
E

D E F A U L T F I N I T E S T A T E M A C H I N E S
A N D F I N I T E S T A T E P H O N O L O G Y

Gerald Penn
Computational Linguistics Program

Carnegie Mellon University
Pittsburgh, PA 15213

Internet: penn@lcl.cmu.edu

Richmond Thomason
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260

Internet: thomason~isp.pitt.edu

Abstract

We propose DFSM's as an extension of finite state
machines, explore some of their properties, and in-
dicate how they can be used to formalize naturally
occurring linguistic systems. We feel that this im-
plementation of two-level rules may be more lin-
guistically natural and easier to work with eom-
putationally. We provide complexity results that
shed light on the computational situation.

I N T R O D U C T I O N

Two-level phonology combines the computational
advantages of finite state technology with a for-
malism that permits phenomena to be described
with familiar-looking rules. The problem with
such a scheme is that , in practice, the finite state
machines (FSM's) can grow too large to be man-
ageable; one wants to describe them and to run
them without having to deal with them directly.
The KIMMO approachlseeks to achieve this by
(I) decomposing the computational process into
a battery of parallel finite state machines and
(2) compiling rules (which notationally resemble
familiar phonological rules, but which axe inter-
preted declaxatively) into these parallel finite state
implementations. But the KIMMO formalism un-
fortunately gains no tractability in the process
of compilation. Moreover, the compiler is com-
plex enough to create software engineering prob-
lems, and this has led to practical difficulties,
which in turn have made the KIMMO technol-
ogy less generally available than one might wish.
IIere, we describe a different finite-state founda-
tion for two-level rules, involving generalizations
of FSM's which we call Default Finite State Ma-
chines (DFSM's). Whether or not this approach
remains intractable after compilation is an open
question; but even without compilation, we be-
lieve that it has some conceptual advantages as
well.

1See the discussion and references in (Sprout,
1992).

DFSM's extend FSM's (specifically, finite-
state transducers) so that transitions can be
context-sensitive, and enforce a preference for the
maximally specific transitions. The first change
allows phonological rules to appear as labels of
transition arcs in transducers; the second change
incorporates the elsewhere condition into the com-
putational model. 2 DFSM's can be implemented
directly, although there may be a method to com-
pile them into a more efficient machine. We be-
lieve that either approach will be feasible for re-
alistic linguistic applications (though, of course,
not in the theoretically worst case). In paxticu-
lax, the direct implementation of DFSM's is very
straightforward; no rule compiler is needed, since
rules are labels on the arcs of the machines them-
selves. This implementation may not provide an
optimal allocation of space and time usage at run
time, but we believe that it will be adequate for
testing and research purposes.

This presentation of DFSM's is confined to
defining the basic ideas, presenting some exam-
pies of linguistic description, and providing a par-
tial complexity analysis. In later work, we hope
to explore descriptive and implementational issues
further.

NOTATIONAL PRELIMINARIES
We assume an alphabet L, with a reserved symbol
0 ~ £ for insertions and deletions. A replacement
over £ is a pair of the form I = (1,1') where (1)
! E £ and (2) I I E £ or i I = 0; Replacements£
is the set of replacements over £. US-strings£ is
the set of strings over the set £2 U [£ x {0}] of
replacements.

2The elsewhere condition is built into an implemen-
tation (due to Karttnnen) of the TWOL rule compiler;
see (Dalrymple et al., 1993), pp. 28-32. But on this'
approach, default reasoning and the elsewhere condi-
tion are not employed at a level of computation that is
theoretically modeled; this reasoning is simply a con-
venient feature of the code that translates rules into
finite state automata.

33

We use roman letters to denote themselves:
for instance, T denotes the letter I. Boldface let-
ters denote constant replacements: for instance, I
is the pair (l,l). Moreover, ¢ is the empty string
over L~, and ~ is the empty string over the £ re-
placements. When the name of a subset of/2 (e.g.
C) is written in boldface, (e.g. C), the set of iden-
tity pairings is intended (e.g., C = {l:l/l E C}).

We use ordinary italics as variables over let-
~rs, and boldface italics as variables over replace-
ments and strings of replacements. Ordinarily, we
will use I for replacements and z, 7t for strings of
replacements. Finally, we use ' I:I" for the pair
(l,l ').

Where z E US-strings£, U-String(a,.) is the
underlying projection of z, and S-String(z) is its
surface projection. Tha t is, if z = (z ,z ') , then
U-String(z) = z and S-String(z) = x'.

R U L E N O T A T I O N A N D
E X A M P L E S

The rules with which we are concerned are like
the rewrite rules of generative phonology; they are
general, context-conditioned replacements. That
is, a rule allows a replacement if (1) the replace-
ment belongs to a certain type, and (2) the sur-
rounding context meets certain constraints.

If we represent the contextual constraints ex-
tensionally, as sets of strings, a rule will consist of
three things: a replacement type, and two sets of
US-Strings. Thus, we can think of a rule as a triple
(X, Y, F), where X and Y are sets of US-strings.
Imagine that we are given a replacement instance l
in a context (z, y), where z and y are US-strings.
This contextualized replacement (~, l, y) satisfies
the rule ifzEX, yE Y, andIEF.

For linguistic and computational purposes,
the sets that figure in rules must somehow be
finitely represented. The KIMMO tradition uses
regular sets, which can of course be' represented
by regular expressions, for this purpose. We have
not been able to convince ourselves that regular
sets are needed in phonological applications, a In-

aThe issue here is whether there are any linguis-
tically plausible or well-motivated applications of the
Kleene star in stating phonological rules. For instance,
take the English rule that replaces "e by 0 after a
morpheme boundary preceded by one or more con-
sonants preceded by a vowel." You could represent
the context in question with the regular expression
VC*C; but you could equally well use VC I VCC]
VCCC] VCCCC.The only way to distinguish the two
rule formulations is by considering strings that vio-
late the phonotactic constraints of English; but as far
as we can see, there are no intuitions about the re-
sults of applying English rules to underlying strings
like typppppe+ed. We do not question the usefulness

stead, we make the stronger assumption that con-
texts can be encoded by finite sets of strings. A
string satisfies such a context when its left (or
its right) matches one of the strings in this set.
(Note that satisfaction is not the same as mem-
bership; infinitely many strings can satisfy a finite
set of strings.) Assuming a finite alphabet, all re-
placement types will be finite sets. With these
assumptions, a rule can be finitely encoded as a
pair {(X, Y~, F), where the sets X and Y are fi-
nite, and F is s replacement type.

Rule encodings, rule applicability and satis-
faction are illustrated by the rule examples given
below. The ideas are further formalized in the
next section.

L a n g u a g e :

Let £ = { a , b , . . . , z , + , # , ' , i}

Declare the following subsets of £:

C = { b , c , d , f , g , h , j , k , l , m , n , p , q , r , s , t , v , w ,
x,y,z}

Csib = {s, x, z}

Example rules:

Example 1
Rule encoding: {d), {(+,0)})
Rule notation: + --~ 0 [
Rule description: Delete +.

Example 2
Rule encoding: ({C, {(+, 0)}), {(y, i)})
Rule notation: y --~ i / C _ + :0
Rule description: Replace y by i before a mor-
pheme boundary and after a constant US-
consonant, i.e. after (l,i), where ! E C.

Example 3
Rule encoding: (({sh}, {i ^ (# , O) / I E Csib}),

{(+,e)})
Rule notation: + --~ e / s h _ C s i b # : 0
Rule description: Keplace + with e after sh and
before a suffix in Csib.

E x a m p l e r u l e a p p l i c a t i o n s :

1. The rule encoded in Example 1 is satisfied by
(+,0) in the context (ca t , s) because (1) for
some •, ca t = z^e , (2) for some y, s = c ^y,
and (3) (+,0) e {{+,0)}.

of regular expressions in many computational applica-
tions, but are not convinced that they are needed in
a linguistic setting. We would be interested to see a
well motivated case in which the Kleene star is linguis-
tically indispensable in formulating a two-level phono-
logical rule. Such a case would create problems for the
approach that we adopt here.

34

2. The rule encoded in Example 2 is not satisfied
by (y,i) in the context (spot + : t , +:0 hess)
because there is no s such that spot + :t = ~e ~l,
where I E C.

3. The rule encoded in Example 3 is not satis-
fied by (+, 0) in the context (ash, s #:0) . In
fact, the context is satisfied: (1) sh = m-sh
for some :e and (2) s #:0 E Csib ~y for some
It. (3.1) Moreover, the underlying symbol of
the replacement (namely, +) matches the ar-
gument of the ~ule's replacement function. Un-
der these circumstances, we will say that the
rule is applicable. But the rule is not satis-
fied, because (3.2) the surface symbol of the re-
placement (namely, 0) does not match the value
of the rule's replacement function (namely, e):
thus, (+,0) ~[{(+,e)}.

INDEXED STRINGS AND RULES

We now restate the above ideas in the form of
formal definitions.

Def ini t ion 1. Context type.
A context type is a pair C = (X, Y), where X
and Y are sets of US-Strings.

Def ini t ion 2. Indexed US-strings.
An indexed US-String over £ is a triple
(as, l,y), where a,y E US.stringsr and I E
Replacementsr.

An indexed US-string is a presentation of a
nonempty US-string that divides the string into
three components: (1) a replacement occurring in
the string, (2) the material to the left of that re-
placement, and (3) the material to the right of it.
Where (as, I, y) is an indexed string, we call as the
left context of the string, I / the right context of
the string, and I the designated replacement of the
string.

A rule licenses certain sorts of replacements
in designated sorts of environments, or context
types. For instance, we may be interested in the
environment after a consonant and before a mor-
pheme boundary. Here, the phrase "after a con-
sonant" amounts to saying that the string before
the replacement must end in a consonant, and the
phrase "before a morpheme boundary" says that
the string after the replacement must begin in a
morpheme bound'ary. Thus, we can think of a
context type as a pair of constraints, one on the
US-string to the left of the replacement, and the
other on the US-string to its right. If we identify
such constraints with the set of strings that satisfy
them, a context type is then a pair of sets of US-
strings; and an indexed string satisfies a context
type in case its left and right context belong to the
corresponding types.

35

Def ini t ion 3. Replacement types.
A replacement type over £ is a partial function
F from £ U {0} to £ U {0}. (Thus, a replacement
type is a certain set of replacements.) Dora(F)
is the domain of F.

Def ini t ion 4. Rules.
A rule is a pair 7~ = (C, F) , where C is a context
type a n d / ' is a replacement type.

Def ini t ion 5. Rule applicability.
A rule ((X, Y), F) is applicable to an indexed
string (se, (i,l'), y) if and only if as E X, y ~ Y,
and F(l) is defined, i.e., i E Dom(F).

Defini t ion 6. Rule satisfaction.
An indexed string (as, i, y) satisfies a rule (C, F)
if and only if as E X, y E Y, and F (l) = l °.

The above definitions do not assume that the
contexts are finitely encodable. But, as we said, we
axe assuming as a working hypotheses that phono-
logical contexts are finitely encodable; this idea
was incorporated in the method of rule encoding
that we presented above. We now make this idea
explicit by defining the notion of a finitely encod-
able rule.

Def ini t ion 7. LeftExp(X), RightExp(X)
LeftExp(X) = { z ^ , / , E X}
Right~xp(X) = { ® ^ z / ® ~ X }

Defini t ion 8. Finite encodability
A subset X of US-strings j: is left-encoded by a
set U in case X = LeftExp(U), and is right-
encoded by 17 in case X = RightExp(V). (It is
easy to get confused about the usage of "left"
and "right" here; in left encoding, the left of
the encoded string is arbitrary, and the right
must match the encoding set. We have chosen
our terminology so that a left context type will
be left-encoded and a right context type will be
right-encoded.)
A context type C = (X, Y) is encoded by a pair
(U, V) of sets in case U left-encodes X and V
right-encodes Y.
A rule ~ = (C, F) is finitely encoded by a rule
encoding structure ((U, V),g) in case (U,V)
encodes C, g = F, and ff and V are finite.

In the following material, we will not only con-
fine our attention to finitely encodable rules, but
will refer to rules by their encodings; when the
notation ((X, Y), F~ appears below, it should be
read as a rule encoding, not as a rule. Thus, for
instance, the indexed string (cat, +:0, s I satisfies
the rule (encoded by) (({~}, {~}), {(+, 0)}), even
though cat ¢ {e}.

S P E C I F I C I T Y O F C O N T E X T
T Y P E S A N D R U L E S

We have a good intuitive grasp of when one con-
text type is more specific than another. For in-
stance, the context type preceded by a back vowel
is more specific than the type preceded by a vowel;
the context type followed by an obstruent is nei-
ther more nor less specific than the type followed
by a voiced consonant; the context type preceded
by a vowel is neither more nor less specific than
the type followed by a vowel.

Since we have identified context types with
pairs of sets of strings, we have a very natural way
of defining specificity relations such as "more spe-
cific than", "equivalent", and "more specific than
or equivalent": we simply use the subset relation.

De f in i t i on 9. C < C'.
Let C = (X1, Y1) and C' = (X2, Y2} be context
types. C < C' if and only if X~ C_ X~ and Yt C_
Y~.

D e f i n i t i o n 10. C _= C ~.
C =_ C' if and only if C < C' and C' _< C.

De f in i t i on 11. C < C ~.
C < C' if and only if C < C' and C I ~ C.

It is not in general true that if LeflEzp(X) C
LeflEzp(JO, then X C Y; for instance,
LeftExp({aa, ba}) C_ £eflExp({a}), but {aa, ba}
{a}. However, we can easily determine the speci-
ficity relations of two contexts from their finite
encodings:

L e m m a 1. LeflExp(X) C_ Lef lEzp(Y) iff for all
z E X there is a y E Y such that for some z, ffi =
z Ay. Similarly, RightExp(X) C RightExp(Y) iff
for all z E X there is a y E Y such that for some

Proof of the lemma is immediate from the def-
initions. It follows from the lemma that there is a
tractable algorithm for testing specificity relations
on finitely encodable contexts:

L e m m a 2. Let C be finitely encoded by {X1, X2)
and C' be finitely encoded by {YI, Y2). Then
there is an algorithm for testing whether C < C ~
that is no more complex than O(m × n x k), where
m = max(I Xxl, [.X21), n = max(I Yll, I Y zl), and k
is the length of the longest string in Y1 U Y2.

Proof. Test whether for each zl E X1 there
is a Yl E Yl that matches the end of zl . Then
perform a similar test on X2 and Y~.

D F S M ' S

A DFSM's transitions are labelled with finitely en-
codable rules rather than with pairs of symbols.
Moreover, nondeterminism is restricted so that in
case of conflicting transitions, a maximally spe-
cific transition must be selected. The critical def-
inition is that of minimal satisfaction of an arc
by an indezed path, where an indexed path repre-
sents a DFSM derivation, by recording the state
transitions and replacements that are traversed in
processing a US-String.

De f in i t i on 12. Arcs.
An arc over a set S of states and alphabet £ is
a triple A = (s, s l ,~) , where s , s I E S and 7~ is
a rule over / : .

De f in i t i on 13. DFSMs.
A DFSM on ~: is a structure .hd = {S, i ,T, .A},
where S is a finite set of states, i E S is the
initial state, T C S is the set of terminal states,
and .,4 is a set of arcs over S on £.

De f in i t i on 14. Paths.
A path ~" or ~r(s0, an) over .M from state so to
state sn is a string s011st l l . . . lnsn, where for
all m, 0 _< m _< n, sm is a state of .h4 and
lm E US-strings~c.

Remark I: n >_ 0, so that the simplest possible
path has the form s, where s is a state. Remark &
we use the notations ~r and ~r(s, s ~) alternatively
for the same path; the second notation provides a
way of referring to the beginning and end states
of the path.

De f in i t i on 15. Recovery of strings from paths.
Let lr = solzsz l l . . . lnsn . Then String(~') =
11 . . .1 . .

De f in i t i on 16. Indezed paths.
An indexed path over .Ad is a triple (%1, 7r')
where 7r, 7c' are paths, and l,n E US-strings£.
(Tr, 1, or') is an indexing of path a if and only if
o" --" ¢r ~l ~lr I.

De f in i t i on 17. Applicability of an arc to an in-
dezed path.

An are (u,u',7~) is applicable to an indexed
path {lr(s, t), 1, ~'~(s ~, t')} if and only if t = u and
the rule 7~ is applicable to the indexed string
(String0r), 1, String(~')).

Def in i t i on 18. Satisfaction of an arc by an in.
dezed path.

(~'(s, t), 1, r~(s ~, t~)) satisfies an are {u, u ~, ~) if
and only if t -- u, s ~ = u ~, and the indexed
string {String(~r), 1, String(~'~)) satisfies the rule

36

Defin i t ion 19. Minimal satisfaction of an arc by
an indezed path.

Ca',l, z") minimally satisfies an arc A = (s, s', 7~)
of.M i f and only if (a', 1, lr') satisfies A and there
is no state s" and arc A' = i s, s", ~ ') of Ad such
that A ' = (s, s ' , ' g ') is applicable to (a',l, a")
and ~ ' < g .

As we said, the above definition is the cru-
cial component of the definition of DFSM's. Ac-
cording to this definition, to see whether a DFSM
derivation is correct, you must check that each
state transition represents a maximally specific
rule application. This means that at each stage the
DFSM does not provide another arc with a com-
peting replacement and a more specific context.
("Competing" means that the underlying symbols
of the replacement match; a replacement competes
even if the surface symbols does not match the let-
ter in the US-String being tested.) 4

D e f i n i t i o n 20. Indezed path acceptance by a
DFSM.

M = (8, i ,T,.A) accepts an indexed path
(Tr, l ,z "~) if and only if there is an arc A I =
(s, s I, g~) of .M that is minimally satisfied by
(,~, I, 7r').

Def in i t ion 21. Path acceptance by a DFSM.
= (8, i, T, ,4) accepts a path a'(s, s ~) if and

only if .Ad accepts every indexing of ~', s = i,
and s' G T.

Def in i t ion 22. US-String acceptance by a DFSM.
.Ad accepts z E US-stringsr if and only if there
is a path ~r such that ,Ad accepts ~r, where z =
String(Jr).

Def in i t ion 23. Generation of SF from UF by a
DFSM.

.A4 generates a surface form z ' from an underly-
ing form z (where z and z ' are strings over £)
if and only if there is a a E US-strings£ such
that .Ad accepts z, where U.String(v) = z and
S-St r ing (v) = z ' .

E X A M P L E : S P E L L I N G R U L E S
F O R E N G L I S H S T E M + S U F F I X

C O M B I N A T I O N S

The following is an adaptation of the treatment in
Antworth (1990) of English spelling rules, which

4This use of competition builds some directional
bias into the definition of DFSM's, i.e., some prefer-
ence for their use in generation. Even if we are using
DFSM's for recognition, we will need to verify that
the recognized string is generated from an underlying
form by a derivatio~ that does not allow more specific
competing derivations.

in turn is taken from Karttunen and Wittenburg
(1983).

• .M = (S, i, T, A), where S = {i, s, t}. T = {t}.

- Task of i: Begin and process left word bound-
ary.

- Task of s: Process stem and suffixes.
- Task o f t : Quit, having processed right word

boundary.

• Remark: the small number of states is deceptive,
since contexts are allowed on the arcs. An equiv-
alent finite-state transducer would have many
hundreds of states at least.

• Remark: the relatively small number of arcs
enumerated below is also deceptive, since two
of these "arcs," are 3 and arc 13, are actually
schemes. In the following discussion we will
speak loosely and refer to these schemes as arcs;
this will simplify the discussion and should cre-
ate no confusion.

• Declare the foUowing subsets of £:
L t r = {a, b, c, d, e, f, g, h, i , j , k, 1, m, n, o, p, q, r

S, t~ U, V, W, X, y, Z)
C = {b,c, d, f, g, h,j, k, l, m, n, p, q, r, s, t ,v ,w,

x,y,z}
Csib = {s, x, z}
Opal = {c, g}
V = {a, e, i, o, u}
Vbk = (a, o, u};

Where s ,s ' E 8, let A,,,, = { A / A G A and
for some 7¢,A = (s, s', 'g)}. We present arcs
by listing the rules associated with the arcs, for
each appropriate pair (s, s') of states. We will
give each arc a numerical label, and give a brief
explanation of the purpose of the arc.

• Arcs in .Ai,, :

1. # ~ 0 / _
Delete left word boundary.

• Arcs in .A,,,:

2. + ---~ 0 / _ _
Delete morpheme boundary.

3. I - - ~ 1 / _ _ : l G L t r
Any underlying letter is normally unchanged.

4. ' ~ ' / _ _
Apostrophe is normally unchanged.

Stress is normally unchanged.

6. + ~ e / [C s i b l c h [s h [y:i]--s [+:0 I # :0]
Epenthesis before -s suffix.

37

7. y--~ i / C__ + :0
Spell y as i after consonant and before suffix.

8. y - ~ y / C _ + :0[i:i I ':']
Exception to Rule 7; cf. "trying", "fly's".

9. s ~ 0 / [+:0 I +:e]s + :0 ' -
Delete possessive's after plural suffix.

10. e --~ 0 / V C C + _ + :0 V
Elision. ~

11. e --~ e / V C + C p a l _ + : 0 V b k
Exception to Rule 10.

12. i --~ y / _ e : 0 + :0 i
Spell i as y before elided e before i-initial suf-
fix.

13. + ~ i / ' : O C + V i : l _ [V l y] :
1 E {b, d, g, l, m, n, p, r, t}

Gemination.

• Arcs in Ae,t:

14. # - . o / _
Delete right word boundary.

• I l l u s t r a t i o n s

I. The derivation that relates # k i s s + s # to
0kisses0 proceeds as follows.

1. Begin in state i looking at #:0.
2. Follow arc 2 to s, recognizing k:k. (This is

the only applicable arc.)
3. Follow arc 3 to s, recognizing i:i. (This is the

only applicable arc.)
4. Follow arc 3 to s, recognizing s:s. (This is the

only applicable arc.)
5. Follow arc 3 to s, recognizing s:s. (This is the

only applicable arc.)
6. Follow arc 6 to s, recognizing +:e. (Arc 2 is

also applicable here; but see the next illustra-
tion.)

7. Follow arc 3 to s, recognizing s:s. (This is the
only applicable arc.)

8. Follow arc 14 to f , recognizing #:0. (This is
the only applicable arc.)

II. No derivation relates #kiss+s# to 0kiss0s0.
Any such derivation would have to proceed like
the above derivation through Step 5. At the
next step, the conditions for two arcs are met:
arc 2 (replacing + with 0) and arc 6 (replac-
ing + with e). Since the context of the latter

~llere, C + can be any string of no more than four
consonants.

arc is more specific, it must apply; there is no
derivation from this point using arc 2.

III. The derivation that relates # t r y + i n g # to
0try0ing0 proceeds as follows.

1. Begin in state i looking at #:0.
2. Follow arc 2 to s, recognizing t:t. (This is the

only applicable arc.)
3. Follow arc 3 to s, recognizing r:r. (This is the

only applicable arc.)
4. Follow arc 8 to s, recognizing y:y. (There are

three applicable arcs at this point: arc 3, arc
7, and arc 8. However, arcs 3 and 7 are illegal
here, since their contexts are both less specific
than arc 8's.)

5. Follow are 2 to s, recognizing +:0. (This is
the only applicable arc.)

6. Follow arc 3 to s, recognizing i:i. (This is the
only applicable arc.)

7. Follow arc 3 to s, recognizing n:n. (This is
the only applicable arc.)

8. Follow arc 3 to s, recognizing g:g. (This is the
only applicable arc.)

9. Follow arc 14 to f , recognizing #:0. (This is
the only applicable arc.)

IV. No derivation relates # t r y + i n g # to
0tri0ing0. Any such derivation would have to
proceed like the above derivation through Step
3. At the next step, arc 7 cannot be traversed,
since arc 8 is also applicable and its context is
more specific. Therefore, no arc is minimally
satisfied and the derivation halts at this point.

C O M P U T A T I O N A L
C O M P L E X I T Y

We now consider the complexity of using DFSM's
to create one side of a US-string, given the other
side as input. There are basically two tasks to be
analyzed:

• D F S M G E N E R A T I O N : Given a DFSM, D,
over an alphabet, £, and an underlying form, u,
does D generate a surface form, s, from u?

• D F S M R E C O G N I T I O N : Given a DFSM, D,
over an alphabet, £, and a surface form, s, does
D generate an underlying form, u, from s?

These two tasks are related to the tasks of KIMMO
GENERATION and KIMMO RECOGNITION, the
various versions of which Barton et al. (1987)
proved to be NP-complete or worse.

R e l a t i o n s h i p t o K i m m o

The DFSM is not a generalization of KIMMO; it
is an alternative architecture for two-level rules.

38

KIMMO takes a programming approach; it pro-
vides a declarative rule formalism, which can be
related to a very large FS automaton or to a sys-
tem of parallel FSI automata. The automata are
in general too unwieldy to be pictured or managed
directly; they are manipulated using the rules. By
integrating rules into the automata, the DFSM
approach provides .a procedural formalism that is
compact enough to be diagrammed and manipu-
lated directly.

DFSM rules are procedural; their meaning de-
pends on the role that they play in an algorithm.
In a DFSM with many states, the effect achieved
by a rule (where a rule is a context-dependent re-
placement type) will in general depend on how the
rule is attached to states. In practice, however, the
proceduralism of the DFSM approach can be lim-
ited by allowing only a few states, which have a
natural morphonemic interpretation. The English
spelling example that we presented in the previ-
ous section illustrates the idea. There are only four
states. Of these, two of them delimit word process-
ing; one of them begins processing by traversing a
left word boundary, the other terminates process-
ing after traversing a final word boundary. Of the
remaining two states, one processes the word; all
of the rules concerning possible replacements are
attached to arcs that loop from this state to it-
self. The other is a nonterminal state with no arcs
leading from it. I n t h e example, the only purpose
of this state is to render certain insertions or dele-
tions obligatory, by "trapping" all US-strings in
which the operation is not performed in the re-
quired context.

In cases of this kind, where the ways in which
rules can be attached to arcs are very restricted,
tile proceduralism of the DFSM formalism is lim-
ited. The uses of rules in such cases correspond
roughly to two traditional types of phonological
constructs: rules that allow certain replacements
to occur, and constraints that make certain re-
placements obligatory.

Although DFSM's are less declarative than
KIMMO, we believe that it may be possible to
interpret at least some DFSM's (those in which
the roles that can~ be played by states are lim-
ited) using a nonmonotonic formalism that pro-
vides for prioritization of defaults, such as prior-
itized default logic; see (Brewka, 1993). In this
way, DFSM's could be equated to declarative, ax-
iomatic theories with a nonmonotonic consequence
relation. But we have not carried out the details
of this idea.

Though it is desirable to constrain the num-
ber of states in a DFSM, there may be appli-
cations in which we may want more states than
in the English example. For instance, one natu-

ral way to process vowel harmony would multiply
states by creating a word-processing state for each
vowel quality. Multiple modes of word-processing
could also be used to handle cases (as in many
Athabaskan languages) where different morpho-
phonemic processes occur in different parts of the
word.

I f they are desired, local translations of the
four varieties of KIMMO rules ° into DFSM's are
available, by using only one state plus a sink state.•
The following correspondences provide transla-
tions, in polynomial time, to one or more DFSM
a r c s :

Exclusion, u : s / ~ L C _ _ R C : an arc u
s / L C - - R C from the state to a sink state

Context Restr ict ion, u : s ~ L C _ - R C : a loop
u --~ s / L C _ _ R C , and an arc u --~ s / _ to a
sink state.

Surface Coercion, u : s ~ L C _ _ R C : a loop u
s / L C - - R C , and for each surface character s t E
£, an arc u --~ s t / L C . - - R C to a sink state.

Composite, u : s ¢~ L C . _ R C : all of the arcs
mentioned in Context Restriction or Surface Co-
ercion. :

E x t e n d e d D F S M ' s

The differences between KIMMO and DFSM's pro-
hibit the complexity analysis for the correspond-
ing two KIMMO problems from naturally extend-
ing to an analysis of DFSM generation and recog-
nition. In fact, we can define an extended D F S M
(E D F S M) , which drops the finite encodability re-
quirement that KIMMO lacks, for which we have
the following result:

T h e o r e m 1. EDFSM GENERATION is PSPACE-
hard

Proo f by reduction of REGULAR EXPRES-
SION NON-UNIVERSALITY (see Figure 1). Given
an alphabet E, and a regular expression, a ¢ ~b,
over E, we define an EDFSM over the alphabet,

U {$}, where $ ~ E. We choose one non-empty
string ceEL(a) of length n. The EDFSM first rec-
ognizes each character in a, completing the task
at state n0:

a l a l I (£ : £) * - - (£ : £) * 7

From no, there are two arcs, which map to different
states:

eSproat (1992), p. 145.
7Unlike with normal DFSM's, we will use reg,lar

expressions for the contexts themselves in EDFSM's,
not their encodings, since they may be infinite anyway.

39

2 ~ 2 / E*.._,~*
2 -~ 2 / (a + 2)__(a + 2)

where the latter rule traverses to some state 81,
with a being the expression which replaces each
atom, b, in a by its constant replacement, b:b,
and likewise for ~.

From Sl, the EDFSM then recognizes o~ again,
terminating at the only final state. We provide

this EDFSM, along with the input ot2o~ to EDFSM
GENERATION. This EDFSM can accept c~$ot if
and only if, at state so, the context (~3", ~*) is not
more specific than the context ((a + $), (a + 2)).
So, we have:

(~', ~ ') ¢ ((. + 2), (~ + 2))
(~ ' , ~ ') ~ ((~ + $) , (a+ 2))

or (z ' , ~*) =_ ((a + 2), (~ + $))
~. ~" ~ L(a + 2)
or Z* = L (a + $)

~* ~ L (a + 2), since $ ~ ~,
~* ~ L(a) U {$}
E* ~ L(a), since $ ~ ~,
~" ¢ L(.)

¢} L(a) # E* (we know L(a) C_ E*)

The translation function is linear in the size of the
input.~

Owrite ccu
, 10

i ~ ~" write ~:c~

(a+$) _ (a+$)

$ -> ~ z*k..J / x * _

Figure 1. EDFSM constructed in Theorem 1.

T h e C o m p l e x i t y o f DFSM GENERATION

Finite encodability foils the above proof tech-
nique, since one can no longer express arbitrary
regular expressions over pairs in the contexts of
rules. In fact, as we demonstrated above, there
is a polynomial-time algorithm for comparing the
specificities of finitely-encodable contexts. Finite
encodability does not, however, restrict the com-
plexity of DFSM's enough to make DFSM GEN-
ERATION polynomial time:

T h e o r e n l 2. I)I"SM GENERATION is NI L
complete.

Proof DFSM GENERATION is obviously in
NP. The proof of NP-hardness is a reduction of

3-SAT. Given an input formula, w, we construct
a DFSM consisting of one state over an alphabet
consisting of 0, 1, ~ , one symbol, u~, for each vari-
able in w, and one symbol, ej, for each conjunct
in w. Let m be the number of variables in w, and
n, the number of conjuncts. For each variable, ui,
we add four loops:

u, ~ 1 / # : # u1:£ . . . u~-1:£- - ,

u~ ~ 0 / # : # u1:£ . . . u~-1:£- - ,
u i -~ 1 / u/:l ui+l:£ . . . um:£ £:£

u1:£ . . . u l -x :£ - - ,
u~ ~ 0 / u~:0 u i + l : £ . . . u ,~:£ £:£

u1:£ . . . u~-x:£--

The first two choose an assignment for a variable,
and the second two enforce that assignment's con-
sistency. For each conjunct, Ijl V 1/2 V ljs, where
the l's are literals, we also add three loops, one
for each literal. The loops enforce a value of 1
on the symbol uj~ if lj~ is a positive literal, or 0,
if it is negative. For example, for the conjunct
ul V qua V u4, we add the following three rules:

cj -+ cj / u l : l u~:£ . . . um:£--
c~ ~ c~ / us:0 u4:£ . . . u , , : £ _ _

Cj --~ Cj / u4:l u5:£ . . . u m : £ - -

Thus, the input to DFSM GENERATION is
the above DFSM plus an input string cre-
ated by iterating the substring u l . . . u m c j
for each conjunct. The input string corre-
sponding to the formula, ('~ul V u2 V u4) A
(~u~ V us V'~u4) A (ul V u2 V us), would be
~ulu2usu4clulu2uau4e2ulu2uau4cs. The DFSM
accepts this input string if and only if the input
formula is satisfiable; and this translation is linear
i n m + n . D

C o m p i l a t i o n

Of course, we should consider whether the com-
plexity of DFSM GENERATION can be compiled
out, leaving a polynomial-time machine which ac-
cepts input strings. This can be formalized as the
separate problem:

• F I X E D - D F S M - G E N E R A T I O N : For some
DFSM, D, over alphabet, £, given an underly-
ing form, u, does D generate a surface form, s,
from u?

Whether or not FIXED DFSM GENERATION
belongs to P remains an open problem. It is, of
course, no more difficult than the general DFSM
GENERATION problem, and thus no more difficult
than NP-complete. The method used in tile proof
given above, however, does not naturally extend
to the case of FIXED DFSM GENERATION, since
we cannot, with a fixed DFSM, know in advance

40

. ,.,.:

how many variables to expect in a given input for-
mula, without which we cannot use the same trick
with the left context to preserve the consistency
of variable assignment.

Even more interestingly, the technique used in
the proof of PSPACFE-hardnees of EDFSM GEN-
ERATION does not naturally extend to fixed
EDFSM's either; thus, whether or not FIXED
DFSM GENERATION belongs to P is an open
question as well s. Dropping finite encodability, of
course, affects the compilation time of the problem
immensely.

N u l l s

The two proofs we have given remain valid
if we switch alll of the underlying forms with
their surface counterparts. Thus, without nulls,
EDFSM RECOGNITION is PSPACE-hard, DFSM
RECOGNTION is NP-complete, and, if FIXED
DFSM GENERATION is in P, then we can presum-
ably use the same compilation trick with the roles
of underlying and surface strings reversed to show
that FIXED DFSM RECOGNITION is in P as well.

If nulls are permitted in surface realizations,
however, DFSM RECOGNTION becomes much
more difficult, even with finite encodability en-
forced:

T h e o r e m 3. DFSM RECOGNTION with nulls is
PSPACE-hard.

Proof by reduction of CONTEXT-SENSITIVE
LANGUAGE MEMBERSHIP (see Figure 2). Given
a context-sensitive grammar and an input string
of length m, we let the input surface form to the
DFSM RECOGNTION problem be the same as the
input string. We then design a DFSM with an
alphabet equal to E U {$,!}, where ~ is the the
set of non-terminals plus the set of terminals. The
DFSM first copies each surface input symbol to
the corresponding position in the underlying form,
and then adds the pair $:0, completing the task
in a state So.

Having copied the string onto the underlying
side of the pair, the remainder of the recognized
underlying form will consist of rewritings of the
string for each rule application, and will be paired
with surface nulls at the end of the input string.
Each rewriting will be separated by a $ symbol,
and, as the string length changes, it will be padded
by ! symbols. For each rule a ~ #, we add a cycle
to the DFSM, emanating from state so, which first

sit is quite unlikely, however, since the reduc-
tion can probably be made with a different PSPACE-
complete problem, from which the NP-completeness
of FIXED EDFSM GENERATION would follow as a
corollary.

writes j copies of the ! symbol to the underlying
form, where j = b - a, b = Ifll, and a = l a l :

! -* 0 / ~:£(£:£ . . . ~ £:£)-- :.

j >_ 0 since the rules are context-sensitive.

copy string + $:0
to underly~gg

$:0 / !:L ... !:L write J l:O,sji=~ a S:L $:L_

(r l) O O L a->'_:r2)

recognize [3, write al~,.,L,~

' (r l) O

Figure 2. DFSM constructed in Theorem 3.
The cycle then copies part of the most recent

S-bounded string of symbols with a family of loops
of the form:

o" --+ 0 / o':£ (£:• ...m+j £ : £)-- (r l)

for each o" E ~. It then recognizes ~, and : wri tes
a, with:

~1 ~ 0 / (& : £ ...b & : £)
(£:£ . . . , , + j + l - b £:£)--,

followed by:

or2 - - 0 / - - ,

o<, --+ 0 / -

I t then copies the rest of the most recent g-
bounded string, using copy of the family of loops
in (rl), and then adds a new $ with a rule t h a t
also ensures that this second loop has iterated the
appropriate number of times by checking that the
length has been preserved:

$ -~ 0 / $:£ (£ :L. . .m L:L) " (r2)

The DFSM also has a loop emanating from so
which adds more ! symbols:

! -..+ 0 / h£ (£ : £ . . .m £ : £) -

All of the rule-cycles will use this to copy
previously-added ! symbols, as the string shrinks
in size. The proper application of this loop is also
ensured by the length-checking of (r2).

Finally, we add one arc to the DFSM from So
to the only final .state which checks that the final
copy of the string contains only the distinguished
symbol, S:

$ -* 0 / (h£ . . . ~ - I h£) S : £ $:£__

L , .

41 '

Thus, the DFSM recognises the surface form
if and only if there is a series of rewritings from the
input string to S using the rules of the grammar,
and the translation is linear in the size of the input
string times the number of rules. O

Since there exist fixed context-sensitive gram-
mars for which the acceptance problem is NP-
hard 9, the NP-hardness of FIXED DFSM RECOG-
NITION with nulls follows as a corollary.

CONCLUSION

We claimed that DFSM's provide an approach to
rules that is likely to seem more natural and in-
tuitive to phonologists. Bridging the gap between
linguistically adequate formalisms and computa-
tionally useful formalisms is a long-term, commu-
nity effort, and we feel that it would be premature
to make claims about the linguistic adequacy of
the approach; this depends on whether two-level
approaches can be developed and deployed in a
way that will satisfy the theoretical and explana-
tory needs of linguists. A specific claim on which
our formalism depends is that all natural two-level
phonologies can be reproduced using DFSM's with
finitely encodable rules. We feel that this claim is
plausible, but it needs to be tested in practice.

Computationally, our complexity work so far
on DFSM's does not preclude the possibility that
compilers for generation and recognition (with-
out nulls) exist which will allow for polynomial-
time behavior at run-time. Although this ques-
tion must eventually be resolved, we feel that any
implementation is likely to be simpler than that
required for KIMMO, and that even a direct imple-
mentation of DFSM's can prove adequate in many
circumstances. We have not constructed an imple-
mentation as yet.

Like other two-level approaches, we have a
problem with surface nulls. It is possible in
most realistic recognition applications to bound
the number of nulls by some function on the length
of the overt input; and it remains to be seen
whether a reasonable bound could sufficiently im-
prove complexity in these cases.

We have dealt with the problem of underlying
nulls by simply ruling them out. This simplifies
the formal situation considerably, but we do not
believe that it is acceptable as a general solution;
for instance, we can't expect all cases ofepentheses
to occur at morpheme boundaries. If underlying
nulls are allowed, though, we will somehow need to
limit the places where underlying nulls can occur;
this is another good reason to pay attention to a
phonotactic level of analysis.

9Garey and Johnson, (1979), p. 271.

A C K N O W L E D G E M E N T S

This material is based upon work supported under
a National Science Foundation Graduate Research
Fellowship. This work was funded by National
Science Foundation grant IRI-9003165. We thank
the anonymous referees for helpful comments.

R E F E R E N C E S

Evan Antworth. 1990. Pc-KIMMO: a two-
level processor for morphological analysis. Dallas,
Texas: Summer Institute of Linguistics.

Edward Barton, Robert Berwick, and Eric
Ristad. 19877. Computational Complezity and
Natural Language. Cambridge, Massachusetts:
MIT Press.

Gerhard Brewka. 1993. Adding priorities and
specificity to default logic. DMG Technical Re-
port. Sankt Augustin, Germany: Gesellschaft fdr
Mathematik und Datenverarbeitung.

Mary Dalrymple, Ronald Kaplan, Lanri Kart-
tunen, Kimmo Koskenniemi, Sami Shalo, and
Michael Wescoat. 1987. Tools for Morphological
Analysis. Stanford, California, 1987: CSLI Tech-
nical Report CSLI-87-108.

Michael Garey and David Johnson. 1979.
Computers and Intractability: A Guide to the
Theory of NP-completeness. New York, New
York: Freeman and Co.

Lanri Karttunen. 1991. "Finite-state con-
straints." International conference on current
issues in computational linguistics. Penang,
Malaysia.

Lauri Karttunen and Kent Wittenburg. 1983.
"A two-level morphological analysis of English."
Tezas Linguistic Forum ~ pp. 217-228.

Graeme Ritchie, Graham Russell, Alan Black
and Stephen Pulman. 1992. Computational mor-
phology. Cambridge, Massachusetts: MIT Press.

Richard Sproat. 1992. Morphology and com-
putation. Cambridge, Massachusetts: MIT Press.

42

