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Introduction 
Eric Brill in his recent thesis (1993b) proposed an ap- 
proach called "transformation-based error-driven learn- 
ing" that can statistically derive linguistic models from 
corpora, and he has applied the approach in various 
domains including part-of-speech tagging (Brill, 1992; 
Brill, 1994) and building phrase structure trees (Brill, 
1993a). The method learns a sequence of symbolic rules 
that characterize important contextual factors and use 
them to predict a most likely value. The search for such 
factors only requires counting various sets of events that 
actually occur in a training corpus, and the method is 
thus able to survey a larger space of possible contextual 
factors than could be practically captured by a statis- 
tical model that required explicit probability estimates 
for every possible combination of factors. Brill's results 
on part-of-speech tagging show that the method can 
outperform the HMM techniques widely used for that 
task, while also providing more compact and perspicu- 
o.s  models. 

Decision trees are an established learning technique 
that is also based on surveying a wide space of possible 
factors and repeatedly selecting a most significant fac- 
tor or combination of factors. After briefly describing 
Brill's approach and noting a fast implementation of it, 
this paper analyzes it in relation to decision trees. The 
contrast highlights the kinds of applications to which 
rule sequence learning is especially suited. We point out 
how it, ma.ages to largely avoid difficulties with over- 
training, and show a way of recording the dependencies 
bt.tween rules in the learned sequence. The analysis 
throughout is based on part-of-speech tagging exper- 
iments using the tagged Brown Corpus (Francis and 
K.eera, 1979) and a tagged Septuagint Greek version 
of the first five books of the Bible (CATSS, 1991). 

Brill 's  Approach 
This learning approach starts with a supervised train- 
ing corpus and a baseline heuristic for assigning initial 
values. In the part-of-speech tagging application, for 
example, the baseline heuristic might be to assign each 
known but ambiguous word whatever tag is most often 
correct for it in the training corpus, and to assign all 
unknown words an initial tag as nouns. (Brill's results 
point out that performance on unknown words is a cru- 
cial factor for part-of-speech tagging systems. His sys- 
tem is organized in two separate rule sequence training 
passes, with an important purpose of the first pass being 
exactly to predict the part-of-speech of unknown words. 
However, because the focus in these experiments is on 
understanding the mechanism, rather than on compara- 
tive performance, the simple but unrealistic assumption 
of a closed vocabulary is made.) 

The learner then works from those baseline tag as- 
signments using a set of templates that define classes of 
transformational rules, where each rule changes some 
assigned values based on characteristics of the neighbor- 
hood. Again, for tagging, the rule templates typically 
involve either the actual words or the tags currently as- 
signed to words within a few positions on each side of 
the value to be changed. The rule templates used in 
these experiments involve up to two of the currently- 
assigned tags on each side of the tag being changed; 
they include [ - -  C A/B ] (change tag A to 
tag B if the previous tag is C) and [ - -  - -  A/B C D ] 
(change A to B if the following two tags are C and D). 
During training, instantiated rules like [ - -  DET V/N 
- -  - -  ] are built by matching these templates against 
the training corpus. 

A set of such templates combined with the given part- 
of-speech tagset (and vocabulary, if the rule patterns 
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also refer directly to the words) defines a large space of 
possible rules, and the training process operates by us. 
ing some ranking function to select at each step a rule 
judged likely to improve the current tag assignment. 
Brill suggests the simple ranking function of choosing 
(one of) the rule(s) that makes the largest net improve- 
ment in the current training set tag assignments. Note 
that applying a rule at a location can have a positive 
effect (changing the current tag assignment from incor- 
rect to correct), a negative one (from correct to some 
incorrect value), or can he a neutral move (from one 
incorrect tag to another). Rules with the largest posi- 
tive minus negative score cause the largest net benefit. 
In each training cycle, one such rule is selected and ap- 
plied to the training corpus and then the scoring and 
selection process is repeated on the newly-transformed 
corpus. This process is continued either until no bene- 
ficial rule can be found, or until the degree of improve- 
ment becomes less than some threshold. The scoring 
process is tractable in spite of the huge space of possi- 
ble rules because rules that never apply positively can 
be ignored. 

The final model is thus an ordered sequence of 
pattern-action rules. It is used for prediction on a test 
corpus by beginning with the predictions of the baseline 
heuristic and then applying the transformational rules 
in order. In our test runs, seven templates were used, 
three templates testing the tags of the immediate, next, 
and both neighbors to the left, three similar templates 
looking to the right, and a seventh template that tests 
the tags of the immediate left and right neighbors. The 
first ten rules learned from a training run across a 50K- 
word sample of the Brown Corpus are listed in Fig. 1; 
they closely replicate Brill's results (1993b, page 96), al- 
lowing for the fact that his tests used more templates, 
including templates like "if one of the three previous 
tags is A". 

Brill's results demonstrate that this approach can 
outperform the Hidden Markov Model approaches that 
are frequently used for part-of-speech tagging (Jelinek, 
1985; Church, 1988; DeRose, 1988; Cutting et al., 1992; 
Weischedel et al., 1993), as well as showing promise for 
other applications. The resulting model, encoded as 
a list of rules, is also typically more compact and for 
some purposes more easily interpretable than a table of 
HMM probabilities. 

An Incremental Algorithm 
It is worthwhile noting first that it is possible in some 
circumstances to significantly speed up the straight- 
forward algorithm described above. An improvement 
in our experiments of almost two orders of magnitude 
(from four days to under an hour) was achieved by using 
an incremental approach that maintains lists of point- 
ers to link rules with the sites in the training corpus 
where they apply, rather than scanning the corpus from 
scratch each time. The improvement is particularly no- 
ticeable in the later stages of training, when the rules 

being learned typically affect only one or two sites isl the 
training corpus. Note, however, that the linked lists ill 
this incremental approach require a significant amount 
of storage space. Depending on the number of possi- 
ble rules generated by a particular combination of rul,. 
templates and training corpus, space constraints may 
not permit this optimization. 

Incrementalizing the algorithm requires maintaining 
a list for each rule generated of those sites in the corpus 
where it applies, and a list for each site of the rules 
that apply there. Once one of the highest-scoring rules 
is selected, its list of site pointers is first used to make 
the appropriate changes in the current tag values in 
the corpus. After making the changes, that list is used 
again in order to update other rule pointers that may 
have been affected by them. It suffices to check each 
site within the span of the largest defined rule template 
from each changed site, testing to see whether all of 
its old rule links are still active, and whether any new 
rules now apply at that site. Our current algorithm is 
shown in Fig. 2. Note that, after the initial setup, it 
is necessary to rescan the corpus only when updating 
uncovers a rule that has not previously had any positive 
effect. 

Rule Sequences and Decision Trees 
To understand the success of Brill's new method, it is 
useful to compare it with the decision tree approach 
(Breiman et al., 1984; Quinlan, 1993), which is an 
established method for inducing compact and inter- 
pretable models. The key difference is that decision 
trees are applied to a population of non-interacting 
problems that are solved independently, while rule se- 
quence learning is applied to a sequence of interrelated 
problems that are solved in parallel, by applying rules 
to the entire corpus. The following sections discuss how 
this parallel approach allows leveraging of partial solu- 
tions between neighboring instances, but also requires 
that the rules themselves be largely independent. While 
decision trees can synthesize complex rules from simple 
tests, rule sequence learning requires those combina- 
tions to be built into the templates. 

Leveraged Learning 
Decision trees are traditionally applied to independent 
problem instances encoded as vectors of measurements 
for the various possibly-relevant factors. In predict- 
ing the part of speech of a word in a corpus, such . 
factors would include the identities of the neighboring 
words within some window. However, it would also be 
useful to know the currently predicted tags for those 
words, since the tag-assignment problems for neighbor- 
ing words in a corpus are not independent. The rule se- 
quence learning technique is particularly well adapted 
to a corpus that is inherently a sequence of such inter- 
related problem instances. Because the rule patterns in 
a part-of-speech system do depend in part on tile un- 
known part-of-speech values at neighboring locations, 
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Pass 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

Rule Pos. Ne 9. Neu|. 
m __ TO/ IN  AT u 227 0 0 

TO NN/VB - -  u 113 13 0 
- -  TO/ IN  NN - -  49 0 0 

- -  IN P P S / P P O  - -  51 4 0 
- -  - -  TO/ IN  NP ~ 46 0 0 

~ T O / I N  PP$ - -  46 1 0 
m C S / D T  NN - -  52 I i  l 

HVD VBD/VBN ~ - -  38 0 0 
~ CS/QL ~ CS 41 7 0 

MD NN/VB m ~ 32 0 0 

Figure 1: First 10 Rules Learned on Brown Corpus Sample 

/ / R e c o r d s  for locations in the corpus, called "sites", 
/ / i n c l u d e  a linked list of the rules that  apply at that  site. 
/ / R e c o r d s  for rules include score components (positive, negative, and neutral) 
/ / a n d  a linked list of the sites at which the rule applies. 
/ / A  hash table stores all rules that  apply positively anywhere in the training. 

scan corpus using templates, making hash table entries for positive rules 
scan corpus again to identify negative and neutral sites for those rules 
loop 

high_rule := some rule with maximum score 
if high_rule.score < =  0 

then exit loop 
output  rule trace 
for each change_site on high.xule.site_list do 

apply high_rule at change_site by changing current tag 
unseen_rules := 0 
for each change_site on high_rule.site.list do 

for each test_site in the neighborhood of change_site do 
new_rules_list := NIL 
for each template do 

if template applies at test_site 
then add resulting rule to new_rules.list 

for each rule in test_site.rules.list - new_rules_list do 
remove connection between rule and test_site 

for each rule in new_rules_list - test_site.rules_list do 
if rule in hash table 

then make new connection between rule and test_site 
else unseen_rules := unseen.rules O {rule} 

if unseen_rules # 0 then 
add unseen_rules to hash table 
for each site in corpus do 

for each rule in unseen_rules do 
if rule applies at site then 

make connection between rule and site 
adjust appropriate rule score (positive, negative, or neutral) 

end loop 

Figure 2: Incremental Version of Rule Sequence Learning Algorithm 
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it seems useful to allow those patterns to be based at 
each point on the system's best current guess for those 
values. It is difficult to take account of that kind of 
dependence in a traditional decision tree, since changes 
in neighboring tag predictions can force the recompu- 
tation of predicate splits higher in the tree. Breaking 
the tag prediction process up into a series of rules that 

• can each be applied immediately to the entire corpus is 
a simple scheme that  allows for that  kind of leverage. 
Much as when a bank compounds interest, this allows 
the system to base its future learning on the improved 
estimates of neighborhood tags resulting from the op- 
eration of earlier rules. 

A non-leveraged learner would have to build rules 
or trees based only on the unchanging features of the 
neighboring words and perhaps the baseline guesses of 
their tags. In effect, such a learner would be forced to 
try to resolve the ambiguity at the neighboring loca- 
tion as part  of the rule for the primary site, using as 
evidence only cases where the two occur together. The 
leveraging approach allows the system to factor the best 
current guess for the neighboring site in terms of all the 
evidence into the choice for the primary site. It  is to 
allow for leveraging that the model is formulated as a 
sequence of individual rules. 

Largely Independent Rules 
This breaking up of the rule sequence model into largely 
independent rules also results in another important dif- 
ference between rule sequence learning and decision 
trees. In the building of a decision tree, an elemen- 
tary predicate is selected at each step to split a single 
leaf node, meaning that it is applied only to those train- 
ing instances associated with that  particular branch of 
the tree. The two new leaves thus created effectively 
represent two new classification rules, each one select- 
ing exactly the instances that  classify to it, and thus 
each including all of the predicates inherited down that  
branch of the tree. In the rule sequence method, on the 
other hand, the rules are generated from the templates 
as they are applied to the whole corpus in a largely inde- 
pendent manner; there is no corresponding inheritance 
of earlier predicates down the branches of a tree. 

Note that  one could simulate the decision tree style 
in a sequence learner by adding to the pattern for each 
rule template a variable-length field that records the 
complete history of rules which have affected that lo- 
cation. Then, as in a decision tree, a rule generated at 
one site in the training set would be scored only against 
sites whose previous rule history exactly matched its 
own. But rule sequence learning as defined here is not 
sensitive in that  way to the previous rule history. 

The "largely independent" rules in the sequence 
would be fully independent if the system were not do- 
ing leveraging; if all rule patterns were tested each time 
against the original baseline tag predictions, then there 
would be no way for earlier rules to affect later ones in 
the sequence. Leveraging does make later rules depen- 

dent on the results of earlier ones, but it does so to a 
strictly limited degree, which is generally much weaker 
than the direct inheritance of rules down decision tree 
branches. 

To see the limitation, suppose that  templates could 
test the current tag of the word to be changed, but 
could only consult the baseline tags for the rest of the 
pattern. Earlier rule firings could then affect what rules 
might later apply at a particular location only by chang- 
ing the current tag assignment for that  location itself 
to one of the other possible tag values. Each rule fir- 
ing would make potentially applicable at the locations 
affected all rules whose central pattern element specify 
that new tag value, while disabling those rules whose 
patterns specify the old value. The training set at any 
time during training would thus in effect be partitioned 
for purposes of rule application into at most as many 
classes as there are tags. Such a system can be pictured 
as a lattice with one column for each tag assignment and 
with a single slanting arc at each generation that  moves 
some corpus locations from one column to another. 

While a decision tree path can encode an arbitrary 
amount of information in its branching, this system is 
forced to merge as often as it branches, which requires 
the rules to be more independent. Furthermore, the 
system's ability to use even the available partitioning in 
order to construct dependent rule sequences is further 
limited, since tag changes are only made when some 
subset of the data is identified for which the new tag is 
more representative of the training corpus; tile learner 
is not free to use tag assignments to encode arbitrary 
rule dependencies. Even in the actual system, where 
the leveraging can include changes in the neighborhood 
as well as at the location itself, the rule sequence mech- 
anism still appears to have much less power to create 
complex combined rules than do decision trees. 

Because rule sequence learners are more limited in 
terms of the connections between rules that  they can 
construct during training, they must begin with more 
complex predicates built into their rule templates. If 
the templates in a rule sequence run are not strong 
enough to distinguish the important patterns in tile 
data, performance will naturally suffer. But if the rule 
templates that are likely to be useful can be predicted ill 
advance, the rule sequence approach can benefit both 
from leveraging and, as shown later, from decreased 
fragmentation of the training set. 

Scoring Metrics 
This difference in organization between rule sequence 
learning and decision trees carries through naturally to 
the scoring methods used to select the next rule to ap- 
ply. Decision trees often select the split which most 
reduces either a diversity index or some measure based 
on the conditional entropy of the truth given the tree's 
predictions (Breiman et al., 1984; Quinlan and Rivest, 
1989; Quinlan, 1993). Note that these metrics may se- 
lect a split that does not change the score of the current 
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predictions against the truth, for instance by splitting 
a node in such a way that both children still have the 
same plurality class as the parent. Such a split may 
still make sense in entropy terms if the distributions of 
the other tags in the two new nodes are substantially 
different, thus suggesting that later rules will have an 
easier time isolating particular tag values. In a rule se- 
quence learner, however, there is less likely to be any 
advantage to such a split, since the instances whose tags 
are changed by that rule will then be mixed with others 
that were already assigned the new tag for other rea- 
sons. The net benefit metric that is actually used in rule 
sequence learning is equivalent in decision tree terms to 
using the resubstitution estimate of the misclassifica- 
tiou rate. While that  metric is not ideal for decision 
trees, it appears to work well for rule sequence learn- 
ing, where the mechanism is strictly limited in terms of 
the connections between rules that it can construct. 

O v e r t r a i n i n g  

It is particularly interesting to compare rule sequences 
with decision trees in terms of the risk of overtrain- 
ing (or "overfitting"). One of the intriguing features of 
rule sequence learning is its apparent resistance to over- 
trai,ing. For example, Fig. 3 shows the graph of per- 
cent correct on both training set (solid line) and test set 
(dotted line) as a function of the number of rules applied 
for a typical part-of-speech training run on 120K words 
of Greek text. The training set performance naturally 
improves monotonically, given the nature of the algo- 
riti~m, but the surprising feature of that  graph is that  
the test set performance also improves monotonically, 
except for minor noise, and this seems to be true for 
the great majority of our rule sequence training runs. 
This is in marked contrast to similar graphs for deci- 
sion trees or neural net classifiers or for the iterative EM 
training of HMM tuggers on unsupervised data, where 
performance on the test set initially improves, but later 
significantly degrades. 

Experiments suggest that  part  of the difference is due 
to knowledge embodied in the templates. When a part- 
of-speech training run is supplied with relevant tem- 
plates, as in Fig. 3, one gets an "improve to plateau" 
test-set curve. Irrelevant templates, however, can lead 
to overtraining. Fig. 4 shows that  noticeable overtrain- 
ing results from using just a single irrelevant template, 
in this case, one that  tested the tags of the words five 
positions to the left and right, which seem likely to be 
largely uncorrelated with the tag at the central location. 

l"ig. 5, where the single irrelevant template is com- 
bia,ed with the seven normal templates, shows that in 
such cases, most of the overtraining happens late in 
the training process, when most of the useful relevant 
templates have already been applied. At that  stage, 
as always, the templates are applied to each remain- 
i ,g  incorrectly-tagged site, generating candidate rules. 
I,~ach r,h, imturally succeeds at the site that proposed 
it, h , t  most are now effectively random changes, which 

are thus likely to do more harm than good when tried 
elsewhere, especially since most of the assigned tags 
at this stage are correct. Thus if the rule's pattern 
matches elsewhere in the training set, it is quite likely 
that the change there will be negative, so that  the un- 
helpful rule will not be learned. Thus the presence of 
relevant templates supplies an important  degree of pro- 
tection against overtraining from any irrelevant tem- 
plates, both by reducing the number of incorrect sites 
that  are left late in training and by raising the percent- 
age already correct, which makes it more likely that  bad 
rules will be filtered out. The same applies, of course, 
to relevant and irrelevant instances of mixed templates, 
which is the usual case. 

Most of the overtraining will thus come from patterns 
that  match only once in the training set (to their gen- 
erating instance). Under these assumptions, note that  
applying a score threshold > 1 can significantly reduce 
the overtraining risk, just as decision trees sometimes 
control that risk by applying a threshold to the entropy 
gain required before splitting a node. Brill's system 
uses a score threshold of 2 as the default, thus gaining 
additional protection against overtraining, while our ex- 
perimental runs have been exhaustive, in order to better 
understand the mechanism. 

Using test runs like those plotted above for irrele- 
vant templates of various degrees of complexity, we also 
found a connection in terms of overtraining risk between 
the inherent matching probability of the templates used 
and the size of the training set. A large training set 
means a larger number of incorrect sites that  might en- 
gender overtrained rules, but also a better chance of 
finding other instances of those rule patterns and thus 
filtering them out. The combination of those factors 
appears to cause the risk of overtraining for a partic- 
ular irrelevant template to first rise and then fall with 
increasing training set size, as the initial effect of in- 
creased exposure is later overcome by that  of increased 
filtering from further occurrences of the patterns. 

In comparing this with decision trees, the key con- 
trust is that  the filtering effect there decreases as train- 
ing proceeds. The splitting predicates there are applied 
to increasingly small fragments of the training set, so 
that  the chance of filtering counterexamples also de- 
creases. (To put it in decision tree terms, with few 
points left in the rectangle being split, it becomes more 
likely that  an irrelevant predicate will incorrectly ap- 
pear to provide a useful split.) But since rule sequence 
learning continues to score its essentially independent 
rules against the entire training set, the protection of 
filtering against overtraining remains stronger. Giving 
up the power to synthesize new rules thus provides an 
overtraining payoff as well as a leverage one. 

Rule  I n t e r d e p e n d e n c e  

While the connections between rules in a rule sequence 
are more limited than the inheritance of rule ancestors 
found in decision trees, it is still interesting to be able 
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Figure 3: Training Set (solid line) and Test Set (dotted line) Performance on Greek Corpus 
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91 



o 
o 

03 
03 

¢0 
03 

r,,.. 
03 

03 

I 

; i i ! ; i i 

0 200 400 600 800 1000 1200 

Figure 5: Training with 7 Relevant and 1 Irrelevant Templates 

to characterize and quantify the rule dependencies that 
are present. We have therefore added code that keeps 
track, whenever a rule is applied at a site, of a depen- 
dency tree showing the earlier rule applications that  
that rule depends on. For example, the dependency 
tree from the Brown Corpus data in Fig. 6 shows a case 
where the last rule that  applied at this particular site 
(the bottom line in the figure, representing the root of 
the tree), which changed JJ to RB, depended on earlier 
rules that changed the previous site (relative position 
- 1 )  to VBN and the following one (position +1) to 
DT. (The final number on each line tells during what 
pass that rule was learned. While recorded internally 
as trees, these structures actually represent dependency 
DAGs, since one rule application may be an ancestor of 
another along more than one path.) All sites start  out 
~qsigned a null dependency tree representing the base- 
line heuristic choice. The application of a rule causes 
;t new tree to be built, with a new root node, whose 
children are the dependency trees for those neighboring 
locations referenced by the rule pattern. At the end of 
the training run, the final dependency trees are sorted, 
sl.ructurally similar trees are grouped together, and the 
cla.~s~.s are then sorted by frequency and output along 
wi th  the list of rules learned. 

( ' , 'rtain common classes of dependency can be noted 
iu t.ht, r,'sulting trees. ('.orrectiou rules result when one 
rnh, inak~,s an; overly gem~ral change, which affects not 
- , l y  apl~rol~riate sites, but also inappropriate ones, so 
that a later rule in the sequence undoes part of the 

earlier effect. One dependency of this type from our 
Brown Corpus run can be seen in Fig. 7. Here the 
first rule was the more general one that  changed PP$ 
to PPO whenever it follows VBD. While that  rule was 
generally useful, it overshot in some cases, causing the 
later learning of a correction rule that  changed PPO 
back to PP$ after RB VBD. 

Chaining rules occur in cases where a change ripples 
across a context, as in Fig. 8. The first rule to apply 
here (21) changed QL to AP in relative position +2. 
That  change enabled the RB to QL rule (181) at po- 
sition +1, and together those two changes enabled the 
root rule (781). Note that  this two-step rule chain h a s  
allowed this rule to depend indirectly on a current tag 
value that  is further away than could be sensed in a sin- 
gle rule, given the current maximum template width. 

The dependency tree output also shows something of 
the overall degree and nature of rule interdependence. 
The trees for a run on 50K words of the Brown Corpus 
bear out that rule dependencies, at least in the part- 
of-speech tagging application, are limited. Of a total 
of 3395 sites changed during training, only 396 had de- 
pendency trees with more than one node, with the most 
frequent such tree appearing only 4 times. Thus the 
great majority of the learning in this case came from 
templates that applied in one step directly to the base- 
line tags, with leveraging being involved in only about 
12% of the changes. 

The relatively small amount of interaction found be- 
tween the rules also suggests that  the order in which 
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Figure 6: Sample Dependency Tree from Brown Corpus Data 

0: - -  VBD PP$ /PPO (30) 
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Figure 7: Sample Correction Class Dependency Tree from Brown Corpus Data 
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Figure 8: Sample Chaining Class Dependency Tree from Brown Corpus Data  
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the rules are applied is not likely to be a major factor 
in the success of the method for this particular appli- 
cation, and initial experiments tend to bear this out. 
["ig. 3 earlier showed a training run on Greek text using 
the largest net benefit choice rule that Brill proposes. 
Note that, on this Greek corpus, the initial baseline 
level of choosing the most frequent training set tag for 
each word is already quite good; performance on both 
sets further improves during training, with most of the 
improvement occurring in the first few passes. In com- 
parison, Fig. 9 gives the results for a training run where 
the next rule at each step was randomly selected from 
amoug all rules that had a net positive effect of any size. 
While tim progress is more gradual, both the training 
and test curves reach very close to the same maxima 
under these conditions as they do when the largest net 
I)enefit rule is chosen at each step. Note that it does 
take more rules to reach those levels, since the ran- 
dora training frequently chooses more specific rules that  
would have been subsumed by more general ones cho- 
sen later. Thus the largest net benefit ranking criterion 
is a useful one, particularly if one wants to find a short 
initial subsequence of rules which achieves the bulk of 
the good effect. But at least for this task, where there 
is little interdependence, choice of search order does not 
nm('h affect the final performance achieved. 

Fu tu re  Work  
The general analysis of rule sequences in relation to 
decision trees presented here is based on experiments 
primarily in the part-of-speech tagging domain. Within 
that domain, it would be useful to quantify more clearly 
whether or not rule sequence learning is more effective 
than tiaditional decision tree methods when applied to 
the same corpora and making use of the same factors. 
Such experiments would better illuminate the trade- 
oils between the ability to combine predicates into more 
complex rules on the one hand and the ability to lever- 
age partial results and resist overtraining on the other. 
It would also be usefu[to test the data presented here on 
overtraining risk and on rule interdependence in other 
domains, particularly ones where the degree of rule in- 
terdependence could be expected to be greater. Further 
exploration of the connections between rule sequences 
and decision trees may also suggest other approaches, 
perhaps blends of the two, that  would work better in 
solne circumstances. 

Within rule sequence learning itself, other ranking 
schemes for selecting the next rule to apply might be 
ahh. to improve on the simple maximum net benefit 
heuristic. We are currently exploring the use of likeli- 
hood ratios for this purpose. It may also be possible 
to control for the remaining risk of overtraining in a 
more sensitive way than with a simple threshold. De- 
cision trees often use selective pruning to control over- 
training, and deleted estimation (Jelinek and Mercer, 
19~()) or other cross-validation techniques arc also nat- 
ural .~u14gi,'sti~ms for this purpose, but if, is difficult to 

see how to apply any of these techniques to bare rule se- 
quences because they contain hidden dependencies be- 
tween rules, so that there is no obvious way to delete 
selected rules or to interpolate between two different 
rule sequences. One goal for collecting the dependency 
tree data is to make it possible to prune or restruc- 
ture rule sequences, using the recorded dependencies to 
maintain consistency among the remaining rules. 

Conclus ions  
Transformational rule sequence learning is a simple and 
powerful mechanism for capturing the patterns in lin- 
guistic data, which makes it an attractive alternative 
well worth further exploration. Brill has showed that  its 
performance for part-of-speech tagging can surpass that  
of the HMM models most frequently used, while pro- 
ducing a more compact and perhaps more interpretable 
model. 

While its results can be compared with those of HMM 
models, the rule sequence technique itself seems to have 
more in common with decision trees, especially in its 
ability to automatically select at each stage from a large 
space of possible factors the predicate or rule that  ap- 
pears to be most useful. Decision trees synthesize com- 
plex rules from elementary predicates by inheritance; 
rule sequence learning, on the other hand, prespeci- 
ties in the templates essentially the full space of pos- 
sible rules, with each rule acting largely independently. 
This restriction in power turns out not to be crippling 
as long the template set can be made rich enough to 
cover the patterns likely to be found in the data, and it 
brings two important benefits in return: first, breaking 
the learning process into independent rules means that  
they can be applied to the whole corpus as they are 
learned, so that  where neighboring patterns in the data 
are interrelated, the rules can leverage off the best esti- 
mates regarding their surroundings; and second, since 
the independent rules continue to be scored against the 
whole training corpus, a substantial measure of protec- 
tion against overtraining compared to decision trees is 
gained. 
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