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Abstract 

This paper describes a "bootstrapping" method 
which uses a broad-coverage, rule-based parser to 
compute probabilities while parsing an untagged 
corpus of NL text, and which then incorporates 
those probabilities into the processing of the same 
parser as it analyzes new text. Results are reported 
which show that this method can significantly 
improve the speed and accuracy of the parser 
without requiring the use of annotated corpora or 
human-supervised training during the computation 
of probabilities. 

1 Introduction 

For decades, the majority of NL parsers have been 
"rule-based." In such parsers, knowledge about the 
syntactic structure of a language is written in the 
form of linguistic rules, and these rules are applied 
by the parser to input text segments in order to 
produce the resulting parse trees. Information 
about individual words, such as what parts-of- 
speech they may be, is usually stored in an online 
dictionary, or "lexicon," which is accessed by the 
parser for each word in the input text prior to 
applying the linguistic rules. 

Although rule-based parsers are widely-used in 
real, working NLP systems, they have the 
disadvantage that extensive amounts of (dictionary) 
data and labor (to write the rules) by highly-skilled 
linguists are required in order to create, enhance, 
and maintain them. This is especially true if the 
parser is required to have "broad coverage", i.e., if 
it is to be able to parse NL text from many 

different domains (what one might call '!general" 
text). 

In the last few years, there has been increasing 
activity in the computational linguistics community 
focused on making use of statistical methods to 
acquire information from large corpora of NL text, 
and on using that information in statistical NL 
parsers. Instead of being stored in the traditional 
form of dictionary data and grammatical rules, 
linguistic knowledge in these parsers is represented 
as statistical parameters, or probabilities. These 
probabilities are commonly used together with 
simpler, less specified, dictionary data and/or rules, 
thereby taking the place of much of the 
information created by sldlled labor in rule-based 
systems. 

Advantages of the statistical approach that are 
claimed by its proponents include a significant 
decrease in the amount of rule coding required to 
create a parser that performs adequately, and the 
ability to "tune" a parser to a particular type of text 
simply by extracting statistical information from 
the same type of text. Perhaps the most significant 
disadvantage appears to be the requirement for 
large amounts of training data, often in the form of 
large NL text corpora that have been annotated 
with hand-coded tags specifying parts-of-speech, 
syntactic function, etc. There have been a number 
of efforts to extract information from corpora that 
are not tagged (e.g., Kupiec and Maxwell 1992), 
but the depth of information thus obtained and its 
utility in "automatically" creating a NL parser is 
usually limited. 

To overcome the need for augmenting corpora with 
tags in order to obtain more useful inforrnation, 
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researchers in statistical NLP have experimented 
with a variety of strategies, some of which employ 
varying degrees of traditional linguistic abstraction. 
Su and Chang (1992) group words in untagged 
corpora into equivalence classes, according to their 
possible parts-of-speech. They then perform 
statistical analyses over these equivalence classes, 
rather than over the words themselves, in order to 
obtain higher-level trigram language models that 
will be used later by their statistics-based parser. 
Brown et al. (1992) have similarly resorted to 
reducing inflected word forms to their underlying 
lemmas before estimation of statistical parameters. 
Bnscoe and Carroll (1993) carry the use of 
traditional rule-based linguistics a step further by 
using a unification-based grammar as a starting 
point. Through a process of human-supervised 
training on a small corpus of text, a statistical 
model is then developed which is used to rank the 
parses produced by the grammar for a given input. 
A similar method of interactive training has been 
used by Simmons and Yu (1991) to produce 
favorable results. 

Beyond the realm of simply using traditional 
linguistics to enhance the quality of data extracted 
from corpora by statistical methods, there have 
been attempts to create hybrid systems that 
incorporate statistical information into already 
well-developed rule-based frameworks. For 
example, McKee and Maloney (1992) have used 
common statistical methods to extract information 
such as part-of-speech frequency, verb sub- 
categorization frames, and prepositional phrase 
attachment preferences from corpora and have then 
incorporated it into the processing in their 
knowledge-based parser in order to quickly expand 
its coverage in new domains. 

In comparing rule-based approaches with those 
which are more purely statistics-based, and 
including everything in between, one could claim 
that there is some constant amount of linguistic 
knowledge that is required to create an NL parser, 
and one must either code it explicitly into the parser 
(using rules), or use statistical methods to extract it 
from sources such as text corpora. Furthermore, in 
the latter case, the extraction of useful information 
from the raw data in corpora is facilitated by 

additional information provided through manual 
tagging, through "seeding" the process with 
linguistic abstractions (e.g., parts-of-speech), or 
through the interaction of human supervisors 
during the extraction process. In any case, it 
appears that in addition to information that may be 
obtained by statistical methods, generalized 
linguistic knowledge from a human source is also 
clearly desirable, if not required, in order to create 
truly capable parsers. 

Proponents of statistical metheds usually point to 
the data-driven aspect of their approach as enabling 
them to create robust parsers that can handle "real 
text." Although many rule-based parsers have been 
limited in scope, we believe that it is indeed 
possible to create and maintain broad-coverage, 
rule-based NL systems (e.g., Jensen 1993), by 
carefully studying and using ample amounts of data 
to refme those systems. It has been our experience 
that the complexity and difficulty of creating such 
rule-based systems can be readily managed if one 
has a powerful and comprehensive set of tools. 
Nevertheless, it is also clearly desirable to be able 
to use statistical methods to adapt (or tune) rule- 
based systems automatically for particular types of 
text as well as to acquire additional linguistic 
information from corpora and to integrate it with 
information that has been developed by trained 
linguists. 

To the end of incorporating statistics-based 
processing into a rule-based parser, we have 
devised a "bootstrapping" method. This method 
uses a rule-based parser to compute part-of-speech 
and rule probabilities while processing a large, non- 
annotated corpus. These probabilities are then 
incorporated into the very same parser, thereby 
providing guidance to the parser as it assigns parts 
of speech to words and applies rules during the 
processing of new text. 

Although our method relies on the existence of a 
broad-coverage, rule-based parser, which, as 
discussed at the beginning of this paper, is not 
trivial to develop, the benefits of this approach are 
that relevant statistical information can be obtained 
automatically from large untagged corpora, and 
that this information can be used to improve 
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significantly the speed and accuracy of the parser. 
This method also obviates the need for any human- 
supervised training during the parsing process and 
allows for "tuning" the parser to particular types of 
text. 

2 The Bootstrapping Method 

We use a broad-coverage, rule-based, bottom-up, 
chart parser as the basis for this work. It utilizes 
the Microsoft English Grammar (MEG), which is a 
set of augmented phrase structure grammar rules 
containing conditions designed to eliminate many 
potential, but less-preferred, parses. It seeks to 
produce a single approximate syntactic parse for 
each input, although it may also produce multiple 
parses or even a "fitted" parse in the event that a 
well-formed parse is not obtained. The 
"approximate" nature of a parse is exemplified by 
the packing of many attachment ambiguities, where 
phrases often default to simple fight attachment and 
a notation is made for further processing to resolve 
the ambiguity at a later point in the NLP system. 

The bootstrapping method begins by using the rule- 
based parser to parse a large corpus of untagged 
NL text. During parsing, frequencies that will be 
used to compute rule and part-of-speech 
probabilities are obtained. For rule probabilities, 
these frequencies in their simplest form include the 
number of times that each rule r creates a node n, 
in a well-formed parse tree and the total number of 
times that r was attempted (i.e., the sequence of 
constituents c~ ..... c~, that trigger r occurred in the 
chart and r's conditions were evaluated relative to 
those constituents). At the end of parsing the 
corpus, the former frequency is divided by the latter 
frequency to obtain the probability for each rule, as 
given in Figure ! below. The reason for using the 
denominator as given rather than the number of 
times ct ..... Cs occurs below n, in a parse tree is that 
it adjusts for the conditions on rules contained in 
MEG, which may allow many such sequences of 
constituents to occur in the chart, but only very few 
of them to occur in the final parse tree. In this 
case, the probability of a rule might be skewed in 
favor of trying it more often than it should be, 

unless the denominator were based on constituents 
in the chart vs. in the parse tree. 

(# times n r occurs in trees) 

P(r~Cl . . . . .  crn ) =  (#  times cl ..... c m occur in chart) 

Figure 1. Simple rule probability 

For part-of-speech probabilities, the frequencies 
obtained during parsing include the number of 
times a word w occurs having a particular part-of- 
speech p in a well-formed parse tree and the total 
number of times that w occurs. Once again, at the 
end of parsing, the former frequency is divided by 
the latter to obtain the simple probability that a 
word will occur with a particular part of speech, as 
given in Figure 2. 

p(plw) = (# times w occurs having p in trees) 

(# times w occurs in trees) 

Figure 2. Simple part-of.speech probability 

Since the choice was made to use the denominator 
for role probabilities given above, the part-of- 
speech probabilities must be normalized so that the 
two sets of probabilities are compatible and may be 
used together during the probabilistic algorithm 
described below. The normalization is achieved by 
multiplying each part-of-speech probability by the 
ratio of the average probability of all the rules over 
the average probability of all the parts of speech 
for all the words. This effectively lowers the part- 
of-speech probabilities into the same range as the 
rule probabilities, so that as the probabilistic 
algorithm proceeds, it will try lower probability 
parts of speech for words at a consistent point 
relative to the application of lower probability 
rules. 

After computing and normalizing the probabilities, 
they are incorporated into the same rule-based 
parser used to compute them. The parser is guided 
by these probabilities, while parsing any new input, 
to seek the most probable path through the parse 
search space, instead of taking the "all-paths" 
breadth-first approach it took when parsing without 
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the use of the probabilities. A simplified 
description of the chart parsing algorithm as guided 
by probabilities is given in Figure 3 below. The 
term record used in the algorithm may be likened to 
an edge in traditional chart parsing terminology. A 
part-of-speech record refers to an edge 
representing one (of possibly many) of the parts of 
speech for a given word. A list (PLIST below) of 
potential rule applications and part-of-speech 
records, sorted by probability in descending order 
(i.e., highest probability first), is maintained 
throughout the execution of the algorithm. The next 
most probable potential rule application or part-of- 
speech record is always located at the top of 
PLIST. 

1. Put all of the part-of-speech records for each 
word in the input into PLIST, forcing the 
probability of the highest probability part-of- 
speech record for each word to 1 (ensuring that 
at least one part-of-speech record for each 
word will be put into the chart immediately). 

2. Process the next most probable item in PLIST: 
a. If it is a potential rule application, remove it 

from PLIST and try the rule. If the role 
succeeds, add a record representing a new 
sub-tree to the chart. 

b, Otherwise, if it is a part-of-speech record, 
remove it from PLIST and add it directly 
to the chart. 

3. If a record was added to the chart in step 2, 
identify all new potential rule applications (by 
examining the constituent sequences in the 
chart), obtain their probabilities (from those 
that were computed and stored previously), and 
put them in their appropriate position in 
PLIST. 

4. Stop if a record representing a parse tree for 
the entire input string was generated or if 
PLIST is empty, otherwise go to step 2. 

Figure 3. Probability-directed chart parsing 
algorithm 

The PLIST in this algorithm is similar to the 
ordered agenda used in the "best first" parser 
described by Allen (1994). However, in contrast to 
Allen's parser, the probabilities used by this 
algorithm do not take into account the probabilities 
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of the underlying nodes in each subtree, which in 
the former case are multiplied together (on the 
basis of a pragmatically motivated independence 
assumption) to obtain a probability representative 
of the entire subtree. Therefore, this algorithm is 
not guaranteed to produce the most probable parse 
first. In practice, though, the algorithm does 
achieve good results and avoids having to deal with 
the problems that Allen admits are encountered 
when trying to apply a best-first strategy based on 
independence assumptions to a large-scale 
grammar. These include a rapid drop-off of the 
probabilities as subtrees grow deeper, causing a 
regression to nearly breadth-first searching. We 
desire instead to maintain parsing efficiency at the 
cost of potentially not generating some number of 
most probable parses, while still generating a large 
number of those that are most probable. The 
results reported below appear to bear this out. 

3 Discussion 

One potential disadvantage of the bootstrapping 
method is that the parser can reinforce its own bad 
behavior. However, this may be controlled by 
parsing a large amount of data, ~ and then by using 
only the probabilities computed for "shorter" 
sentences (currently, those less than 35 words) for 
which a single, well-formed parse is obtained (in 
contrast to those for which multiple or "fitted" 
parses are obtained). Our assessment thus far is 
that our parser generates straightforward structures 
for the large majority of such sentences, resulting in 
fairly accurate rule and part-of-speech 
probabilities. In many ways, this strategy is 
similar to the strategies employed by Hindle and 
Rooth (1993) and by Kinoshita et al. (1993) in that 
we rely on processing of less ambiguous data to 
provide information to assist the parser in 
processing the more difficult, ambiguous cases. 

Another factor in avoiding the reinforcement of bad 
behavior is our linguist's skill in making sure that 
the most common structures parse accurately. As 

t We have used the I million word Brown corpus to 
compute our current set of statistics, but anticipate 
using larger corpora. 



we evaluate the output of the probabilistic version 
of our parser, our linguist continues, in a principled 
manner, to add and change conditions on rules to 
correct problems with parse structures and parts- 
of-speech. We have just made changes to the 
parser that enable it to use one set of probabilities 
(along with the changes our linguist made on that 
base) during parsing while computing another set. 
This will allow us to iterate during the development 
of the parser in a rule-based/statistics-based cycle, 
and to experiment with the effects of one set of 
methods on the other. 

Also, the simple probabilities described in the 
previous section are only a starting point. Already, 
we have dependently conditioned the probabilities 
of rules on the following characteristics of the 
parse tree nodes generated by them: 

I. l, the length (in words) of the text covered by 
the node, divided by 5 

2. d, the distance (in words) that the text covered 
by the node is from the end of the sentence, 
divided by 5 

3. m, the minimal path length (in nodes) of the 
node 

The division of the first two conditioning factors by 
5 serves to lump together the values obtained 
during probability computation, thereby decreasing 
the potential for sparse data. The third factor, the 
minimal path length of a node, is defined as the 
smallest number of contiguous nodes that covers 
the text between the node and the end of the 
sentence, where nodes are contiguous if the text 
strings they represent are contiguous in the 
sentence. The rule probability computation, 
including these three conditioning factors, is given 
in Figure 4. The term "composite" in the 
denominator means that the specific li, di, and mi 

are computed as if the constituents ct ..... Cm were 
one node. 

Although these conditioning factors are not 
linguistically motivated in the theoretical sense, 
they have nevertheless contributed significantly to 
further improving the speed and accuracy of the 
parser. Results based on their use are provided in 
the next section. They were identified based on an 

inspection of the conditions in the MEG rules and 
how those rules go about building up well-formed 
parse tree structures (namely, right to left between 
certain clause and phrase boundaries). Through 
experimentation, it was confirmed that these three 
factors are all helpful in guiding the parser to 
explore the most probable linguistic structures in 
the search space in an order that is consistent with 
how the MEG rules tend to build these structures. 
Specifically, MEG tends to extend structures from 
right to left that are longer and span from any given 
word to the end of a clause, especially to the end of 
the sentence. The advantageous use of these 
conditions points to the importance of carefully 
considering various aspects of the existing rule set 
when integrating statistical processing within a 
rule-based parser. 

P(~Cl  . . . . .  c m , l i , d i , m i  ) = 

(# times n r with l i , d  i ,  and m i occurs in trees) , 

l # times c ! ..... c m with composite l i , d  i,  and m i 

) occur in chart 

Figure 4. Conditioned rule probability 

In the future, we anticipate conditioning the 
probabilities further based on truly linguistic 
considerations, such as the rule history or head 
word of a given structure. This has been suggested 
in works such as Black, et al. (1993). We also 
anticipate experimenting cautiously with various 
independence assumptions in order to decrease our 
parameter space as we increase the number of 
conditioning factors. In all of these endeavors, we 
will seek to determine the most beneficial interplay 
between the rule-based and statistics-based aspects 
of our system. 

4 Results 

We have used our parser to compute both simple 
and conditioned probabilities, as described above, 
during the parsing of the ! million word Brown 
corpus. In round numbers, this process took about 
34 hours on a 486/66 PC, for an average of 2.5 
seconds per sentence. There are about 55,000 
sentences in the Brown corpus, averaging 18 words 
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in length, but those over 35 words in length (more 
than 7,000) were not parsed, for the reasons given 
earlier. 

The probabilities thus computed were incorporated 
for use by the probabilistic algorithm of the parser, 
and the parser was then applied to two sets of 
selected sentences in order to evaluate the 
anticipated improvements in parsing speed and 
accuracy. The first set contained 500 sentences, 
averaging 17 words in length, and randomly 
selected from different sources, including articles 
from Time magazine and the Wall Street Journal, 
linguistic textbook examples, and correspondence. 
The efficiency of the parser in processing these 
sentences, both with and without probabilities, is 
documented in Table 1. 

No 
probabilities 
Simple 
probabilities 
Conditioned 

I probabilities 

Average 
records in 
chart 
364 

Average 
rules 
attempted 
12836 

Average 
parsing 
time ~secs) 
2.416 

238 6633 1.879 

2367 181 1.231 

Table 1. Comparison of parsing efficiency over 
500 sentences 

Useful measures of parsing efficiency include the 
total number of records in the chart when a parse is 
obtained or the parser otherwise stops, the number 
of rules aRempted for a given input string and, of 
course, the time required to parse a string 
(assuming a dedicated, non-multi-tasking computer 
system). On average, using the conditioned 
probabilities resulted in half as many records being 
placed in the chart during the processing of a 
sentence and a corresponding speed-up by a factor 
of 2. Rule attempts decreased by more than a 
factor of 5. A large number of sentences parsed 
many times faster than with the non-probabilistic 
algorithm, but this was tempered in the averaging 
process by a number of long sentences that parsed 

in nearly the same time, and on very rare occasions, 
slightly slower. 2 

In the probabilistic algorithm used in this 
evaluation, we also implemented a low-probability 
cutoff to stop the parser from continuing to apply 
rules after a certain number of rules (whose 
probability is less than the average probability of 
all the rules) had been attempted. This number is 
multiplied by the number of words in a sentence (to 
adjust for the obvious fact that more rule 
applications are needed for longer sentences) and 
has been determined experimentally by running the 
parser on sets of sentences and examining how 
often a well-formed (in contrast to "fiRed") parse is 
actually obtained after a certain number of less- 
than-average rules have been attempted. The 
parser currently produces a fired parse for just 
over 20% of the sentences in the first set described 
above. In practice, using this low-probability cutoff 
rarely increases the number of fitted parses 
obtained, and then only slightly (perhaps a 
percentage point or so). This is more than offset by 
the use of the probabilities which, due tO their 
positive effect on parsing efficiency, allow for the 
successful parsing of much longer and more 
complicated sentences without exhausting 
computational resources such as available 
computer memory. 

The second set of sentences on which the parser 
was evaluated contained 100 sentences, roughly 
half being randomly selected from a linguistic 
textbook and the other half from some Time 
magazine articles. Although the former half were 
fairly short (10 words/sentence), they exhibited a 
variety of linguistic structures, in contrast to the 
somewhat more straightforward, but longer (17 
words/sentence), sentences from the latter half. 
All the sentences in this set shared the 
characteristic that the parser produced two or more 
parses for each of them. The parse trees produced 
by the parser for these sentences were examined 
and it was determined whether the correct parse 

2 Slower parsing is actually possible, when the 
probabilities turn out to be useless for a given sentence, 
because of the overhead of maintaining and accessing 
the PLIST described in Figure 3. 
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was produced first by the probabilistic algorithm, 
using both simple and conditioned probabilities. 
For the non-probabilistic algorithm, the parse trees 
were ordered according to the degree of fight 
attachment they exhibited (i.e., deepest structures 
first). As shown in Table 2, the algorithm using 
conditioned probabilities selected the correct parse 
more than twice as often as simple right 
attachment. It is interesting to note that while the 
probabilistic algorithm performed somewhat better 
on the shorter textbook sentences than on the longer 
magazine sentences, fight attachment performed 
worse. This is most likely due to the wide variety 
of (not simple fight-branching) linguistic structures 
in the textbook sentences. 

No probabilities 
(ordered by degree 
of fight attachment) 
Simple 
probabilities 
Conditioned 
probabilities 

Linguistic 
textbook 

i sentences 
446) 
33% 

Tirne 
magazine 

I sentences Total 
!~54) (lO0) 
43% 38% 

74% 67% 

89% 76% 

70% 

82% 

Table 2. Comparison of correct parse selection 
over 100 sentences for which multiple parses 

are produced 

5 Conclusion 

We have described a "bootstrapping" method, 
which uses a broad-coverage, rule-based parser to 
compute probabilities while parsing a non- 
annotated corpus of NL text, and which 
incorporates those probabilities into the very same 
parser for use in analyzing new text. The results 
reported from an evaluation of this method show 
that it can significantly improve the speed and 
accuracy of the parser. A salient feature of this 
method is that it does not require the use of 
annotatod corpora or human-supervised training 
during the computation of the probabilities. 
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