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Abstract
The influence of various information sources on the ability of a statistical tagger to assign 
lexical categories to unknown words is investigated. The literal word form is found to be 
very much more important than other information sources such as the local syntactic 
context. Different ways of combining information sources are discussed. Methods for 
improving estimates based on scarce data are proposed and examined experimentally.

1 Introduction
Tagging is the art of assigning a specific label, a tag, to each word in a 
corpus from a pre-defmed set of labels — a (tag) palette. The traditional 
problem addressed is that of disambiguation, see for example Church 
(1988). A lexicon states what different tags each word can possibly be 
assigned to, and for any specific word, this is a small subset of the palette.
Normally, the most likely assignment of tags to the words of a corpus is 
determined by statistical optimization using dynamic programming 
techniques, as is well-described in for example DeRose (1988). Some 
existing taggers, though, make use of hand-coded heuristic rules to guide 
the assignments, see for example Brill (1992) and Källgren (1991). Until 
recently, empirical results have indicated that statistical methods are 
superior to rule-based ones. However, the results reported in Voutilainen 
et al (1992) indicate that this may actully not be the case. However, rule- 
based approaches suffer from the major disadvantage of being very 
labour intense.
The approach taken here differs somewhat from mainstream tagging 
endeavours. Our main goal is not disambiguation, but to investigate the 
influence of various information sources, and ways of combining them, 
on the ability to assign lexical categories to unknown words. Here, we 
dispense with heuristic rules and lexical entries altogether, and instead 
rely entirely on the power of statistics to extract the required information 
from a pre-tagged corpus during a training phase. This has the advantage 
of making the tagger completely language independent.
The information sources employed are the literal appearance of the word 
and the tags assigned to the neighbouring words. The way these sources
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of information are combined is novel for tagging applications. Another 
important innovation is the "successive abstraction" scheme for handling 
scarce training data by generalizing to successively wider contexts. A 
final original feature is the fact that the tagger is implemented entirely in 
SICStus Prolog.
Bayesian inference is used to find the tag assignment T with highest 
probability P(T M,S) given morphology M (word form) and syntactic 
context S (neighbouring tags). This quantity is calculated from the 
probabilities P(T AM) and P(T AS). Before describing how the latter two 
quantities are estimated, we will address two important issues, namely 
those of combining them and of estimating the probabilities of events for 
which there is only a small number of observations.

2 C om bining inform ation
Several methods seem currently to be in use for combining information 
sources. One method is to simply set the probability of the hypothesis H 
given the combined evidence to the product of the probabilities of the 
event given each context:

P(H I M,S) = P(H I M) • P(H I S)
Unfortunately, this can lead us far astray from the correct figure. For 
example, using Bayes' inversion formula, and assuming that these 
information sources are independent, and conditionally independent given 
the hypothesis H, i.e.
( 1) P(M,S) = P(M) • P(S) 

P(M,S I H) = P(M I H) • P(S I H)
will yield us the exact formula

P(H I M,S) = (P(H \M )» P(H I S) )/P(H)
This means that unlikely hypotheses will be unduly penalized in the above 
approximation by omitting the denominator P(H). Even if these 
assumptions are not valid, this line of reasoning shows that intuitively, an 
extra factor proportional to the probability P(H) is introduced.
Another method is to use a weighted sum of the probabilities:

P(H I M,S) -  Am P(H \M) + Xs P(H I S)
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In general, the weight assigned to the morphological probability (Aa/) 
will be much larger than that assigned to the syntactic probability. The 
problem with this approach is that these weights are static, and not 
dependent on the relative predictive power of the two information 
sources in each particular case.
The approach taken here remedies these shortcomings: We wish to 
estimate the probability P(H I e of the hypothesis H given the 
evidence e,v i = We will go by way of the posterior odds 0(H  I
ei,...,en)  (see for example Pearl (1988), pp. 34-39), which are defined by

0(A I B) = P(A I B ) / P ( ^  I B) = P(A \ B) / ( 1  - P(A I B))
We will make the independence assumption
( 2)0(H  I e],...,€n) /  0(H) -  (0(H  I ej) /  0(H)) • ... • (0(H  I e„) /  0(H))
In our case the hypothesis H is the tag T and the evidence e; and e2 are 
the word form M and the syntactic context S. Thus:

0(T  I M,S) = ( 0 ( T \ M ) »  0(T  I S ) ) /  0(T)
P(T I M,S) = 0(T  I M,S)/(1 + 0(T  I M,S))

This formula has several advantages. Firstly, it is exact under the 
independence assumptions of Eq.(l), with the additional assumption
(3)

P(M,S I - ^ )  = P(M I -nH) • P(S I -,H)
which proves that it doesn't introduce an extra factor of 0(H).  The 
relationship between equations Eq.(l), Eq.(3) and Eq.(2) is that the two 
former together imply the latter, but not vice versa. Secondly, using the 
odds instead of the probabilities has a stabilizing effect when none of the 
independence assumptions are valid. Thirdly, the impact of each of the 
two sources of information is allowed to depend dynamically on how 
much distinctive power they carry, rather than being prescribed 
beforehand, as is the case when using a weighted sum.

3 H andling scarce data
We now turn to the problem of estimating the statistical parameters for 
which there is only a small amount of training data.
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3 .1  S u c c e s s iv e  a b s tr a c t io n
Assume that we want to estimate the probability P(E \ C) oi the event E 
given a context C from the number of times Ne  it occurs in N  trials, but 
that this data is scarce. Assume further that there is abundant data in a 
more general context C  z> C that we want to use to get a better estimate 
oiP(E  I C).
If there is an obvious linear order C  = Cm ^  Cm-1 ^  ^  Ci = C of the
various generalizations Q  of C , we abstract successively to the lowest k 
for which data suffices. We will refer to this as "linear abstraction". A 
simple example is estimating the probability P(T I lnJn-l,---Jn-j)  of a tag 
T given the last j+ 1  letters of the word. The estimate will be based on the 
estimates of P(T \ In J n - l .— Jn-j), P(T \ ln , ln - l . - - ,L { n - j+ l}), ... ,P(T I 

where k is the smallest number for which there is a good 
estimate of P(T I ln,ln-l,---,ln-k)-

Even if there is no obvious linear order of the various generalizations, 
they might stem from a small number of sources, each of which has a 
linear order. An example is generalizing compound nouns using a sortal 
hierarchy. Here, the possible generalizations of the compound are the 
compounds of the generalizations of each noun. This can be used to 
explore the possible generalizations systematically and facilitates pruning 
using a heuristic quality measure of the estimates. If this measure is 
simply the total number of observations in the next generalized context, 
we will call this "greedy abstraction".

3 .2  I m p r o v in g  e s t im a te s
Several different methods were tried for combining the estimates based 
on scarce data with estimates from a more general context — in Section
3.2.1 a confidence interval is used and in Section 3.2.2 weighted sums.

3 .2 .1  U s in g  a c o n f id e n c e  in t e r v a l
To calculate an estimate p  of the probability p = P(E \ C) •we. will use the 
fact that the quotient = Ne /  N, where Ne is the number of times E 
occurs in N  trials, is a random variable with a binomial distribution, i.e.

^n = N E /N ~  hinip,V(p(l-p) / N))
to get a first estimate x of p and a confidence interval x j < p < X2 with 
confidence degree a, where xj < x < X2- Given these quantities.
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• I f  for a pre-defined threshold 0,
Mabel {EqThres}

(x - x i ) / x  < 6 and 
(x2 -x ) / x  < 6

• T h en  set p = x. Here, we are confident (100 • a  %) that jc is a good 
(± 1 0 0  • 0  %) estimate, and are satisfied with this.

• E lse  generalize the context C one step to C'; calculate an estimate ^p' 
of the probability F(E I C) recursively; let f(x) be some suitable 
function and set p = f('^p'). Examples of such iFunctions are discussed 
below. Thus,/(xJ is used to let the observations of E in context C guide 
the estimate according to their reliability.

• Re-normalize so that P(Q \ C) = 1 for the entire sample space 2̂.
For example, using the fact that for large N, is approximately 
normally distributed, that is

i^n-p) /  ~ norm(0 ,l)
we can establish the confidence interval (/3 = 7 - (l-a)/2 )

p = ^ n ± tp ^ (  ̂ n( l-^n)/N) ( a)
where P(Tj < tp) = P for sl normally distributed random variable rj with 
mean value 0 and standard deviation 1. In other words tp is the j8-fractile 
of the normal distribution.
Inserted into Eq.(4) this yields

(tp^(^n(l-^n)/N ) ) /  < 0

or with 7 = 6 / tp
N E /N = ^n  > 1 /(1  + fN )  

to determine threshold values for N  and Ne-
In a very simple version of the scheme, we could \etf(x) be a piecewise 
linear function such that/fOj = x i,f(x )  = x  and/(7) = X2. Ideally f(x) 
should be a continuous, monotonically increasing function, where f(0) = 
0 ,f (x )  = X  and f( l)  = 1, and where the shape of f(x )  would be
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continuously parameterized by the degree of certainty in jc. A refinement 
of the simple version to match these criteria (omitting the degenerate 
cases where it does not hold that 0 < xi < x  < X2 < 1 for ihe sake of 
brevity) is letting the function/(x) be piece-wise linear with f(0) = 0, 
f( tl)  = x],f(x) = x ,f( t2) = X2 and f( l)  = 1, where say ti = (l-a)x  and t2 
= a  + (l-a)x.

3 . 2 .2  U s in g  a w e ig h t e d  su m
Another alternative is to use a weighted sum of the estimates:

p -  Xx + X'p’
We want A and A' to depend on N, the number of observations in the 
more specific context. We will also require that A -i- A' = 7. Two other 
desired properties aie N = 0 =>p = p ' and limA? c p  = x.
A very simple strategy is to set p to p ' if TV = 0 and to x  otherwise. This 
means that we abstract only if there are no observations at all in the 
specific context. We can view this as setting A(TV) to a unit step for N= 1.
A less naive strategy draws inspiration from the standard deviation. Since 
the standard deviation behaves asymptotically as 7 /  viV when N tends to 
infinity, we want p  - jc to do likewise. Two different weighted sums 
meeting these criteria immediately spring to mind:

and
p = (VaTjc + p ')/(V tV-I- 1)

p = x + (p' -x ) /'J (N  + 1)

The first one simply up-weights the specific estimate with VtV, the active 
ingredient of the standard deviation. The second one interpolates linearly 
between p ' and jc. The distance from x  is proportional to 7 /  V(TV + 1) 
(The "-I- 7 " is a technicality).
These three methods were pitted against the confidence-interval method 
in one of the experiments.
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4 I n fo r m a t io n  s o u r c e s
We are now in a position to discuss how to extract morphological and 
syntactic information and formulate it ns P(H \ M) and P(H \ S). The basic 
idea is to approximate these quantities with their relative frequencies. 
However, when this data is scarce, we will resort to the successive 
abstraction scheme of Section 3.
The literal ending of the word was inspected as it was suspected to 
contain crucial clues to the lexical category. For example, in English, any 
multi-syllable word ending with "-able" is almost certainly an adjective. 
This is even more accentuated in a language like Swedish, which has a 
richer inflectional and productive morphology.
To abstract, a letter was substituted with a vowel/consonant marker and 
abstraction was linear with earlier letters generalized before later. The 
last 0 - 7  letters of the words were taken into account in the experiments. 
The number of syllables in the rest of the word was another piece of 
evidence. The spectrum was zero-one-many and the single abstraction 
was to any number of syllables. These two generalizations competed in a 
greedy fashion.
The tags of the neighbouring words in the sentence were recorded. This 
is the conventional information source, and was believed to be very 
useful. However, in the experiments this information source proved much 
less important than the word form. Here, abstraction meant disregarding 
one of the neighbours at a time (the one furthest away from the word). 
N-gram refers to inspecting N-1 neighbours. Unigram through 
pentagram statistics were used in the experiments.

5 T h e  e x p e r im e n ts
The corpora used both for training and testing were portions of the 
Teleman corpus, a hand-tagged corpus of almost 80,000 words of 
miscellaneous Swedish texts (Teleman 1974). Three corpus sizes were 
tested in the experiments, 800, 7,500 and 65,000 words.
The tag palette used in the experiments is not Teleman's original one of 
around 250 different tags, but the usual set of lexical categories: 
Adjectives (adj), nouns, prepositions (prep), verbs, adverbs (adv), 
determiners (det), pronouns (pron) conjunctions (conj) and number 
(num), extended with proper names (name), sentence delimiters (eos), the 
infinitive mark "att " (inf) and characters (char), like "( ", "$ " etc.
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One observation of the correct hypothesis was removed when calculating 
its probability to simulate that this observation was not present in the 
training set. Important to note is that in the bulk- mass of these 
experiments, the tags of the neighbouring words were not assigned by 
statistical optimization; instead the correct ones were used. This was done 
to allow gathering enough data to come to grips with the relative 
importance of the various information sources. However, for a few 
specific settings of the parameters, a dynamic programming technique 
was used to estimate the tags of the neighbouring words instead of using 
the pre-assigned ones.
The successive abstraction scheme employed a somewhat crude version of 
the confidence-interval method where the normal-distribution 
approximation was used for all observations except those of zero or all 
hits, for which the exact values from the binomial distribution were 
easily obtainable. The confidence level was 95 percent and the tolerance 
level ± 30 percent.
The task that the tagger carried out was to for each word in the corpus 
rank the set of tags according to the probability it assigned to them. 
Section 5.1 tabulates an overview of the results, while Section 5.2 
examines one of the table entries in more detail, and Section 5.3 
compares it with a tagging experiment were the neighbouring tags were 
estimated as well.
Section 5.4 compares various versions of the successive abstraction 
scheme.

5 .1  O v e r v ie w  o f  th e  r e s u l t s
Table 1 shows an overview of the results given as token percent correct 
first alternatives, leading to a number of interesting conclusions.
The literal ending of the word is by far the most important information 
source. The neighbouring tags and the number of syllables are not at all 
as useful. Each extra letter seems to cost an order of magnitude in 
training data — the 800 word corpus peaks between 4 and 5 letters, the 
7,500 word corpus between 5 and 6 , and the 65,000 between 6  and 7 
letters. Considering more than two neighbouring tags (i.e. using 4-gram 
and 5-gram statistics) improves the accuracy only marginally.
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TABLE 1 : Token percent correct first alternatives. 
Syllable Syntactic

size
Number of final letters inspected 

1
1-gram 27.30 53.72 65.88 75.43 77.30 77.05 76.55 76.18
2-gram 34.49 58.93 66.38 77.33 80.15 80.02 79.40 78.78

any 3-gram 46.15 61.17 68.24 77.42 80.52 80.89 80.02 79.16
4-gram 47.39 61.66 68.11 76.18 80.02 80.40 79.28 78.16

800 5-Eram 47.52 62.28 67.87 76.55 79.65 80.27 79.40 78.66
words 1-gram 41.44 62.16 73.08 77.17 78.91 76.80 77,17 76.67

2-gram 47.89 62.78 73.20 80.40 81.39 80.40 79.53 78.78
0-1-$2''+$ 3-gram 53.47 65.51 74.19 80.52 81.89 81.51 80.02 79.53

4-gram 55.96 66.38 74.44 80.15 81.14 81.51 79.78 79.03
5-gram 56.58 66.87 74.44 80.89 81.39 81.64 80.02 79,28
l-gram 26.27 51.24 67.10 82.92 86.54 88.04 87.97 87.34
2-gram 26.08 57.34 69.88 84.41 87.57 88.61 88.55 88.08

any 3-gram 44.79 63.03 74.67 86.00 88.78 89.70 89.48 89.06
4-gram 48.10 64.06 75.12 86.16 88.90 89.75 89.57 89.25

7,500 5-gram 48.39 64.33 74.79 86.01 88.90 89.72 89.72 89.40
words 1-gram 39.45 60.77 74.38 84,30 87.05 88.17 87.97 87.41

2-gram 45.12 64.70 75.70 86.29 87.87 88.82 88.61 88.23
0-1-$2''+$ 3-gram 54.74 68.78 80,00 87.79 89.24 90.03 89.79 89.31

4-gram 55.59 69.78 80.29 88.08 89.56 90.07 89.82 89,37
5-Eram 56.21 70.15 a n , 2 7 87.99 89.50 90.06 89.90 89,62
1-gram 25,15 47,71 65.38 83.22 90.52 92.63 93.22 93.17
2-gram 31.23 53.44 69.02 84.56 91.43 93.11 93.55 93.56

any 3-gram 46.79 61.72 75.35 87.29 92.49 93.91 94.25 94.21
4-gram 49.35 63.75 76.39 87.92 92.60 93.98 94.32 94.32

65,000 5-eram 51.22 64.94 76.46 88.16 92.74 94.18 94.46 ■>9 99
worxls 1-gram 38.72 58.37 75.08 87.65 91.54 92.94 93.33 93.22

2-gram 45.37 62.71 77.31 88.75 92.20 93.38 93.72 93.63
0-1-$2''+$ 3-gram 55.22 68.70 80.69 90.23 9 3 . 1 5 94.15 94.36 94.31

4-gram 56.94 70.38 81.98 90.54 93.30 94.24 94.44 94.44
5-Eram 58.31 71.18 82.24 90.73 93.42 94.48 94.61 99 99

A final observation is the notorious "96 percent asymptote" reported 
from many statistical tagging experiments.

5 .2  A n  e x p a n d e d  t a b le  e n tr y
Table 2 shows an expanded entry from the previous table — that in 
boldface — where the four last letters, the number of syllable preceding 
those, and two neighbouring tags, were taken into account. The other 
entries exhibit the same general behavior.
Seeing that nouns and verbs are the most common word types, it is only 
reasonable that the total average should be close to the figures for these 
two word classes. Since the corpus is normalized, no distinction is made 
between capital letters and commons, and the tagger isn't doing too well 
on spotting names. Also, as one might expect, the tagger is having a bit of 
trouble telling adjectives from adverbs. A bit more surprising is that the 
tagger is performing so poorly on conjunctions and numbers, which are 
generally considered closed word classes, and should not be too difficult
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to learn. The explanation to this is to be sought in the way the Teleman 
corpus is tagged.

TABLE 2 : 65,000 words, 3-gram syntax, 4 letters and syllable information.
Tae 1st 2nd 3rd 4-5th 6- 10th >10th Observations
adj 85.84 10.48 2.35 1.08 0.25 0.00 4894
noun 95.39 3.43 0.83 0.33 0.03 0.00 16275
prep 98.04 1.46 0.26 0.09 0.14 0.00 7587
verb 91.71 6.18 1.30 0.61 0.20 0.00 10573
char 98.33 0.30 0.00 0.15 0.91 0.30 659eos 99.89 0.09 0.00 0.02 0.00 0.00 4521
inf 99.47 0.46 0.00 0.00 0.08 0.00 1314
adv 88.51 7.43 2.78 1.12 0.17 0.00 4646
det 99.06 0.69 0.06 0.00 0.19 0.00 1600
pron 94.11 4.20 1.04 0.54 0.10 0.00 7184
conj 84.97 13.68 0.57 0.39 0.39 0.00 3340
num 87.07 4.36 1.15 3.06 4.13 0.23 1307
name 63.68 17.67 5.03 6.87 6.26 0.49 815
Total 93.15 4.89 1.06 0.59 0.30 0.01 64715

It is however note-worthy that the correct word class is among the two 
highest ranking alternatives over 98 percent of the time.

5 .3  A  d y n a m ic  p r o g r a m m in g  v e r s io n
In another version of the scheme, where dynamic programming was used 
to estimate the (two) neighbouring tags, rather than simply inspecting the 
pre-assigned ones, very similar results were recorded. This fact lends 
further strength to that claim that morphological information is of much 
greater importance than the local syntactic context.
A few settings of the various parameters were tested using this scheme, 
all yielding results conforming to those of Table 3, where the 65,000 
word corpus was used, and the four last letters and the number of 
preceding syllables were employed as morphological information 
sources. The figure given is again token percent correct first alternatives.

5 .4  V a r y in g  th e  s u c c e s s iv e  a b s t r a c t io n  s c h e m e
Four different schemes for combining the accurate estimate p ' from the 
general context with the potentially inaccurate estimate x  from the 
specific context were tried out using 3-gram local syntactic information 
(i.e. two neighbouring tags), and inspecting the four final letters ot the 
word and the number of proceeding syllables.
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TABLE 3 : Comparison between knowing and guessing neighbour tags.
Tae Known taes Guessed taes No tans Observationsadj 85.84 86.31 83.27 4894noun 95.39 95.43 92.11 16275prep 98.04 97.72 98.00 7587verb 91.71 90.93 89.97 10573char 98.33 97.57 98.63 659eos 99.89 97.01 99.87 4521inf 99.47 98.78 99.85 1314adv 88.51 87.88 87.77 4646det 99.06 98.94 98.88 1600pron 94.11 91.65 95.16 7184conj 84.97 85.99 79.61 3340num 87.07 87.83 84.85 1307name 63.68 65.15 59.63 815Total 93.15 92.59 91.54 64715

The four strategies were: 1
1. The confidence interval method as described above.
2. p = p ' l iN  = 0, 

p = X if N > 0.
We abstract only if there is no data available at all.

3. p = i ^ N x  + p ' ) / ( V n  + 1).
The weight of the specific result is simply vW and the sum is 
normalized.

4. p = x + (p’ -x )/^ /(N  + 1).
The result is on the line between the specific and the general estimate. 
The distance from the specific eatimate is proportional to 7 /  V|W + 1).

The results shown in Table 4 reveal that the last two strategies, the 
weighted-sum methods, are quite superior to the first two, the first one of 
them being the slightly better. Strategy 1, the confidence-interval method, 
is only somewhat better than not abstracting at all until forced to, as is 
done in strategy 2 , when both syntactic and morphological information is 
taken into account.
The explanation for this could be the following: Even though data might 
be scarce, what is there is there, and those particular observations are 
more likely to be there as a result of having a higher probability, than by 
pure chance.

1 Again N  is the total number of observations in the specific context.
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With only 800 words, the data can safely be assumed to be scare and the 
successive abstraction scheme improves the parameter estimates 
considerably. This is especially true when syntactic and morphological 
information is combined, and something less coarse grained than a mere 
ranking of the alternatives is required. Already with 7,500 words, 
though, the improvements are small and for 65,000 words, where one 
would expect sufficient data to be available for most estimates, the 
improvements are marginal. However, at least strategy 3 does not seem to 
degrade performance.
The best result observed, 95.38 percent, was for the setting of 6  letters, 
syllable information, 4-gram syntax (three neighbouring tags) and 
strategy 3 on the 65,000 word corpus.

TABLE 4 : Comparison between different successive abstraction schemes. 
Corpus______ Strategy__________________L
800 Syntax and morphology 81.89 78.29 86.35 85.86words Morphology only 78.91 83.62 84.49 84.12

Syntax onlv 46.15 48.88 46.03 46.53
7,500 Syntax and morphology 88.78 88.74 91.14 90.94
words Morphology only 87.05 90.07 89.83 89.48

Syntax onlv 44.79 45.90 45.57 45.82
65,000 Syntax and morphology 93.15 93.83 94.06 93.78
words Morphology only 91.54 92.90 92.76 92.46Syntax onlv 46.79 46.80 46.87 46.89

6 S u m m a r y  a n d  c o n c lu s io n s
A number of interesting results emerged from these experiments. Even 
though it is not very surprising that the literal appearance of a word is a 
much more important information source than its local syntactic context 
for assigning the correct lexical category, it is surprising that it is so 
much more important. The global syntactic context, on the other hand, 
has proved very useful as reported in (Voutilainen et al 1992).
The design of the tagger relies heavily on the successive-abstraction 
scheme. The results are a success for the scheme even though it is a bit 
disappointing that the simpler weighted-sum method out-performed the 
more elaborate confidence-interval method. The moral might be phrased 
"If one wants a point estimate, one shouldn't stare too intensely at 
confidence intervals".
One tends to consider the Teleman corpus is a bit oddly tagged seeing that 
the tagger is having difficulties assigning the correct tag to closed class 
words such as conjunctions, numbers and pronouns.
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Finally, the peak performance value of the tagger, 95.38 token percent 
correct first alternatives, is quite respectable in itself. However, two 
other approaches to the same task indicate that this result can be 
improved on. Cutting (1994) attempts the same task by using a lexicon 
and an untagged corpus to train from, making predictions using only 
bigram syntactic information in addition to lexical probabilities, and 
reports 95 percent success rate. This is probably a somewhat more 
difficult task. Eineborg and Gamback (1994) report a success rate of 96.3 
percent using a neural net with 4-gram statistics and six letter endings. 
They employ an intermediate abstraction level based on grouping the 
letters into phonological classes such as fricatives, explosives etc. This 
could readily be incorporated into the scheme described in this paper and 
could potentially improve its performance.
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