
Exploring the Statistical Derivation
of Transformational Rule Sequences

for Part-of-Speech Tagging
Lance A. Ramshaw

Inst. for Research in Cognitive Science
University of Pennsylvania

3401 Walnut Street #412-C
Philadelphia, PA 19104-6228 USA
ramshaw@linc, cis. upenn, edu

and
Dept. of Computer Science

Bowdoin College
Brunswick, ME 04011 USA

Mitchell P. Marcus
Computer and Information Science Dept.

University of Pennsylvania
558 Moore Building

Philadelphia, PA 19104-6389 USA
mit oh@line, c i s . upenn, edu

Introduction
Eric Brill in his recent thesis (1993b) proposed an ap-
proach called "transformation-based error-driven learn-
ing" that can statistically derive linguistic models from
corpora, and he has applied the approach in various
domains including part-of-speech tagging (Brill, 1992;
Brill, 1994) and building phrase structure trees (Brill,
1993a). The method learns a sequence of symbolic rules
that characterize important contextual factors and use
them to predict a most likely value. The search for such
factors only requires counting various sets of events that
actually occur in a training corpus, and the method is
thus able to survey a larger space of possible contextual
factors than could be practically captured by a statis-
tical model that required explicit probability estimates
for every possible combination of factors. Brill's results
on part-of-speech tagging show that the method can
outperform the HMM techniques widely used for that
task, while also providing more compact and perspicu-
o.s models.

Decision trees are an established learning technique
that is also based on surveying a wide space of possible
factors and repeatedly selecting a most significant fac-
tor or combination of factors. After briefly describing
Brill's approach and noting a fast implementation of it,
this paper analyzes it in relation to decision trees. The
contrast highlights the kinds of applications to which
rule sequence learning is especially suited. We point out
how it, ma.ages to largely avoid difficulties with over-
training, and show a way of recording the dependencies
bt.tween rules in the learned sequence. The analysis
throughout is based on part-of-speech tagging exper-
iments using the tagged Brown Corpus (Francis and
K.eera, 1979) and a tagged Septuagint Greek version
of the first five books of the Bible (CATSS, 1991).

Brill 's Approach
This learning approach starts with a supervised train-
ing corpus and a baseline heuristic for assigning initial
values. In the part-of-speech tagging application, for
example, the baseline heuristic might be to assign each
known but ambiguous word whatever tag is most often
correct for it in the training corpus, and to assign all
unknown words an initial tag as nouns. (Brill's results
point out that performance on unknown words is a cru-
cial factor for part-of-speech tagging systems. His sys-
tem is organized in two separate rule sequence training
passes, with an important purpose of the first pass being
exactly to predict the part-of-speech of unknown words.
However, because the focus in these experiments is on
understanding the mechanism, rather than on compara-
tive performance, the simple but unrealistic assumption
of a closed vocabulary is made.)

The learner then works from those baseline tag as-
signments using a set of templates that define classes of
transformational rules, where each rule changes some
assigned values based on characteristics of the neighbor-
hood. Again, for tagging, the rule templates typically
involve either the actual words or the tags currently as-
signed to words within a few positions on each side of
the value to be changed. The rule templates used in
these experiments involve up to two of the currently-
assigned tags on each side of the tag being changed;
they include [- - C A/B] (change tag A to
tag B if the previous tag is C) and [- - - - A/B C D]
(change A to B if the following two tags are C and D).
During training, instantiated rules like [- - DET V/N
- - - -] are built by matching these templates against
the training corpus.

A set of such templates combined with the given part-
of-speech tagset (and vocabulary, if the rule patterns

86

also refer directly to the words) defines a large space of
possible rules, and the training process operates by us.
ing some ranking function to select at each step a rule
judged likely to improve the current tag assignment.
Brill suggests the simple ranking function of choosing
(one of) the rule(s) that makes the largest net improve-
ment in the current training set tag assignments. Note
that applying a rule at a location can have a positive
effect (changing the current tag assignment from incor-
rect to correct), a negative one (from correct to some
incorrect value), or can he a neutral move (from one
incorrect tag to another). Rules with the largest posi-
tive minus negative score cause the largest net benefit.
In each training cycle, one such rule is selected and ap-
plied to the training corpus and then the scoring and
selection process is repeated on the newly-transformed
corpus. This process is continued either until no bene-
ficial rule can be found, or until the degree of improve-
ment becomes less than some threshold. The scoring
process is tractable in spite of the huge space of possi-
ble rules because rules that never apply positively can
be ignored.

The final model is thus an ordered sequence of
pattern-action rules. It is used for prediction on a test
corpus by beginning with the predictions of the baseline
heuristic and then applying the transformational rules
in order. In our test runs, seven templates were used,
three templates testing the tags of the immediate, next,
and both neighbors to the left, three similar templates
looking to the right, and a seventh template that tests
the tags of the immediate left and right neighbors. The
first ten rules learned from a training run across a 50K-
word sample of the Brown Corpus are listed in Fig. 1;
they closely replicate Brill's results (1993b, page 96), al-
lowing for the fact that his tests used more templates,
including templates like "if one of the three previous
tags is A".

Brill's results demonstrate that this approach can
outperform the Hidden Markov Model approaches that
are frequently used for part-of-speech tagging (Jelinek,
1985; Church, 1988; DeRose, 1988; Cutting et al., 1992;
Weischedel et al., 1993), as well as showing promise for
other applications. The resulting model, encoded as
a list of rules, is also typically more compact and for
some purposes more easily interpretable than a table of
HMM probabilities.

An Incremental Algorithm
It is worthwhile noting first that it is possible in some
circumstances to significantly speed up the straight-
forward algorithm described above. An improvement
in our experiments of almost two orders of magnitude
(from four days to under an hour) was achieved by using
an incremental approach that maintains lists of point-
ers to link rules with the sites in the training corpus
where they apply, rather than scanning the corpus from
scratch each time. The improvement is particularly no-
ticeable in the later stages of training, when the rules

being learned typically affect only one or two sites isl the
training corpus. Note, however, that the linked lists ill
this incremental approach require a significant amount
of storage space. Depending on the number of possi-
ble rules generated by a particular combination of rul,.
templates and training corpus, space constraints may
not permit this optimization.

Incrementalizing the algorithm requires maintaining
a list for each rule generated of those sites in the corpus
where it applies, and a list for each site of the rules
that apply there. Once one of the highest-scoring rules
is selected, its list of site pointers is first used to make
the appropriate changes in the current tag values in
the corpus. After making the changes, that list is used
again in order to update other rule pointers that may
have been affected by them. It suffices to check each
site within the span of the largest defined rule template
from each changed site, testing to see whether all of
its old rule links are still active, and whether any new
rules now apply at that site. Our current algorithm is
shown in Fig. 2. Note that, after the initial setup, it
is necessary to rescan the corpus only when updating
uncovers a rule that has not previously had any positive
effect.

Rule Sequences and Decision Trees
To understand the success of Brill's new method, it is
useful to compare it with the decision tree approach
(Breiman et al., 1984; Quinlan, 1993), which is an
established method for inducing compact and inter-
pretable models. The key difference is that decision
trees are applied to a population of non-interacting
problems that are solved independently, while rule se-
quence learning is applied to a sequence of interrelated
problems that are solved in parallel, by applying rules
to the entire corpus. The following sections discuss how
this parallel approach allows leveraging of partial solu-
tions between neighboring instances, but also requires
that the rules themselves be largely independent. While
decision trees can synthesize complex rules from simple
tests, rule sequence learning requires those combina-
tions to be built into the templates.

Leveraged Learning
Decision trees are traditionally applied to independent
problem instances encoded as vectors of measurements
for the various possibly-relevant factors. In predict-
ing the part of speech of a word in a corpus, such .
factors would include the identities of the neighboring
words within some window. However, it would also be
useful to know the currently predicted tags for those
words, since the tag-assignment problems for neighbor-
ing words in a corpus are not independent. The rule se-
quence learning technique is particularly well adapted
to a corpus that is inherently a sequence of such inter-
related problem instances. Because the rule patterns in
a part-of-speech system do depend in part on tile un-
known part-of-speech values at neighboring locations,

87

Pass
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Rule Pos. Ne 9. Neu|.
m __ TO/ IN AT u 227 0 0

TO NN/VB - - u 113 13 0
- - TO/ IN NN - - 49 0 0

- - IN P P S / P P O - - 51 4 0
- - - - TO/ IN NP ~ 46 0 0

~ T O / I N PP$ - - 46 1 0
m C S / D T NN - - 52 I i l

HVD VBD/VBN ~ - - 38 0 0
~ CS/QL ~ CS 41 7 0

MD NN/VB m ~ 32 0 0

Figure 1: First 10 Rules Learned on Brown Corpus Sample

/ / R e c o r d s for locations in the corpus, called "sites",
/ / i n c l u d e a linked list of the rules that apply at that site.
/ / R e c o r d s for rules include score components (positive, negative, and neutral)
/ / a n d a linked list of the sites at which the rule applies.
/ / A hash table stores all rules that apply positively anywhere in the training.

scan corpus using templates, making hash table entries for positive rules
scan corpus again to identify negative and neutral sites for those rules
loop

high_rule := some rule with maximum score
if high_rule.score < = 0

then exit loop
output rule trace
for each change_site on high.xule.site_list do

apply high_rule at change_site by changing current tag
unseen_rules := 0
for each change_site on high_rule.site.list do

for each test_site in the neighborhood of change_site do
new_rules_list := NIL
for each template do

if template applies at test_site
then add resulting rule to new_rules.list

for each rule in test_site.rules.list - new_rules_list do
remove connection between rule and test_site

for each rule in new_rules_list - test_site.rules_list do
if rule in hash table

then make new connection between rule and test_site
else unseen_rules := unseen.rules O {rule}

if unseen_rules # 0 then
add unseen_rules to hash table
for each site in corpus do

for each rule in unseen_rules do
if rule applies at site then

make connection between rule and site
adjust appropriate rule score (positive, negative, or neutral)

end loop

Figure 2: Incremental Version of Rule Sequence Learning Algorithm

8 8

it seems useful to allow those patterns to be based at
each point on the system's best current guess for those
values. It is difficult to take account of that kind of
dependence in a traditional decision tree, since changes
in neighboring tag predictions can force the recompu-
tation of predicate splits higher in the tree. Breaking
the tag prediction process up into a series of rules that

• can each be applied immediately to the entire corpus is
a simple scheme that allows for that kind of leverage.
Much as when a bank compounds interest, this allows
the system to base its future learning on the improved
estimates of neighborhood tags resulting from the op-
eration of earlier rules.

A non-leveraged learner would have to build rules
or trees based only on the unchanging features of the
neighboring words and perhaps the baseline guesses of
their tags. In effect, such a learner would be forced to
try to resolve the ambiguity at the neighboring loca-
tion as part of the rule for the primary site, using as
evidence only cases where the two occur together. The
leveraging approach allows the system to factor the best
current guess for the neighboring site in terms of all the
evidence into the choice for the primary site. It is to
allow for leveraging that the model is formulated as a
sequence of individual rules.

Largely Independent Rules
This breaking up of the rule sequence model into largely
independent rules also results in another important dif-
ference between rule sequence learning and decision
trees. In the building of a decision tree, an elemen-
tary predicate is selected at each step to split a single
leaf node, meaning that it is applied only to those train-
ing instances associated with that particular branch of
the tree. The two new leaves thus created effectively
represent two new classification rules, each one select-
ing exactly the instances that classify to it, and thus
each including all of the predicates inherited down that
branch of the tree. In the rule sequence method, on the
other hand, the rules are generated from the templates
as they are applied to the whole corpus in a largely inde-
pendent manner; there is no corresponding inheritance
of earlier predicates down the branches of a tree.

Note that one could simulate the decision tree style
in a sequence learner by adding to the pattern for each
rule template a variable-length field that records the
complete history of rules which have affected that lo-
cation. Then, as in a decision tree, a rule generated at
one site in the training set would be scored only against
sites whose previous rule history exactly matched its
own. But rule sequence learning as defined here is not
sensitive in that way to the previous rule history.

The "largely independent" rules in the sequence
would be fully independent if the system were not do-
ing leveraging; if all rule patterns were tested each time
against the original baseline tag predictions, then there
would be no way for earlier rules to affect later ones in
the sequence. Leveraging does make later rules depen-

dent on the results of earlier ones, but it does so to a
strictly limited degree, which is generally much weaker
than the direct inheritance of rules down decision tree
branches.

To see the limitation, suppose that templates could
test the current tag of the word to be changed, but
could only consult the baseline tags for the rest of the
pattern. Earlier rule firings could then affect what rules
might later apply at a particular location only by chang-
ing the current tag assignment for that location itself
to one of the other possible tag values. Each rule fir-
ing would make potentially applicable at the locations
affected all rules whose central pattern element specify
that new tag value, while disabling those rules whose
patterns specify the old value. The training set at any
time during training would thus in effect be partitioned
for purposes of rule application into at most as many
classes as there are tags. Such a system can be pictured
as a lattice with one column for each tag assignment and
with a single slanting arc at each generation that moves
some corpus locations from one column to another.

While a decision tree path can encode an arbitrary
amount of information in its branching, this system is
forced to merge as often as it branches, which requires
the rules to be more independent. Furthermore, the
system's ability to use even the available partitioning in
order to construct dependent rule sequences is further
limited, since tag changes are only made when some
subset of the data is identified for which the new tag is
more representative of the training corpus; tile learner
is not free to use tag assignments to encode arbitrary
rule dependencies. Even in the actual system, where
the leveraging can include changes in the neighborhood
as well as at the location itself, the rule sequence mech-
anism still appears to have much less power to create
complex combined rules than do decision trees.

Because rule sequence learners are more limited in
terms of the connections between rules that they can
construct during training, they must begin with more
complex predicates built into their rule templates. If
the templates in a rule sequence run are not strong
enough to distinguish the important patterns in tile
data, performance will naturally suffer. But if the rule
templates that are likely to be useful can be predicted ill
advance, the rule sequence approach can benefit both
from leveraging and, as shown later, from decreased
fragmentation of the training set.

Scoring Metrics
This difference in organization between rule sequence
learning and decision trees carries through naturally to
the scoring methods used to select the next rule to ap-
ply. Decision trees often select the split which most
reduces either a diversity index or some measure based
on the conditional entropy of the truth given the tree's
predictions (Breiman et al., 1984; Quinlan and Rivest,
1989; Quinlan, 1993). Note that these metrics may se-
lect a split that does not change the score of the current

89

predictions against the truth, for instance by splitting
a node in such a way that both children still have the
same plurality class as the parent. Such a split may
still make sense in entropy terms if the distributions of
the other tags in the two new nodes are substantially
different, thus suggesting that later rules will have an
easier time isolating particular tag values. In a rule se-
quence learner, however, there is less likely to be any
advantage to such a split, since the instances whose tags
are changed by that rule will then be mixed with others
that were already assigned the new tag for other rea-
sons. The net benefit metric that is actually used in rule
sequence learning is equivalent in decision tree terms to
using the resubstitution estimate of the misclassifica-
tiou rate. While that metric is not ideal for decision
trees, it appears to work well for rule sequence learn-
ing, where the mechanism is strictly limited in terms of
the connections between rules that it can construct.

O v e r t r a i n i n g

It is particularly interesting to compare rule sequences
with decision trees in terms of the risk of overtrain-
ing (or "overfitting"). One of the intriguing features of
rule sequence learning is its apparent resistance to over-
trai,ing. For example, Fig. 3 shows the graph of per-
cent correct on both training set (solid line) and test set
(dotted line) as a function of the number of rules applied
for a typical part-of-speech training run on 120K words
of Greek text. The training set performance naturally
improves monotonically, given the nature of the algo-
riti~m, but the surprising feature of that graph is that
the test set performance also improves monotonically,
except for minor noise, and this seems to be true for
the great majority of our rule sequence training runs.
This is in marked contrast to similar graphs for deci-
sion trees or neural net classifiers or for the iterative EM
training of HMM tuggers on unsupervised data, where
performance on the test set initially improves, but later
significantly degrades.

Experiments suggest that part of the difference is due
to knowledge embodied in the templates. When a part-
of-speech training run is supplied with relevant tem-
plates, as in Fig. 3, one gets an "improve to plateau"
test-set curve. Irrelevant templates, however, can lead
to overtraining. Fig. 4 shows that noticeable overtrain-
ing results from using just a single irrelevant template,
in this case, one that tested the tags of the words five
positions to the left and right, which seem likely to be
largely uncorrelated with the tag at the central location.

l"ig. 5, where the single irrelevant template is com-
bia,ed with the seven normal templates, shows that in
such cases, most of the overtraining happens late in
the training process, when most of the useful relevant
templates have already been applied. At that stage,
as always, the templates are applied to each remain-
i ,g incorrectly-tagged site, generating candidate rules.
I,~ach r,h, imturally succeeds at the site that proposed
it, h , t most are now effectively random changes, which

are thus likely to do more harm than good when tried
elsewhere, especially since most of the assigned tags
at this stage are correct. Thus if the rule's pattern
matches elsewhere in the training set, it is quite likely
that the change there will be negative, so that the un-
helpful rule will not be learned. Thus the presence of
relevant templates supplies an important degree of pro-
tection against overtraining from any irrelevant tem-
plates, both by reducing the number of incorrect sites
that are left late in training and by raising the percent-
age already correct, which makes it more likely that bad
rules will be filtered out. The same applies, of course,
to relevant and irrelevant instances of mixed templates,
which is the usual case.

Most of the overtraining will thus come from patterns
that match only once in the training set (to their gen-
erating instance). Under these assumptions, note that
applying a score threshold > 1 can significantly reduce
the overtraining risk, just as decision trees sometimes
control that risk by applying a threshold to the entropy
gain required before splitting a node. Brill's system
uses a score threshold of 2 as the default, thus gaining
additional protection against overtraining, while our ex-
perimental runs have been exhaustive, in order to better
understand the mechanism.

Using test runs like those plotted above for irrele-
vant templates of various degrees of complexity, we also
found a connection in terms of overtraining risk between
the inherent matching probability of the templates used
and the size of the training set. A large training set
means a larger number of incorrect sites that might en-
gender overtrained rules, but also a better chance of
finding other instances of those rule patterns and thus
filtering them out. The combination of those factors
appears to cause the risk of overtraining for a partic-
ular irrelevant template to first rise and then fall with
increasing training set size, as the initial effect of in-
creased exposure is later overcome by that of increased
filtering from further occurrences of the patterns.

In comparing this with decision trees, the key con-
trust is that the filtering effect there decreases as train-
ing proceeds. The splitting predicates there are applied
to increasingly small fragments of the training set, so
that the chance of filtering counterexamples also de-
creases. (To put it in decision tree terms, with few
points left in the rectangle being split, it becomes more
likely that an irrelevant predicate will incorrectly ap-
pear to provide a useful split.) But since rule sequence
learning continues to score its essentially independent
rules against the entire training set, the protection of
filtering against overtraining remains stronger. Giving
up the power to synthesize new rules thus provides an
overtraining payoff as well as a leverage one.

Rule I n t e r d e p e n d e n c e

While the connections between rules in a rule sequence
are more limited than the inheritance of rule ancestors
found in decision trees, it is still interesting to be able

90

o
o

03
03

03

r,,,
03

03
i ! ! ! !

0 200 400 600 800 1000

Figure 3: Training Set (solid line) and Test Set (dotted line) Performance on Greek Corpus

0
0
' q l " "

03
03

03

03

¢.0
03

! ! ! ! i

0 200 400 600 800 1000

Figure 4: Training with 1 Irrelevant Template on Greek Corpus

91

o
o

03
03

¢0
03

r,,..
03

03

I

; i i ! ; i i

0 200 400 600 800 1000 1200

Figure 5: Training with 7 Relevant and 1 Irrelevant Templates

to characterize and quantify the rule dependencies that
are present. We have therefore added code that keeps
track, whenever a rule is applied at a site, of a depen-
dency tree showing the earlier rule applications that
that rule depends on. For example, the dependency
tree from the Brown Corpus data in Fig. 6 shows a case
where the last rule that applied at this particular site
(the bottom line in the figure, representing the root of
the tree), which changed JJ to RB, depended on earlier
rules that changed the previous site (relative position
- 1) to VBN and the following one (position +1) to
DT. (The final number on each line tells during what
pass that rule was learned. While recorded internally
as trees, these structures actually represent dependency
DAGs, since one rule application may be an ancestor of
another along more than one path.) All sites start out
~qsigned a null dependency tree representing the base-
line heuristic choice. The application of a rule causes
;t new tree to be built, with a new root node, whose
children are the dependency trees for those neighboring
locations referenced by the rule pattern. At the end of
the training run, the final dependency trees are sorted,
sl.ructurally similar trees are grouped together, and the
cla.~s~.s are then sorted by frequency and output along
wi th the list of rules learned.

(' , 'rtain common classes of dependency can be noted
iu t.ht, r,'sulting trees. ('.orrectiou rules result when one
rnh, inak~,s an; overly gem~ral change, which affects not
- , l y apl~rol~riate sites, but also inappropriate ones, so
that a later rule in the sequence undoes part of the

earlier effect. One dependency of this type from our
Brown Corpus run can be seen in Fig. 7. Here the
first rule was the more general one that changed PP$
to PPO whenever it follows VBD. While that rule was
generally useful, it overshot in some cases, causing the
later learning of a correction rule that changed PPO
back to PP$ after RB VBD.

Chaining rules occur in cases where a change ripples
across a context, as in Fig. 8. The first rule to apply
here (21) changed QL to AP in relative position +2.
That change enabled the RB to QL rule (181) at po-
sition +1, and together those two changes enabled the
root rule (781). Note that this two-step rule chain h a s
allowed this rule to depend indirectly on a current tag
value that is further away than could be sensed in a sin-
gle rule, given the current maximum template width.

The dependency tree output also shows something of
the overall degree and nature of rule interdependence.
The trees for a run on 50K words of the Brown Corpus
bear out that rule dependencies, at least in the part-
of-speech tagging application, are limited. Of a total
of 3395 sites changed during training, only 396 had de-
pendency trees with more than one node, with the most
frequent such tree appearing only 4 times. Thus the
great majority of the learning in this case came from
templates that applied in one step directly to the base-
line tags, with leveraging being involved in only about
12% of the changes.

The relatively small amount of interaction found be-
tween the rules also suggests that the order in which

9 2

(7)
(8)

(649)

o

Figure 6: Sample Dependency Tree from Brown Corpus Data

0: - - VBD PP$ /PPO (30)
0: RB VBD PPO/PP$ (174)

Figure 7: Sample Correction Class Dependency Tree from Brown Corpus Data

+2: - - - - QL/AP CS - - (21)
+ I : RB/QL AP CS (181)

0: NNS/VBZ QL AP (781)

Figure 8: Sample Chaining Class Dependency Tree from Brown Corpus Data

o

03
03

0o
03

r,..
03

¢,D
03

i i ! !

0 500 1000 1500

+1: ~ - - C D / D T NN - -
- 1 : - - HVD VBD/VBN - -

0: , - - VBN J J / R B DT - -

Figure 9: Training and Test Set Performance on Greek, Random Rule Choice

9 3

the rules are applied is not likely to be a major factor
in the success of the method for this particular appli-
cation, and initial experiments tend to bear this out.
["ig. 3 earlier showed a training run on Greek text using
the largest net benefit choice rule that Brill proposes.
Note that, on this Greek corpus, the initial baseline
level of choosing the most frequent training set tag for
each word is already quite good; performance on both
sets further improves during training, with most of the
improvement occurring in the first few passes. In com-
parison, Fig. 9 gives the results for a training run where
the next rule at each step was randomly selected from
amoug all rules that had a net positive effect of any size.
While tim progress is more gradual, both the training
and test curves reach very close to the same maxima
under these conditions as they do when the largest net
I)enefit rule is chosen at each step. Note that it does
take more rules to reach those levels, since the ran-
dora training frequently chooses more specific rules that
would have been subsumed by more general ones cho-
sen later. Thus the largest net benefit ranking criterion
is a useful one, particularly if one wants to find a short
initial subsequence of rules which achieves the bulk of
the good effect. But at least for this task, where there
is little interdependence, choice of search order does not
nm('h affect the final performance achieved.

Fu tu re Work
The general analysis of rule sequences in relation to
decision trees presented here is based on experiments
primarily in the part-of-speech tagging domain. Within
that domain, it would be useful to quantify more clearly
whether or not rule sequence learning is more effective
than tiaditional decision tree methods when applied to
the same corpora and making use of the same factors.
Such experiments would better illuminate the trade-
oils between the ability to combine predicates into more
complex rules on the one hand and the ability to lever-
age partial results and resist overtraining on the other.
It would also be usefu[to test the data presented here on
overtraining risk and on rule interdependence in other
domains, particularly ones where the degree of rule in-
terdependence could be expected to be greater. Further
exploration of the connections between rule sequences
and decision trees may also suggest other approaches,
perhaps blends of the two, that would work better in
solne circumstances.

Within rule sequence learning itself, other ranking
schemes for selecting the next rule to apply might be
ahh. to improve on the simple maximum net benefit
heuristic. We are currently exploring the use of likeli-
hood ratios for this purpose. It may also be possible
to control for the remaining risk of overtraining in a
more sensitive way than with a simple threshold. De-
cision trees often use selective pruning to control over-
training, and deleted estimation (Jelinek and Mercer,
19~()) or other cross-validation techniques arc also nat-
ural .~u14gi,'sti~ms for this purpose, but if, is difficult to

see how to apply any of these techniques to bare rule se-
quences because they contain hidden dependencies be-
tween rules, so that there is no obvious way to delete
selected rules or to interpolate between two different
rule sequences. One goal for collecting the dependency
tree data is to make it possible to prune or restruc-
ture rule sequences, using the recorded dependencies to
maintain consistency among the remaining rules.

Conclus ions
Transformational rule sequence learning is a simple and
powerful mechanism for capturing the patterns in lin-
guistic data, which makes it an attractive alternative
well worth further exploration. Brill has showed that its
performance for part-of-speech tagging can surpass that
of the HMM models most frequently used, while pro-
ducing a more compact and perhaps more interpretable
model.

While its results can be compared with those of HMM
models, the rule sequence technique itself seems to have
more in common with decision trees, especially in its
ability to automatically select at each stage from a large
space of possible factors the predicate or rule that ap-
pears to be most useful. Decision trees synthesize com-
plex rules from elementary predicates by inheritance;
rule sequence learning, on the other hand, prespeci-
ties in the templates essentially the full space of pos-
sible rules, with each rule acting largely independently.
This restriction in power turns out not to be crippling
as long the template set can be made rich enough to
cover the patterns likely to be found in the data, and it
brings two important benefits in return: first, breaking
the learning process into independent rules means that
they can be applied to the whole corpus as they are
learned, so that where neighboring patterns in the data
are interrelated, the rules can leverage off the best esti-
mates regarding their surroundings; and second, since
the independent rules continue to be scored against the
whole training corpus, a substantial measure of protec-
tion against overtraining compared to decision trees is
gained.

References
Breiman, Leo, Jerome H. Friedman, Richard A. Olshen,

and Charles J. Stone. 1984. Classification and Re-
gression Trees. Pacific Grove, California: Wadsworth
& Brooks/Cole.

Brill, Eric. 1992. A simple rule-based part of speech
tagger. In Proceedings off the DARPA Speech and
Natural Language Workshop, 199~.

Brill, Eric. 1993a. Automatic grammar induction and
parsing free text: A transformation-based approach.
In Proceedings of the DARPA Speech and Natural
Language Workshop, 1993.

Brill, Eric. 1993b. A Corpus-Based Approach to Lan-
guage Learning. Ph.D. thesis, University of Pennsyl-
vania.

94

Brill, Eric. 1994. A report of recent progress in
transformation-based error-driven learning. In Pro-
ceedings of the ARPA Workshop on Human Language
Technology, March, 1994.

CATSS. 1991. Produced by Computer-Assisted Tools
for Septuagint Studies, available through the Univer-
sity of Pennsylvania's Center for Computer Analysis
of Texts.

Church, Kenneth. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. In Sec-
ond Conference on Applied Natural Language Pro-
cessing. ACL.

Cutting, D.,'J. Kupiec, J. Pederson, and P. Sibun. 1992.
A practical part-of-speech tagger. In Proceedings of
the Third Conference on Applied Natural Language
Processing. ACL.

DeRose, Steven J. 1988. Grammatical category disam-
biguation by statistical optimization. Computational
Linguistics, 14(1):31-39.

Francis, W. Nelson and Henry Kucera. 1979. Manual
of information to accompany a standard corpus of
present-day edited American English, for use with
digital computers. Technical report, Department of
Linguistics, Brown University.

Jelinek, F. 1985. Markov source modeling of text gener-
ation. In ed. J.K. Skwirzinski, editor, Impact of Pro-
cessing Techniques of Communication. Nijhoff, Dor-
drecht.

Jelinek, F. and R. L. Mercer. 1980. Interpolated es-
timation of Markov source parameters from sparse
data. In E.S. Gelsema and L. N. Kanal, editors, Pat.
tern Recognition in Practice. North-Holland, Amster-
dam, pages 381-397.

Quinlan, J. Ross. 1993. C~.5: Programs for Machine
Learning. Morgan Kaufmann.

Quinlan, J. Ross and Ronald L. Rivest. 1989. Inferring
decision trees using the minimum description length
principle. Information and Computation, 80:227-
248.

Weischedel, Ralph, Marie Meteerl Richard Schwartz,
Lance Ramshaw, and Jeff Palmucci. 1993. Cop-
ing with ambiguity and unknown words through
probabilistic methods. Computational Linguistics,
19(2):359-382.

95

