
(:argument-structure-class transitive-event
:arguments (" (mumble: :verb "catch"))))

(mapping-tables (spr: :concept 'spr: :look-for)
class-to-text-structure

(:realization-class process-event-class
:arguments (:agent (spr::who (core-event-object self))

:event (core-event-object self)
:theme (spr::what (core-event-object self))
:time (determine-tense self)))

obj ect-to-tree- family
(:argument-structure-class transitive-prepcomp
:arguments (" (mumble: :verb "look")

• (mumble: :prep "for"))))

Figure 11: Mapping tables CATCH

The choices described above result in the Text Structure
representation, as shown in Figure 12:

5. C O N C L U S I O N

We have seen that what are generally treated as a single
phenomenon stretch across multiple levels in SAGE:

• Event time and speech time are facts of the underlying
program, whereas reference time is part of the discourse
model in the generator.

• Events have an intrinsic type in the model, but the
speaker can make explicit only a portion of the event or

compose it with other information and express it as a
different event type. What subconstituents of an event
are available to be made explicit are defined by the
procedures of the underlying program (in this case, the
simulator), but the ways they can be made explicit are
constrained by the resources of language.

• whether an action is caused by an agent is part of the
definition of the action, but whether that agent is
expressed is a choice by the speaker.

In all of these cases, the information must be represented at
both the model level and in the generator in order to capture
the full expressiveness of event descriptions in English.
Using SAGE as an environment in which to model both
conceptual and linguistic information lets us experiment
with the best division of the information across its
components.

References

Abrett, G., Deutsch, S. and Downes-Martin, S. (1989),
"AI Languages for Simulation", BBN Technical Report,
BBN Systems and Technolog ies , Cambridge,
Massachusetts.

Abrett, G., Burstein, M., & Deutsch, S. (1989), "Tarh
Tact ical Act ion Representa t ion Language , an
environment for building goal directed knowledge based
simulation", BBN Technical Report No. 7062, BBN
Systems and Technologies, Cambridge, Massachusetts.

Bach, Emmon (1981) "On Time, Tense, and Aspect: An
Essay in English Metaphysics" in , Academic Press.

Bateman, J., Kasper, R., Moore, L, & Whitney, R. (1989)
"A General Organization of Knowledge for Natural
Language Processing: The Penman Upper Model"
USC/Information Sciences Institute Technical Report.

Brachman, Ronald, & James Schmolze (1985) An
Overview of the KL-ONE Knowledge Representation
System. Cognitive Science, 9:197-216, 1985.

Dale, Robert (1990) "Generating Recipes: An Overview of
Epicure" in Dale, Mellish, & Zock (eds) Current
Research in Natural Language Generation, Academic
Press, London, p.229-255.

106

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Davey, A. (1974), Discourse Production, Edinburgh
University Press. Edinburgh.

McDonald, David D. (1984) Description Directed Control.
Computers and Mathematics 9(1) Reprinted in Grosz, et
al. (eds.) Readings in Natural Language Processing,
Morgan KaufmanPublishers, California, 1986, pp.519-
538.

McDonald, David D. (1993) "Natural Language
Generation" to appear in the Encyclopedia of Language
and Linguistic, Computational Linguistics Section, C.
Mellish (ed), Pergamon Press.

McDonald, David D. (1991) "On the Place of Words in the
Generation Process" in Natural Language Generation in
Artificial Intelligence and Computational Linguistics.
Eds. Cecile Paris, William Swartout and William Mann,
p.229-247.

McKeown & Swartout (1988) "Language Generation and
Explanation" in Z0ck & Sabeh (eds.), Advances in
Natural Language Generation, Pinter Publishers, London,
p.l-51.

Meteer, Marie W. (1992) Expressibility and the Problem
of Efficient Text Planning. Pinter Publishers, London,
England.

Meteer, Marie-W. (1992) "Portable Natural Language
Generation using SPOKESMAN" Proceedings of the 3rd
Conference on Applications in Natural Language
Processing, Trento, Italy, April, 4-6.

Meteer, Marie W. (1991) "SPOKESMAN: Data Driven,
Object Oriented Natural Language Generation",
Proceedings of the Seventh IEEE Conference on Artificial
Intelligence Applications, Miami Beach, Florida,
February 26-28.

Meteer, Marie W. (1991) "Decision Making in Generation:
A Multi-leveled Approach", IJCAI-91 Workshop on
Decision Making throughout the Generation Process,
Sydney, Australia, August, 1991.

Meteer, Marie W., David D. McDonald, Scott Anderson,
David Forster, Linda Gay, Alison Huettner, Penelope
Sibun (1987) Mumble-86: Design and Implementation,
UMass Technical Report 87-87, 173 pgs.

Moens, Marc & Steedman, Mark (1988) "Temporal
Ontology and Temporal Reference" Computational
Linguistics, Vol.14, No. 2, p.15-28.

Nakhimovsky, Alexander (1988) "Aspect, Aspectual Class,
and the Temporal Structure of Narrative" Computational
Linguistics, Vol.14, No. 2, p.29-43.

Neumann, Bernd (1989) "Natural Language Description of
Time-Varying Scenes" in Semantic Structures, D. Waltz
(Ed.) Laurence Erlbaum Associates, New Jersey. p. 167-
206.

Novak, Hans-Joachim (1987) "Strategies for generating
coherent descriptions of object movements in street
scenes" in Natural Langauage Generation, G. Kempen
(Ed.) Marinus Nijoff Press. p. 117-132.

Pustejovsky, James (1992) "The Syntax of Event
Structure" Cognition, Vol. 41, 47-81.

Webber, Bonnie (1988) "Tense as Discourse Anaphor"
Computational Linguistics, Vol.14, No. 2, p.61-73.

107

