
D i s c o u r s e P l a n n i n g as an O p t i m i z a t i o n P r o c e s s

Ingrid Zukerman and Richard McConachy
Department of Computer Science, Monash University

Clayton, VICTORIA 3168, AUSTRALIA
emaU: {ingrid,ricky}@bruce.cs.monash.edu.au

phone: 't-61 3 905-5202 fax: --I--61 3 905-5146

A b s t r a c t . Discourse planning systems developed to date
apply local considerations in order to generate an initial pre-
sentation that achieves a given communicative goal. However,
they lack a global criterion for selecting among alternative
presentations. In this paper, we cast the problem of plan-
ning discourse as an optimization problem, which allows the
definition of a global optimization criterion. In particular,
we consider two such criteria: (1) generating the most con-
cise discourse, and (2) generating the 'shallowest' discourse,
i.e., discourse that requires the least prerequisite information.
These criteria are embodied in a discourse planning mecha-
nism which considers the following factors: (1) the effect of a
user's inferences from planned utterances on his/her beliefs,
(2) the amount of prerequisite information a user requires
to understand an utterance, and (3) the amount of infor-
mation that must be included in referring expressions which
identify the concepts mentioned in an utterance. This mecha-
nism is part of a discourse planning system called WISHFUL-
II which generates explanations about concepts in technical
domains.

1 I n t r o d u c t i o n

Schema-based Natural Language Generation (NLG) systems,
e.g., [Weiner, 1980; McKeown, 1985; Paris, 1988], determine
the information to be presented based on common patterns
of discourse. Goal-based planners, e.g., [Moore and Swartout,
1989; Cawsey, 1990], select a discourse operator if its pre-
scribed effect matches a given communicative goal. If there
is more than one such operator, the operator whose prereq-
uisite information is believed by the user is preferred. How-
ever, if all the candidate operators require the generation
of discourse that conveys some prerequisite information, the
selection process is either random or the system designer de-
termines in advance which operators should be preferred.

In this paper, we cast the problem of planning discourse
that achieves a given communicative goal as an application of
an optimization algorithm. This approach supports the defi-
nition of different optimization objectives, such as generating
(1) the most concise discourse; (2) the 'shallowest' discourse,
i.e., discourse that requires the least amount of prerequisite
information; or (3) the most concrete discourse, i.e., discourse
with the most examples. The resulting mechanism is part of
a discourse planning system called WISHFUL-II , which is a
descendant of the WISHFUL system described in [gukerman
and McConachy, 1993a].

Table 1 illustrates the discourse generated by our system
using the concise and the shallow optimization objectives.

Table 1. Sample Concise and Shallow 'Wallaby' Discourse
i C o n c i s e Discourse Shal low Discourse

W a l l a b i e s have a pouch , W a l l a b i e s a r e N a r s u p i a l s and
which i s l i k e a pocket , they come f rom L u s t r a l i a .

T h e y a r e l i k e k a n g a r o o s , They hop and t h e y a r e 3 f t .
bu t t h e y a r e 3 f t . t a l l . t a l l . W a l l y i s a u a l l a b y .

These texts were generated in order to convey the at tr ibutes
type, habitat, body parts, height and transportation mode
of the concept Wallaby to a user who owns a toy wallaby
calhd Wally, and knows something about kangaroos, but is
not familiar with the term pouch.

The concise discourse conveys most of the intended in-
formation by means of a Simile between wallabies and kan-
garoos. The Simile also yields the erroneous inference that
wallabies are the same height as kangaroos. To contradict
this inference, the system asserts that wallabies are 3 ft. tall.
Since the user does not know that kangaroos have a pouch,
this is asserted, and since the user does not know what a
pouch is, information which evokes this concept is presented.
The shallow discourse, on the other hand, uses Wally (the
toy wa.llaby) to convey the body parts of a wallaby without
naming them explicitly. This information is complemented
by Assertions about a wallaby's type, habitat , height and
t ransporta t ion mode.

In the next section, we present an overview of WISHFUL-
II. In Section 3, we describe the discourse plaaming mech-
anism. We then discuss the results we have obtained, and
present concluding remarks.

2 O v e r v i e w o f t h e S y s t e m
WISHFUL-I I receives as input a conceptto be conveyed, e.g.,
Wallaby, a list of aspects tha t must be conveyed about this
concept, e.g., habi ta t and body parts, and a desired level of
expertise the user should at tain as a result of the presenta-
tion.

WISHFUL-I I was used to generate descriptive discourse in
various technical domains, such as chemistry, high-school al-
gebra, animal taxonomy and Lisp. It produces multi-sentence
paragraphs of connected English text. The discourse plan-
ning mechanism, which is the focus of this paper, generates
a set of Rhetorical Devices (RDs), where each RD is a rhetor-
ical action, such as Assert, Negate or Instantiate, applied to
a proposition. This set of RDs is optimal with respect to a
given optimization criterion, e.g., conciseness or depth.

The following steps axe performed by WISHFUL-II .
1. C o n t e n t S e l e c t i o n - WISHFUL-I I consults a model of

the user 's beliefs in order to determine which propositions

37

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

must be presented to convey the given aspects of a concept.
This step selects propositions about which the user has
misconceptions, propositions that axe unknown to the user,
and propositions that are not believed by the user to the
extent demanded by the desired level of expertise.

2. G e n e r a t i o n o f t h e O p t i r a a l S e t o f R D s - WISHFUL-
II searches for a set of RDs that conveys the propositions
generated in the previous step while satisfying a given op-
t imization objective. The process of generating candidate
sets of RDs considers the following factors: (1) the effect of
inferences from an RD on a user's beliefs; (2) the amount
of prerequisite information required by the user to under-
s tand the concepts in an RD; and (3) the amount of in-
formation to be included in referring expressions which
identify the concepts in an RD.

3. D i s c o u r s e S t r u c t u r i n g - A discourse structuring mech-
anism extracts discourse rda t ions and constraints from the
set of RDs generated in Step 2. I t then generates an or-
dered sequence of the RDs in this set, where the strongest
relations between the RDs are represented and no con-
straints are violated. Where necessary, the RDs in this
sequence are interleaved with conjunctive expressions that
signal the relationship between them [Zukerman and Mc-
Conachy, 1993b].

4. G e n e r a t i o n o f A n a p h o r l c R e f e r r i n g E x p r e s s i o n s -
Anaphoric referring expressions are generated for RDs that
refer to a concept in focus. This process follows the or-
ganization of the discourse, since the appropriate use of
anaphora depends on the structure of the discourse.

5. D i s c o u r s e R e a l i z a t i o n - The resulting sequence of RDs
is realized in English by means of the Functional Unifica-
tion Grammar described in [Elhadad, 1992].

3 Genera t ing the Opt imal Set of RDs
The main stage of the optimization procedure consists of
generating alternative sets of RDs that can convey a set of
propositions. The first s tep in this stage consists of generating
candidate RDs tha t can convey each proposition separately.
To this effect, WISHFUL-I I reasons from the propositions de-
termined in the content selection step to the RDs that may
be used to convey these propositions. This reasoning mecha-
nism has been widely used in NLG systems, e.g., [Moore and
Swartout, 1989; Cawsey, 1990].

The process of generating a set of RDs tha t can convey a
set of propositions is not a straightforward extension of the
process of generating candidate RDs tha t can convey each
proposition separately. This is due to the foUowing reasons:
(1) an inference from an RD generated to convey a propo-
sition pl may undermine the effect of an RD generated to
convey a proposition pj; and (2) an RD generated to con-
vey a proposition pl may be made obsolete by an RD which
was generated to convey another proposition, but from which
the user can infer pi. Further, it is not sufficient to propose
a single set of RDs that can convey a set of propositions,
because a set of RDs that initially appears to be promising
may require a large number of RDs to convey its prerequi-
site information or to identify the concepts mentioned in it.
Thus, after generating the RDs that can convey each of the
intended propositions separately, the optimization procedure

must consider concurrently the following inter-related factors
in order to generate candidate sets of RDs that can convey

the intended propositions: (1) the effect of the RDs in a
set on a user's beliefs, (2) the prerequisite information that
the user must know in order to understand these RDs, and
(3) the referring expressions required to identify the concepts
mentioned in these RDs.

Owing to the interactions between the RDs in a set, the
problems of generating the most concise set of RDs and gen-
erating the shallowest set of RDs are NP-hard 1. Since this
level of complexity is likely to be maintained for other opti-
mization objectives, we have chosen a weak search procedure
for the implementation of the optimization process.

In the following sections, we describe the optimization pro-
cess as an application of the Graphsearch algorithm [Nilsson,
1980], and discuss the implementation of the main steps of
this algorithm.

3.1 The Basic Opt imizat ion P rocedure
Our optimization procedure, Optimize-RDs, receives as in-
put the set of propositions generated in the content selection
step of WISHFUL-II . I t implements a simplitied version of
the Graphsearch algorithm [Nilsson, 1980] to generate a set
of RDs that conveys these propositions and satisfies a given
optimization criterion. The discourse planning considerations
are incorporated during the expansion stage and the evalua-
tion stage of Graphsearch.

The expansion stage of our procedure activates algorithm
Ezpand-sets-of-RDs, which generates alternative minimally
sufficient sets of RDs tha t can convey a set of intended
propositions (S tep 5 in procedure Optimize.RDs). A set of
RDs is minimally sufficient if the removal of any RD causes
the set to stop conveying the intended information. Note that
a minimally sufficient set of RDs is not necessarily a min-
imal set of RDs. For example, both of the alternatives in
Table 1 are composed of minimally sufficient sets of RDs.
In this stage, the procedure also determines which prerequi-
site propositions must be known to the user to enable a set of
RDs to convey the intended propositions, and which referring
expressions are required to identify the concepts in a set of
RDs. During the evaluation stage, the procedure ranks each
set of RDs in relation to the other candidates, and prunes
redundant RDs (Step 7). Both the ranking process and the
pruning process consider the extent to which a set of RDs is
likely to satisfy a given optimization criterion.

Algorithm Op t im l ze -RDs({propositions})
1. Create a search graph G consisting solely of a s t a r t node s

which contains {propositions}. Put s in a list called OPEN.
2. LOOP: If OPEN is empty, exit with failure.
3. Select the first node in OPEN, remove it from OPEN. Call

this node n.
4. If n does not require prerequisite information or referring

expressions, then exit successfuUy (n is a goal node).
5. E x p a n s i o n : M *..- Ezpand-sets-oI-RDs(n).

Install the sets of RDs in M as successors of n in G.

I Finding a concise set of RDs that conveys a set of propositions
reduces to the Minimum Covering problem, and finding a shal-
low set of "RDs that conveys a set of propositions reduces to
Satisfiability [Gaxey and Johnson, 1979].

38

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

6. Add the successors of node n to OPEN.
7. E v a l u a t i o n : Reorder the nodes in OPEN and prune re-

dundant nodes according to the given optimization crite-
rion.

8. Go LOOP.

3.2 Expanding Sets of RDs
Procedure Expand-sets-of-RDs receives as input a node to
be expanded, and returns all the minimally sufficient sets
of RDs that convey the set of propositions in this node, ac-
companied by their respective prerequisite propositions and
referring expressions. We compute all the minimally suffi-
cient sets of RDs, rather than jus t the minimal set of RDs,
because a set of RDs tha t initially appears to be promising
may require a large number of RDs in order to convey its
prerequisite information or to identify the concepts in it.

Algorithm E x p a n d - s e t s - o f - R D s (n)

1. Determine RDs that increase a user's belief in each propo-
sition in node n. (Not all the RDs generated in this step
axe capable of conveying an intended proposition by them-
selves, but they may be able to do so in combination with
other RDs.) (S e c t i o n 3.2.1)

2. Use these RDs to construct minimally sufficient sets of
RDs tha t convey all the propositions in n jointly. Put these
sets of I~Ds in {A47~D}. (S e c t i o n 3.2.2)

3. Determine the prerequisite propositions required by each
set of RDs in {A4gD} so tha t the user can understand it.

(S e c t i o n 3.2.3)
4. Determine referring expressions which evoke the concepts

in each set of RDs in {.MT~D}. (S e c t i o n 3.2.4)

The output of Ezpand.sets-of.RDs takes the form of a set
of RD-Graphs. An RD-Graph is a directed graph tha t con-
tains the following components: (1) the set of propositions to
be conveyed (p l , . - - ,p ,~ in Figure 1); (2) a minimally suffi-
cient set of RDs (RD~,.. . , RDm); (3) the effect of the infer-
ences from the RDs in this set on the intended propositions,
and possibly on other (unintended) propositions (labelled
wid); (4) the prerequisite propositions that enable these RDs
to succeed (p~ ,p~); (5) the relations between the pre-
requisite propositions and the main RDs (in thick lines);
(6) the sets of RDs tha t evoke concepts in the main RDs
({RD m+l } , {RD m+t }); and (7) the relations between the
evocative sets of RDs and the main RDs (labelled vm+id)-
The main set of RDs and the relations between the RDs in
this set and the propositions to be conveyed are generated
in Step 2 above. The weight wid contains information about
the effect of RDi on the user 's belief in proposition pj. The
prerequisite propositions are generated in Step 3, and the
evocative sets of RDs and their corresponding links are pro-
duced in Step 4.

3.L1 Determining RDs
Given a list of propositions to be conveyed, {p}, in this
step we propose RDs that can increase a user's belief in
each of these propositions. To this effect, for each propo-
sition pi E {p} we first consider the following RDs: Asser-
tion (A), Negation (N) , Instantiat ion (I) and Simile (S),

w l a . ~, . ~ - - " ' P ~ v ~ + 1 , 1
, {

 {RD =+'}

~ . . / ~RD,~'r "- {RD ~+'1

Figure 1. An RD-Graph

where different Instantiations and Similes may be generated
for each proposition. For example, the proposition [Bracket-
Simplification step-1 + / -] may be instant ia ted with respect
to Numbers, e.g., 2(3 + 5) -- 2 × 8, and to Like Terms, e.g.,
2(3z + 5z) = 2 × 8z. Those RDs that increase a user 's belief
in pl are then put in a list called RD.list(pl). Next, for each
proposition pi, we consider the RDs in RD-list(pi). If an in-
ference from any of these RDs increases a user's belief in a
proposition pj # pi, this RD is added to RD.list(pj). In aA-
dition, if any of the generated RDs yields an incorrect belief
with respect to a proposition that is not in {p}, this propo-
sition is added to {p}, and the process of determining RDs
is repeated for this proposition in conjunction with the other
propositions in {p}. This is necessary because RDs tha t axe
used to convey this new proposition could affect other propo-
sitions previously in {p} and vice versa. This process stops
when no incorrect beliefs are inferred.

This process is implemented in algorithm Determine-RDs,
which receives three input parameters: (1) the propositions
for which RDs were generated in the previous recursive call
to Determine-RDs, (2) the propositions to be considered in
the current activation of Determine-RDs, and (3) the RD-list
generated in the previous recursive calls. I ts initial activation
is Determine-RDs(nil,{p}, nil), and its output is RD.list.

A l g o r i t h m Determine-RDs({oldp},{newp},RD-list)

1. B a c k w a r d r e a s o n i n g :
For each proposition p / G {newp} do:

(a) Consider the following RDs: Assert(pi) , Negate(~pi) ,
Ins tant ia te(pi , I) and Say-Simile(Oi,O), where the In-
stantiation is performed with respect to an instance I ,
and the Simile is performed between an object Oi, which
is the subject of proposition pl, and another object O ~.
(Note tha t several instances I and objects O may be
used to generate different Instantiat ions and Similes, re-
spectively.)

(b) Assign to RD-list(pi) the RDs tha t increase the user's
belief in pl.

2. F o r w a r d r e a s o n i n g :

(a) For each proposition pi E {newp} determine whether
any RD in RD.list(pi) supports other propositions in
{oldp} U{newp}. If so, add this RD to the RD-lists of
these propositions.

2 Other RDs that may be generated involve subclass or superclass
concepts of the target concept in an intended proposition. How-
ever, the generation of these RDs has not been incorporated into
WISHFUL-II yet.

39

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

(b) For each proposition pi ~ {oldp} determine whether any
RD in RD.list(pl) supports propositions in {newp}. If
so, add this RD to the RD-lists of these propositions.

(c) Append the propositions in {newp} to {oldp}.
(d) If any RD used to convey a proposition pi E {newp}

yields incorrect beliefs, then

i. Assign to {newp} the propositions which contradict
these beliefs.

if. Assign to RD-list the result returned by Determine-
RDs({oldp},{newp},RD-list)

3. Return(RD-list)

To illustrate this process, let us consider a situation where
we want to convey to the user the following propositions:
[Wallaby hop] and [Kangaroo hop]. In the first stage, our pro-
cedure generates two RDs tha t can convey the proposition
[Wallaby hop]: Asser t [Wal laby hop] and Ins t an t i a t e [Wal l aby
hop], where the Instantiat ion is performed with respect to a
wallaby called Wally that is known to the user. Our proce-
dure generates only the RD Asser t [Kangaroo hop] to convey
the proposition [Kangaroo hop] (an Instantiat ion is not gen-
era ted since the user is not familiar with any particular kan-
garoos). In the forward reasoning stage, the inferences from
these RDs axe considered. If the user knows that wall£bies
are similar to kangaroos, the RD generated to convey the
proposition [Kangaroo hop] can increase the user's belief in
the proposition [Wallaby hop], and is therefore added to the
RD-listof [Wallaby hop]. Similarly, the RDs generated to con-
vey [Wallaby hop] are added to the RD.listof [Kangaroo hop].
From the above Assertions the user may also infer incorrectly
tha t wombats hop. In this case, a proposition which negates
this incorrect conclusion, i.e., [Wombat -~hop], is assigned to
{newp}. The RDs that can convey this proposition in our ex-
ample axe Nega t e [Womba t hop] and I n s t a n t i a t e [W o m b a t
-~hop], where the Instantiat ion is performed with respect to
a wombat called Wimpy that is known to the user. These
RDs in turn may yield the incorrect inferences that neither
wallabies nor kangaroos hop, which contradict the intended
propositions. However, since the propositions that contradict
these inferences already exist in {oldp}, the process stops.

3.2.2 Constructing Minimally Sufficient Sets of RDs

In this step, we generate all the minimally sufficient sets of
RDs that can convey jointly all the intended propositions.
For each proposition pi, we first determine whether RDs that
were generated to convey other propositions can decrease a
user 's belief in pl. Next, for each RD in RD.list(pl), we deter-
mine whether it can overcome the detr imental effect of these
'negative ' RDs. This step identifies combinations of RDs that
cannot succeed in conveying the intended propositions. I t re-
sults in the following labelling of the RDs in RD-list: RDs
tha t cart overcome all negative effects are labelled with the
symbol Jail] (the only RDs tha t may be labelled in this man-
ner axe Assertions and Negations); RDs tha t cannot convey
an intended proposition by themselves are labelled with the
symbol [-]; RDs tha t can convey an intended proposition, but
cannot overcome any negative effects are labelled with [none];
and the remaining RDs are labelled with the negative RDs
they can overcome.

We then use a search procedure to generate all the sets
of RDs which consist of one RD from each RD.list. The
sets of RDs that convey all the intended propositions are
then stored in a list called SUCCEED; and the sets of RDs
that fall to convey one or more propositions axe stored in
a list called FAILED, together with the proposition(s) that
failed to be conveyed. Addi t ional minimally sufficient sets of
RDs axe then generated from FAILED as follows: we select
a proposition pi that was not conveyed, and create pairs of
RDs composed of the RD tha t failed to convey pi and each
of the other RDs in RD.list(pl) tha t is not labelled Jail] (the
RDs that are labelled Jail] can convey pi by themselves, and
therefore there is no need to combine them with other RDs).
Each pair of RDs inherits the negative RDs that can be over-
come by its paxents, and may be able to overcome additional
negative RDs which caused its parents to fail separately. For
each pair of RDs, a new set of RDs is created by replacing
the RD which failed to convey pi with this pair of RDs. The
search is then continued for each of these new sets of RDs
until a minimally sufficient set of RDs is generated or fail-
ure occurs again. In this case, the process of generating pairs
of RDs is repeated, and the seaxch is resumed. If a pair of
RDs fails, then it forms the basis for triplets, and so on. The
search stops when the RD.list of a proposition which failed
to be conveyed contains no RDs with which the failed RDs
(or RD-tuples) can be combined.

A l g o r i t h m Construct.sets-of-RDs({p}, RD-list)
1. Initialize two lists, SUCCEED and FAILED, to empty.
2. Determine- I~Ds(nil, {p } , nil).
3. For each proposition p~ E {p}

(a) Put in NegRDs(pl) all the RDs in RD-list tha t have a
negative effect on pi.

(b) Label each RD in RD-list(p~) according to the RDs in
NegRDs(pi) whose effect it can overcome. If there are
several RDs in NegRDs(pi) then all the combinations of
these RDs must be considered.

4. Exhaustively generate all the combinations of RDs con-
sisting of one RD from the RD-list of each proposition.
Consider the combined effect of several RDs to determine
whether a set of RDs conveys completely a set of proposi-
tions.

5. Append the successful combinations of RDs to SUCCEED,
and remove any sets of RDs in SUCCEED tha t subsume
other sets of RDs.

6. Append the failed combinations of RDs to FAILED to-
gether with the reason for the failure, i.e., the RDs that
failed and the propositions tha t were not conveyed.

7. If FAILED is empty, then exit.
8. Assign to CURRD the first set of RDs in FAILED, and

remove it from FAILED.
9. Select from CURRD a proposit ion pi tha t was not con-

veyed, and generate successors of CURRD as follows:

(a) Generate children of the RD tha t failed to convey pi by
combining it with other RDs in RD-list(pi) tha t axe not
labelled Jail].

(b) If the failed RD has no children in pl, then remove from
FAILED all the sets of RDs which failed when this RD
tried to convey pi, and go to Step 7.

40

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Table 2. Sample RDs (labelled)

Proposition RDs and labels
Pl: [Wallaby hop] A(pI) Jail]

I(pl) [none]
A(p2) [-]

P2: [Kangaroo hop] A(p2) Jail]
A(pl) [I(-p3)]
x(p~) [-]

"P3: [Wombat -~hop] i]~]'(P3) [A(pl)+I(p1), A(p2)]
I I('~p3) [I(pl), A(pI)]

(c) Attach to each combination of RDs the list of negative
RDs it can overcome.

(d) Create sets of RDs such that in each set the failed RD
is replaced with one of its children.

10. Go to Step 5.

To il lustrate this process, let us reconsider the example
discussed in Section 3.2.1. Table 2 contains the RD-lists for
the propositions in this example, where each RD is labelled
according to the RDs whose negative effect it can overcome.
For instance, Nega t e (p3) can overcome the combined nega-
tive effect of Asse r t (p~) and I n s t a n t i a t e (p z) , and also the
effect of Asse r t (p2) . However, it cannot overcome the com-
bined effect of Asse r t (p1) and Asse r t (p2) , or Asse r t (p2)
and I n s t a n t i a t e (p 1) . I n s t a n t i a t e (p x) can convey proposi-
tion pl , but cannot overcome any negative effects. Asser t (p2)
contributes to the belief in pl but cannot convey it alone.

Figure 2 contains part of the search tree generated in Step
4 of algorithm Construct-sets-o/-RDs. Each path in this tree
contains one RD from each row in Table 2. Successful paths
axe drawn with thick lines and are marked S. Failed paths are
marked F accompanied by the propositions which were not
conveyed by the RDs in these paths. An RD that increases
a user's belief in more than one proposition may appear in
a path more than once. The repeated instances of such an
RD appear in brackets, e.g., {Asser t (px)} , indicating that
the RD will be mentioned only once. In the successful path
to the left, Asse r t (p1) can overcome all negative effects to
convey p~. In addition, it can overcome the negative effect of
I n s t a n t i a t e (- , p 3) to convey p2, and I n s t a n t i a t e (- , p 3) can
overcome the negative effect of Asser t (p1) to convey ",p3.

A(pl)

A(p~) {A(p,))

/ \ / \
N(p~) I(-,p~) g(p~) I(--,p~)

F F F S

"nP3 "aP3 P2

I(pa)

/ \
N(p3) I(-~p3)

S F

"~p3

F igu re 2. Partial Sample Seaxdl Tree

Table 3. Sets of RDs after the Initial Search
1. Assert(p1) Instantiate(-~p3)

SUCOZSSFUL 2. Assert(p1) Instantiate(pl)
Negate(p3)

FAILED

3. Assert(pl) Assert(p2) "~P3
Negate(ps)

4. Assert(p1) Negate(p3) P2
5. Instantiate(pl) Assert(p2) "P3

Negate(p3)
6. In s t an t i a t e (p l) Assert(p2) "~P3

Instantiate(-,p3)
7. In s t an t i a t e (p l) Negate(p3) {Pi,P2}
8. Instantlate(pl) {Pl, P2 }

Instantiate(-,p3)
9. Assert(p2) Negate(p3) Pl

10. Assert(p2) Instantlate(-~p3) {Pl,'~P3}

In the successful path to the right, Asse r t (p1) together with
I n s t a n t i a t e (p l) overcome the negative effect of Nega t e (p3)
to convey p2, even though neither could do so by itself; and
N e ga t e (p3) can overcome the joint effect of Asser t (p1) and
I n s t a n t l a t e (p l).

Table 3 contains the successful minimally sufficient sets
of RDs generated by this search and the failed sets of RDs
accompanied by the propositions that were not conveyed.
In Step 9 of Construct-sets-o/-RDs, the RDs that failed to
convey a proposition axe combined with other RDs that can
increase the user 's belief in this proposition. For instance,
Nega t e (p3) is combined with Ins tan t la te (-~p3) for all the
paths where -~p3 failed to be conveyed, and the seaxch is
continued. Our procedure does not generate children from
repeated RDs tha t failed to convey a proposition, since this
would yield already existing combinations of RDs. Table 4
contains the minimally sufficient sets of RDs returned by al-
gori thm Gonstruet-sets-ofiRDs. Set 5-6 is obtained by com.-
plementing Set 5 in Table 3 with the RD Ins tan t ia te (-~p3) ,
and also by complementing Set 6 with the RD Nega te (p3) .
Addit ional successful sets of RDs are generated by append-
ing complen~entaxy RDs to the failed sets of RDs in Table 3.
However, these sets subsume Set I, 2 and 5-6, and hence axe
not minimally sufficient. For example, when Set 4 in Table
3 is complemented with Instantiate(pl), it yields a set of
RDs that is equal to Set 2. This set is removed in Step 5 of
Gonstruct-sets-of-RDs.

This process ensures that only minimally sufficient sets
of RDs are generated, because it generates RD-tuples only
from the unsuccessful RDs in the RD-list of a proposition,
and it prunes sets of RDs that subsume other sets of RDs. In
addition, this process ensures that all the minimally sufficient
sets of RDs axe generated, because it considers all the RD-
tuples resulting from the unsuccessful RDs in the RD.list of
a proposition.

Table 4. Minimally Sufficient Sets of aDs

1. Assert(p1) Instantiate(-~p3)
2. Asse r t (p l) Ins t an t i a t e (p l) Negate(p3)

5-6. I n s t an t i a t e (p l) Assert(p2) Negate(p3)
Ins tant ia te(- ,p3)

41

7th International Generation Workshop • Kennebunkport, Maine * June 21-24, 1994

3.2.3 Determining Prerequisite Propositions
The prerequisite propositions to be conveyed depend on the
user's expertise with respect to the concepts mentioned in
a set of RDs, and on the context where these concepts are
mentioned. The context influences both the aspects of these
concepts that must be understood by the user and the extent
to which these aspects must be understood.

The process of determining the relevant aspects of a con-
cept and the required level of expertise is described in [Zuk-
erman and McConachy, 1993a]. The relevant aspects of a
concept are determined by considering the predicates of the
propositions where a concept is mentioned, and the role of the
concept in these propositions. For example, in order to un-
derstand the RD Assert[Marsupial has-part pouch], the user
must know the aspects type and structure of a pouch, i.e.,
what i t is and what it looks like. The extent to which a user
must know the selected aspects of a concept depends on the
relevance of this concept to the original propositions to be
conveyed, i.e., the system demands a high level of expertise
with respect to the more relevant concepts, and a lower level
of expertise with respect to the less relevant ones.

After the relevant aspects and required level of expertise of
each concept have been determined, WISHFUL- I I applies the
content selection step described in Section 2 to determine the
prerequisite propositions of each concept. WISHFUL-I I then
merges into a single set the prerequisite propositions gen-
erated for individual concepts. This merger is executed be-
cause some prerequisite propositions of two or more concepts
may be conveyed by a single RD. A special case of this hap-
pens when two or more concepts have common prerequisite
propositions. For example, consider the si tuation depicted in
Figure 3, where prerequisite information for the set of RDs
{RD1,RD2} is being conveyed. RD1 requires the prerequi-
site propositions {pl,p2}, while RD2 requires the prerequi-
site propositions {p2, p3, p4 }. If we considered separately the
prerequisites of these RDs, we would generate RDs to con-
vey {pl,p2}, and {RD4,RDs} to convey {p2,pa,p4}. This
would result in a total of three RDs. However, by consider-
ing jointly all the prerequisite propositions of {RDi, RD2},
we will require two RDs only, namely {RD3, RDs}.

3.2.4 Evoking the Concepts in a Set of RDs
RDs that convey referring information differ from RDs that
convey prerequisite propositions in tha t the former identifies
a concept by means of information known to the user, while
the la t ter conveys information that the user does not know
about a concept. Further, the process of generating referring
information has the flexibility of selecting the propositions
tha t can identify a concept uniquely, while the propositions

F igure 3.

l P1 ~ RDz
RD1 P~ ~ 7

RD2 pz RD4
p4 RDs

Prerequisite Propositions of a Set of RDs

Table 5. Sample Referring Expressions
Concept Lexical Complemen t ing

I t e m Informat ion
Compl : Algebraic Terms

with one variable Like-Terms "Like Terms" CO~Ttp2 : expressions such as
2(3z + 4x)

Comp3: both Like Terms
Algebraic- "Algebraic and Unlike Terms
Terms Terms" Comp4 : expressions such as

2(3z-b 49) and 5(2z -1- 3z)

tha t convey prerequisite information are dictated by the con-
text and by the user 's expertise.

In order to generate referring expressions for the concepts
mentioned in a set of RDs, we propose for each concept a list
of candidate lexical i tems tha t can be used to refer to it. If
there is a lexical i tem tha t identifies each concept uniquely
and is known to the user, the evocation process is finished.
However, if there axe concepts tha t are not identified uniquely
by any of their candidate lexical items, then these lexical
i tems axe complemented with additional RDs that help them
identify the intended concepts. This task is performed by
iteratively selecting propositions that identify an intended
concept until this concept is singled out, and generating RDs
tha t convey these propositions. This algorithm differs from
the procedure described in [Dale, 1990] in tha t we generate
several alternative sets of complementing RDs in order to
avoid dead-end situations where the only identifying infor-
mation that is generated for a set of concepts is circular. The
evocation process then selects the most concise non-circulax
combination of referring expressions tha t identifies all the
concepts in a set of RDs. For example, Table 5 il lustrates
candidate referring expressions generated for the concepts
Like-Terms and Algebraic-Terms. Each referring expression is
composed of a lexical i tem and a complement 3 . The non-
circular alternatives in this example contain the complements
{Co~p~,Comp,}, {co~p~,Co~p~} and {Co~p~,Co~p,}

3.3 Two Optimization Criteria

As indicated in Section 3.1, the optimization criterion deter-
mines the manner in which the nodes in OPEN are ranked
and pruned. In our implementation we have tried two opti-
mization criteria: (1) conciseness and (2) depth.

3.3.1 Optimizing the Depth of the Generated RDs
When optimizing the depth of a set of RDs, the nodes in
OPEN are pruned according to the following rule:
IF Depth(hi) = Depth(n j) AND

{ Prerequisites-of(n/) D Prerequisites-of(n j) OR
{ Prerequisites-of(n/) = Prerequisites-of(hi) AND

{ IReferring-exp-of(ni)l > IReferring-exp-of(nj)[OR
{ IReferring-exp-of(n~)l = IReferring-exp-of(n~)l AND

Total-Weight(n/) > Total-Weight(hi) } } } }
THEN remove hi.

3 A referring expression may contain a null lexical item, i.e., com-
plementing information only. However, at present this option is
not generated by WISHFUL-II.

42

7th International Generation Workshop • Kennebunkport, Maine * June 21-24, 1994

Table 6. Prerequisite Propositions and Total Weight of
MinimaLly Sufficient Sets of RDs

Set of RDs Total
Weight

1. Assert(p1) Ins tant ia te(- ,ps) 2
2. Assert(p1) Ins t an t i a t e (p l) 2.5

Negate(ps)
5-6. Ins tan t i a te (p l) Assert(p2) 3.5

Negate(ps)Instantiate(-~ps)

P re requ i s i t e
P ropos i t ions
Pl l ,P I2 ,P13
P l i , P l 2 , P l 3~
PSl

P21

Psi

The tveight of a node reflects the number of RDs in this node
and their type. The total weight of a node is the sum of the
weights of the nodes in the path from the root of the search
tree to this node. All the RDs have a weight of 1, except an
Instantiation of a proposition p that accompanies an Asser-
tion of p or a Negation of ~p. Such an Instantiation has a
weight of 1 ~, because it does not contain new information,
rather it is a continuation of the idea presented in the As-
sertion or the Negation. For example, the Instantiat ion in
Set 1 in Table 6 has a weight of 1, because the instantiated
proposition is different from the asserted proposition. In con-
trust, in Set 2, the weight of the Instantiation is ½ because
it instantiates the asserted proposition.

The above rule is also applied after Step 4 of algorithm
Expand-sets-afiRDs to prune the list of minimally sufficient
sets of 1RDs (Section 3.2). I t removes a node if its prerequi-
sites subsume those of another node. It considers the number
of referring expressions of a node only when the same pre-
requisite propositions are required by two nodes, and con-
siders the total weight of a node only when two nodes have
the same prerequisite propositions and the same number of
referring expressions. This rule compares only nodes at the
same depth, because even if the prerequisites of a node at
level i subsume the prerequisites of a node at level i -t- 1, the
node at level i may lead to discourse that has depth i q- 1,
while the node at level i ÷ 1 can lead to discourse of depth
i -t- 2 at best.

To illustrate the pruning process let us reconsider the min-
imally sufficient sets of RDs in Table 4, assuming tha t the
prerequisite propositions required by these sets are as shown
in Table 64 . Here, the pruning rule removes Set 2, since its
prerequisite propositions subsume those of Set 1.

The nodes remaining in OPEN are ordered as follows:

1. In increasing order of their depth, so that we expand the
more shallow nodes first during the optimization process.

2. In increasing order of the number of prerequisite proposi-
tions they require, so that the nodes that contain the sets
of RDs with the fewest prerequisites are preferred among
the nodes at the same level.

3. In increasing order of the number of referring expressions
they have, so tha t the nodes with the fewest referring ex-
pressions are preferred among the nodes with the same
number of prerequisite propositions.

4. In increasing order of their total weight, so that the most
concise set of RDs is preferred when all else is equal.

4 The first coefficient of each prerequisite proposition indicates
the RD for which it is required, e.g., p i t is a prerequisite of
Asser t (pl) .

To il lustrate this process let us consider the minimally suf-
ficient sets of RDs that remain after pruning, namely Set 1
and Set 5-6, and assign them to nodes nl and ns -e respec-
tively. Since Set 5-6 has the fewest prerequisite propositions,
us-6 will precede nl in OPEN, and will be the next node
to be expanded by algorithm Optimize.RDs (Section 3.1). If
upon expansion of n s - s we find tha t there is a minimally
sufficient set of RDs that conveys propositions {p21 ,psi } and
requires no prerequisite information, then the node which
contains this set of RDs is a goal node, and the search is
finished.

3.3.2 Optimizing the Number of Generated RDs

When optimizing the total number of RDs to be presented,
the following rule is used to prune the nodes in OPEN:
IF Total-Weight(hi) > Tota l -Weight (h i) AND

Prerequisites-of(nl) D Prerequisites-of(n./)
THEN remove ni.

As in depth optimization, this rule is also applied after
Step 4 of algorithm Ea:pand-sets-of-RDs to prune the list of
minimally sufficient sets of RDs.

The nodes remaining in OPEN are sorted in increasing
order of their total weight.

To i l lustrate this process let us consider once more the
minimally sufficient sets of RDs in Table 6. Since the prereq-
uisite propositions of Set 2 subsume those of Set 1, and the
total weight of Set 2 is higher than that of Set 1, Set 2 is
removed in the pruning stage. The ordering of the remain-
ing nodes in OPEN is different from the ordering obtained
for the depth optimization, i.e., n l precedes ns -e in OPEN,
since the total weight of Set 1 is less than the total weight of
Set 5-6.

4 R e s u l t s

WISHFUL-I I was implemented using Common Lisp on a
SPARCstat ion 2 and on a PC-486. The system takes less
than 4 seconds of CPU time to produce English output, and
the optimization process alone takes less than 2 seconds for
discourse of up to 10 RDs. Table 1 in Section 1 and Table
7 (adapted from an example in [Moore and Swartout, 1989])
il lustrate the output generated by WISHFUL-I I for the two
optimization criteria we have implemented, viz conciseness
and depth. Appendix A contains examples of the output pro-
duced by WISHFUL-I I when the same discourse is generated
for the concise and the shallow optimization criteria.

Our mechanism can be used as a tool for evaluating differ-
ent discourse optimization criteria, where the only require-
ment for implementing a new criterion is the modification of
the pruning and ranking rules described in Section 3.3. When
WISHFUL-I I was tried with the two optimization criteria de-
scribed in this paper, it often generated the same discourse
with both criteria, i.e., the most concise discourse was also
the shallowest. However, the two optimization criteria pro-
duced different discourse when the most concise discourse
mentioned one or more concepts tha t were not known to the
user and therefore had to be explained, while the shallowest
discourse avoided these explanations by presenting a larger

43

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Table 7. Sample Concise and Shallow 'Lisp' Discourse
Concise Discourse Shal low Discourse

s e t q i s l i k e s e r f .

However , t h e f i r s t
a rgument of s e t q i s

no t a g e n e r a l i z e d
v a r i a b l e , which i s an
e x p r e s s i o n t h a t
references a storage

location. The first

argument of setq is

a simple variable.

setq takes two arguments.

The first argument of
s e t q i s a s i m p l e v a r i a b l e .

The s econd a rgument of
s e t q i s a v a l u e . The
o b j e c t i v e o f s e t q i s t o
a s s i g n t h e v a l u e t o t h e

v a r i a b l e . For e x a m p l e ,
(s e t q x ' (a b)) r e s u l t s

in x - - > ' (a b) .

number of RDs which mentioned different concepts. In par-
ticular, the concise discourse was characterized by the pres-
ence of Similes tha t required some in-depth clarification of a
non-source concept s, while the shallow discourse was chaxac-
terized by the presence of a Description composed of a list of
Assertions possibly accompanied by Instantiations.

5 Conclusion
In this paper, we have cast discourse planning as an opti-
mization process which generates discourse tha t satisfies a
specific optimization criterion. We have described a weak
search procedure tha t implements this process while taking
into consideration the following factors: (1) a user 's infer-
ences from proposed RDs, (2) the prerequisite information
required by the user to understand the concepts mentioned
in a set of RDs, and (3) the referring expressions required
to enable the user to identify these concepts. Two optimiza-
tion criteria have been considered, viz conciseness and depth.
The system which implements these ideas has been used to
generate descriptive discourse in various technical domains.

R E F E R E N C E S

A. Cawsey (1990), Generating Explanatory Discourse. In:
R. Dale, C. Mellish and M. Zock, eds., Current Research
in Natural Language Generation (Academic Press), pp. 75-
102.

I t . Dale (1990), Generat ing Recipes: An Overview of Epi-
cure. In: R. Dale, C. Mellish and M. Zock, eds., Cur-
rent Research in Natural Language Generation (Academic
Press), pp. 229-255.

M. Elhadad (1992), FUG: The Universal Unifier User Man-
ual Version 5.0, Technical Report, Columbia University,
New York, New York.

M.R. Garey and D.S. Johnson (1979). Computers and In-
tractability, A Guide to the Theory o] NP-Completeness
(W.H. Freeman and Company, San Francisco).

K. McKeown (1985), Discourse Strategies for Generating
Natural Language Text, Artificial Intelligence 27(1), pp.
1-41.

J.D. Moore and W.R. Swartout (1989), A Reactive Ap-
proach to Explanation. In: Proceedings o/ the Eleventh
International Joint Conference on Artificial Intelligence,
Detroit, Michigan, pp. 1504-1510.

s A source concept in a Simile is a concept from which the intended
information is drawn, e.g., kangaroo in Table 1 and setf in Table
7 are source concepts; pouch in Table 1 and generalized-variable
in Table 7 are non-source concepts.

N. Nilsson (1980), Principles o/ Artificial Intelligence (Tioga
Publishing Company, Pale Alto, California).

C.L. Paris (1988), Tailoring Object Descriptions to a User's
• Level of Expertise, Computational Linguistics 14(3), pp.

64-78.
J. Weiner (1980), Blab, A System Which Explains Its Rea-

soning, Artificial Intelligence 15, pp. 19-48.
I. Zukerman add R.S. McConachy (1993a), Generating Con-

cise Discourse tha t Addresses a User's Inferences. In: Pro-
ceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, Chaxnbery, France, pp. 1202-1207.

I. Zukerman and R.S. McConachy (1993b), An Optimizing
Method for Structuring Inferentially Linked Discourse. In:
Proceedings of the National Conference on Artificial Intel-
ligence, Washington, D.C., pp. 202-207.

Appendix A: Sample Output

Table 8. 'Racing car' Discourse
An i n d y c a r i s an Amer i can r a c i n g c a r . I t h a s a
v e r y p o e e r f u l e n g i n e , wide t i r e s , huge b r a k e s
and b i g w ings t o make l o t s o f d o w u f o r c e . L o t s
o f downforce h e l p s i t go a round c o r n e r s q u i c k l y ,

however l o t s o f d o g n f o r c e d o e s n o t h e l p i t go
straight quickly. A formula I car is like an

indycar, however a formula I car is a European

racin E car.

Table 9. 'DOS and UNIX' Discourse
DOS i s an o p e r a t i n g s y s t e m . I t h a s a command
l i n e i n t e r f a c e , wh ich i s an i n t e r f a c e where you

t y p e commands a t a t e x t p romp t , e . g . , m k d i r , I s .
I t i s a s i n g l e u s e r o p e r a t i n g s y s t e m and i t does
n o t a l l o w m u l t i t a s k i n g , which i s d o i n g more t h a n
one j o b a t a t i m e . UNIX i s l i k e DOS, however i t
i s a m u l t i u s e r o p e r a t i n g s y s t e m and does a l l o w
m u l t i t a s k i n g . Some UNIX commands a r e t h e same
a s DOS, e . g . , m k d i r , however some a r e d i f f e r e n t ,
e . g . , pwd. DOS r u n s on PC c o m p a t i b l e s . I n a d d i t i o n

t o PC c o m p a t i b l e s UNIX r u n s on w o r k s t a t i o n s .

Table 10. 'Document layout' Discourse
TEX i s a l a y o u t l a n g u a g e f o r documen t s . A l a y o u t

l a n g u a g e a l l o w s you t o c o n t r o l t h e a p p e a r a n c e of
o f your documen t , e . g . , t e x t s i z e and p l a c e m e n t . I t

u s e s embedded commands, e h i c h a r e commands p l a c e d
w i t h i n t h e documen t , e . g . , ~ a g e n o . These commands
a r e e x e c u t e d a f t e r y o u r document i s e d i t e d . T r o l l

i s l i k e TF~, however i t h a s d i f f e r e n t commands,
e . g . , .BP. A w o r d p r o c e s s o r a l s o a l l o w s you t o
c o n t r o l t h e a p p e a r a n c e o f your documen t , however

i t i s no t a l a y o u t l a n g u a g e . M o r d p r o c e s s o r s a l s o
u se embedded commands, however t h e y a r e n o t

e x e c u t e d a f t e r y o u r document i s e d i t e d , t h e y a r e
e x e c u t e d w h i l e y o u r document i s e d i t e d .

WordPe r f ec t i s a v o r d p r o c e s s o r .

44

