
Structural M e t h o d s for L e x i c a l / S e m a n t i c Pat terns
Scott A. Waterman

B r a n d e i s U n i v e r s i t y
C o m p u t e r Sc ience D e p t .

W a l t h a m , M A 02254-9110

ema i l : w a t e r m a n @ c s . b r a n d e i s . e d u

A B S T R A C T

This paper represents initial work on corpus methods for ac-
quiring lexical/semantic pattern lexicons for text understand-
ing. Recently, implementors of information extraction (IE)
systems have moved away from using conventional syntac-
tic parsing methods, instead adopting a variety of pattern
based approaches for complex IE tasks. While there has been
much work towards automated acquisition of lexicons for con-
ventional syntactic processing, little progress has been made
towards those for pattern systems, due primarily, in the au-
thor 's opinion, to a lack of a linguistic framework in which
to view their use. In combining a functional view of both de-
notational semantics and syntactic structure, this paper pro-
vides a basis for examining the structural constraints between
the two. This functional viewpoint is the starting point for
methods to investigate the characteristics of the interaction
between text and denotation, from the perspective of pattern-
based systems. An approach for determining and exploiting
these structural constraints is outlined in terms of building
hierarchical lexical structures for text understanding. Exper-
iment results for such a method are given, demonstrating the
functionality of the approach.

1. I n t r o d u c t i o n .

Recently, implementors of information extraction (IE)
systems have moved away from using conventional syn-
tactic parsing methods, instead adopting a variety of
pattern based approaches for complex IE tasks (such as
the MUC contests and the ARPA-sponsored TIPSTER
research). These pattern-based systems use short and
fairly specific lexical patterns to specify the relation be-
tween strings in the source text and particular entries
in a problem-dependent knowledge representation. This
one-step process substitutes for a conventional two-level
process of a full syntactic parse followed by semantic
interpretation. With considerably less time and devel-
opment effort (notably demonstrated by [11, 8]), these
systems achieve performance comparable to more stan-
dard systems that rely heavily on full syntactic analy-
sis ([9, 5]). However, because these pattern-based sys-
tems are still viewed as linguistically ungrounded and
somewhat ad hoc, formal work in the application and
acquisition of lexical patterns has lagged system devel-
opment. In most current systems, patterns are produced

through tedious hand analysis of text ([11, 4, 8]), while
system coverage is gained either through extensive lin-
guistic knowledge on the part of the researcher (in judg-
ing appropriate pattern generalizations), or by generat-
ing and testing massive numbers of patterns.

One exception to hand analysis is Lehnert's work in [12],
in which machine learning techniques are used to infer
possible patterns for extraction. While this AutoSlog
technique has dramatically reduced system development
time, the inference techniques use only sparse linguis-
tic information, provide no means of generalizing pat-
terns across domains, and still require that the rules be
checked by the researcher for applicability.

1 .1 . A t h e o r e t i c a l f r a m e w o r k

By placing pattern-based approaches in a lexical seman-
tic framework, such as Pustejovsky's Generative Lexicon
theory ([16]), my aim is to provide a basis for pattern-
based understanding systems which can be used to relate
pattern-based approaches to more conventional linguis-
tic approaches. Within such a framework, methods for
pattern acquisition can be studied and developed and
the effectiveness of patterns can be assessed.

My main contention is that this framework can be devel-
oped by viewing the lexieal patterns as structural map-
pings from text to denotation in a compositional lexi-
cal semantics, merging the distinction between syntactic
and semantic analysis, and obviating the need for sep-
arate syntactic and semantic processing systems. This
interpretation follows directly from an appeal to func-
tional semantic principles. In the framework I present,
patterns indexed to individual words relate semantic in-
terpretations to lexical constraints, in a manner dictated
by context. Patterns for multiple words in context can be
combined to provide a consistent interpretation for large
constructions - - a mechanism that could be viewed as a
lexically distributed semantic grammar.

A combined approach to pattern acquisition is out-
lined here, with two orthogonal methods whose combi-
nation leads to the construction of organized sets of lex-

128

teal/semantic patterns which relate strings in the source
text to denotations in a predicate structured knowledge
representation. A key feature of the mechanism is that
these resulting patterns are organized hierarchically in
terms of the specificity of both syntactic and semantic
constraints.

The methods presented are based on the strncturalprop-
erties of the text and denotation, attacking the prob-
lem of pattern acquisition from the separate directions
of a purely syntactic approach and a purely semantic
approach. The natural merger of the two methods re-
sults in an automatic machine learning technique for the
production of lexical/semantic patterns, relating use in
context to denotation.

Related works describing corpus techniques for deducing
lexical structure ([lS, 19]) and semantically marked se-
lectional frames ([6]) suggest that lexical/semantic pat-
terns can be induced from corpora, but do not directly
apply to the generation of these distributed patterns.

2. I n f o r m a t i o n E x t r a c t i o n

The recent Message Understanding Conferences (MUCs)
and APt.PA Tipster project have posed a complex and
fairly specific problem in information extraction (IE).
The problem given is that of creating semantic tem-
plates or frames to correspond to newswire and newspa-
per articles. The expressiveness of the templates is re-
stricted and somewhat skeletal, capturing the bare facts
of the text, and not its complete meaning. Hobbs ([8])
has argued effectively that the problem is not one of
full text understanding, but specifically one of informa-
tion extraction ---: many types of information, such as
speaker attitude, intensional constructs, facts not rele-
vant to the chosen domain, etc., are not required; only a
representation-specific set of domain information is the
target for extraction.

These types of systems provide a useful groundwork for
the study of text interpretation systems because of the
relative lack of difficulty in representing and manipulat-
ing the resulting knowledge structures. Although deno-
tational structures for the type of factual information
required in IE can be quite complex, they are still far
more tractable than representations of speaker attitude,
opaque contexts, or intensionai constructions.

For example, in the ongoing TIPSTER project, informa-
tion in only two specific domains is to be extracted -
one domain is joint ventures and business ownership, the
other the microelectronics industry. The domains are
further restricted by the particular hierarchy of predi-
cate types used in the knowledge representation. Each
domain has a set of templates (a particular implementa-

tion of frames) which rigidly define what types of facts
and relations from the text are representable.

2 .1 . M a p p i n g - I E : t e x t ~ - - ~ K R

These information extraction tasks, as a subset of text
understanding tasks, can be viewed as mapping prob-
lems, in which the problem is to find the proper repre-
sentation, in terms of templates, for the source text. The
problem is one of mapping from the strings of the source
text to a problem-dependent knowledge representation
scheme.

The template knowledge representation used in the TxP-
STER/MUC tasks is based on a frame-like system com-
monly known as the entity-relation, or ER., model.

The El:t model codes information as multi-place rela-
tions. Typically, each type of relation has a fixed number
of arguments, each of which is an entity in the model.
Entities can either be atomic - - in the case of Ill'STEP,.
atoms can be strings from text or items from a prede-
termined hierarchy of types - - or they can be composite,
referring to other relational structures.

Objects referenced in text often participate in more than
one relationship. For example, the direct object of a sen-
tence will often be the subject of a subordinate clause,
either explicitly, or by pronominal reference. In a strict
El:t model, this direct object would have to be repre-
sented twice, once for each clause. By a slight extension,
atoms in the ER model can be generalized to objects
which can take multiple references. Thus, no real atoms
appear in relations, but only references to atoms, or to
other relations. This model is often termed an object-
oriented model, but because of the overloading of that
name in so many fields, I prefer to call these models
reference-relation models (RR). The important extention
from the ER model is that relations themselves may I)e
treated as objects of reference by other relations.

3. L e x i c a l S e m a n t i c s

The structure of the denotational representation is im-
portant not only for its expressiveness, but also in its
relationship to the structure of the language it is to be
derived from. In part, the structure of the language is
determined by the semantic constraints of relations that
are conveyed by its use. If the model is accurate enough,
these constraints will be reflected in the representation.

Many, if not most, semantic theories used in computa-
tional linguistics today assume some degree of function-
ality in language - - words act as operators, or take ar-
guments, or act as logical quantifiers over the things de-
noted in their context. The corresponding grammatical

129

theories (e.g. CFG, LFG, HPSG, GB) assume a par-
allel functional structure, incorporating notions of com-
binational categories, argument structure, or selectional
frames into the lexical representation. These structures
use individual words or constituent phrases as functional
objects, projecting expectations or constraints to subcat-
cgorize for arguments to be incorporated into the func-
tion.

3.1. Structural ly specif ied semant ic
relations

The functional semantics of the operators, then, spec-
ify the nature and lexical appearance of the arguments.
The appearance of a particular head will generate ex-
pectations for the number and kind of arguments to be
found, and dictate the semantic relation to be applied
to them - - because we have seen the operator, we can
expect to find its operands in the vicinity. Further, if
these operands do not have distinct types, we will need
some other mechanism, such as position or order, to be
ablc to distinguish them. In this way, the need for syn-
tactic structure is driven by typing ambiguities in the
semantics.

There is an immediate parallel between the semantic
specification of function/argument structure and the
specification of the reference-relation representations:
the function is analogous to the predicate relation, while
the arguments are the referenced components of the re-
lation. In computational linguistic models, this sort
of functional semantics has proved very useful in pro-
viding a mechanism for deriving frame-like denotations
when processing language (predicate logic and unifica-
tion frames, two of the more popular denotation schemes,
can both be transformed to general RR models). In fact,
it is often the case that the relations of the RR model
are the same as the semantic relations specified by the
language. (Whether this is because of a desire for rep-
resentational efficiency or for other reasons I will leave
unexplored.)

S e m a n t i c a l l y spec i f ied s t r u c t u r a l i n t e r p r e t a t i o n :
We can rephrase the relation between a functional head
and its arguments in the following way: since the head
requires a particular semantic relation to its arguments,
an argument with an otherwise ambiguous interpreta-
tion must be treated as being of the type required by
the head. Because we know the interpretation of the op-
erator, we can constrain the various arguments to have
a corresponding and consistent interpretation.

This type of argument disambiguation is exhibited in the
phenomenon of type coercion ([16]).

3.2. The syntax-semantics boundary

In terms of the function-argument structure or reference-
relation representations, words or categories with similar
type amibiguities and similar argument number are de-
scribed as being syntactically similar, while differing in
interpretation. On the other side, categories with similar
functional or relational type are said to have similar se-
mantics, even though the number and typical realization
of arguments might differ considerably.

As the specificity of the relational constraints varies,
the distinction between the two can also vary. Some
highly cased languages (e.g. Japanese and Latin) have
loose syntactic constraints; the case marking develops
constraints for the consistent semantic incorporation of
the various arguments within the functional scope of the
heads. Other languages, such as English, have a much
more definite word order, where the configuration of ar-
guments and heads constrains their semantic relation-
ships. Some constructions, such as idiomatic expres-
sions, have both completely a fixed syntax and seman-
tics. Poetic use has both a freedom of word order and
a loose interpretation. Each form of linguistic construc-
tion, however, has a consistency of interpretation derived
from its components.

By using a mechanism of language interpretation that
explicitly examines the degree of specificity in argument
position and in argument type, and especially their in-
teraction with one another in use, one should be better
able to achieve the goals of interpretation; that is, to
relate the text to a particular denotation.

4. The Generative Lexicon
Theoretical approaches to lexical semantics have begun
to incorporate this merging of syntactic and semantic
description. The incorporation of argument structure or
selectional frames is a large step in this direction. While
the notion of argument structure is usually reserved for
verbs, some theories, such as Pustejovsky's generative
lexicon (GL), extend the idea to include all lexical cat-
egories ([16, 17]). For the purposes of this discussion,
we can consider the GL lexicon to carry two sorts of
selectional information with every term:

• Qualia structure, which provide semantic type con-
straints on arguments. These constraints are used
both in deriving expectations for the syntactic form
of arguments, and in coercing ambiguous or polyse-
mous arguments into the required types ([16]).

• Cospecifications, which constrain the syntactic real-
izations and ordering of arguments in relation to the
lexical entry and to each other. These constraints

130

are specified much like regular expressions, and can
provide varying degrees of 'fit ' to the syntax.

In addition to these selectional constraints, each term
has a mapping from the arguments to a predicate logic
denotation, detailing the relationship in which the argu-
ments participate.

These three together embody what Pustejovsky calls a
lexieal-eouceptuai paradigm (LCP), a representation of
the expression of a particular concept, and the paradig-
matic usage in context of the lexical entry to express
that concept ([19]).

It is easy to see how a theoretical approach such as GL
can be operationalized: A local grammar, correspond-
ing to the cospecifications, and indexed off the lexical
entry, could be used in conjunction with a type match-
ing system which imposes the semantic constraints of
the qualia structure. The resulting mechanism, when
matched against text, could place the matching argu-
ments appropriately in the predicate denotation to re-
turn an interpretation of the text.

This system, which by conjoining argument type and
positional information avoids making a distinction be-
tween separate syntactic and semantic analysis, would
be a pattern system.

This system has been implemented, in part, in the
D1BEROT information extraction system ([4]).

5. P a t t e r n s

Pattern-based extraction systems combine syntactic and
semantic processing through the use of patterns. Pat-
terns consist of lexically specified syntactic templates
that are matched to text, in much the same way as reg-
ular expressions, that are applied along with type con-
straints on substrings of the match. These patterns are
iexically indexed local grammar fragments, annotated
with semantic relations between the various arguments
and the knowledge representation. In the most general
system, the units of matching could range from single
lexical items to phrasal components or variables with
arbitrary type constraints. The variables in the pattern
can be mapped directly into the knowledge representa-
tion, or, through type constraints, used as abstract spec-
ifications on the syntax. Pattern-based systems operate
by combining numerous local parses, without relying on
a full syntactic analysis.

5 .1 . DIDEROT, a p a t t e r n e x a m p l e

For example, in the DIDEROT project ([4]), a pattern is
represented as a GL structure (GLS) which gives the syn-

gls (es tabl i sh ,
s y n (. . .) ,
args([argl (AI,

syn([type (np)]) ,
qualia([formal ([code_2, organization])])),

arg2 (h2,
syn([type (np)]),
qualia([formal ([code_2, organization])])),

arE3 (A3,
syn([type (np)]) ,
qualia([formal([code_2, j oint_organ])]))]) ,

qualia([formal (t ie_up_icp)]),
¢ospe¢ ([

[hi ,* , s e l f ,* ,A2,* ,wi th , A3],
[A1, and,A3,*, sel f ,* ,A2],
[A 1, together, with, A3, * , se l f , * , A2] ,
[A 2 , i s , t o , b e , s e l f , * , w i t h , A3],
[A l , * , s i g n e d , * , a g r e e m e n t , * , s e l f , A2],
[At, *, self, *, joint, venture, A2,.ith, A3],
[self, include ,h2],
[A2, I~as ,self, with, h3]]),

types (tie_up_verb),
t empl at e_ s emant i c s (pt_t ie_up,

tie_up([AI ,A3] ,A2,_,existing,_))).

Figure 1: A GLS for 'establish'

tactic context along with mappings from text variables
to an predicate logic knowledge representation. A typi-
cal set of patterns used to cxtract joint-venture events,
indexed here from the word 'establish', is given in fig-
ure 1.

The GL cospecification information is contained in thc
cospec field. The index variable ' s e l f ' is used to rcfer
to an appearance of any of the morphological forms of
'establish'. These forms are given in the g y n (. . .)) field
(omitted here for brevity). Literals, such as 'venture' or
'agreement ' must match the text exactly. The a rgs field
indicates that argument variables AI and A2 must bc re-
alized syntactically as t y p e (n p) , where np designates a
class of strings which are heuristically noun phrases. The
argument variables are further restricted to the semantic
type path [c o d e _ 2 , j o i n t _ o r g a n)] . The type path es-
tablishes a region in a type hierarchy which must contain
the type of the argument ([20]). The last component of
the cospec, '* ' , is a Kleene star over all tokens - - any-
thing or nothing may appear in this position.

Because of the difficulty and expense of deriving pat-
terns, GLSs cannot be produced for every term of im-
portance. Rather, large segments of the lexicon are stat-
ically typed in a sublexicon less intricate than the GLS

131

lexicon. When the GLS is applied to text, the matching
of argument variables is accomplished either by calls to
GLSs of the appropriate type, or by the invocation of
small heuristic grammars. These small grammars com-
bine the type information of their constituents to match
the constraints of the governing GLS.

These grammars are used especially for proper name
recognition. Both company names and human names are
matched using small grammars based on part-of-speech
tags and the sublexicon typing. Some company names
are keyed from semantic indicators such as 'Corp. ' and
'Inc.', while many human and place names are identified
from a large fixed name lexicon.

Overall, other pattern-based systems operate in much
the same manner, varying somewhat in the amount of
machinery for pattern-matching, and the richness of the
typing systems.

6. T h e c u r r e n t s t a t e o f P a t t e r n
A c q u i s i t i o n

The TIPSTER and MUC projects have provided a wealth
of knowledge about building pattern-based systems. The
hardest and most time-consuming task involved is cer-
tainly the acquisition of patterns, which is still done pri-
marily by tedious hand analysis. Working backwards
from the key templates (hand generated knowledge rep-
resentations of texts as interpretted by the project spon-
sors), one can, by careful reading of the text, usually find
those segments of text which corresponds to the repre-
sentation entries Although the key templates are orig-
inally created by a researcher doing a careful reading,
the correspondence between text segments and the key
templates has not been recorded, making the process er-
ror prone and leaving the text open for reinterpretation.
The next step, that of correlating the text with the rep-
resentation and deriving a pattern which captures the re-
lation, is the most tedious and difficult part of the task.
Typing constraints for each class of predicate must be
remembered by the researcher performing the task, and
interactions between patterns must be identified and an-
alyzed for possible interference.

Here is a short (and most likely incomplete) review of
the state-of-the-art in pattern acquisition, as it exists in
the IE community:

CIRCUS (Lehnert et al. [11]) - - Handwritten CN (con-
cept node) patterns for partial template extraction.
Many man-hours were spent reading text, extracting all
possibly relevant contexts. Patterns were checked by
running the system. A knowledge-poor method with
good coverage due to large numbers of trials.

Shogun (Jacobs et al) - - Handwritten AWK scripts. De-
rived from compiled lists of company names, locations,
and other semi-regular semantic types. Also from re-
searcher analysis of these in context. Designed to aug-
ment or replace previous methods with similar function-
ality.

FASTUS (Hobbs, Appelt, et al [8]) - - Handwritten reg-
ular expression-like patterns for partial template extrac-
tion. Years of linguistic system building expertise im-
proved pattern generality and helped avoid interactions
between patterns.

DIDEROT (Cowie, Pustejovsky, et al [4]) - - Patterns for
full template extraction. Initial patterns automatically
derived from structured dictionary entries [2, 25] give
moderately effective high level patterns. Partly auto~
mated tuning to corpus usage. Hand analysis of contexts
and addition of patterns was used to complete coverage.

CIRCUS + AutoSlog (Lehnert et al [12]) - - Automated
reference from template to text, using machine learning
inference techniques, gives much of the coverage previ-
ously provided by hand-analysis. Patterns must still be
corrected by the researcher.

The AutoSlog approach has obtained the most signif-
icant benefit from automated acquisition. In this sys-
tem, a sentence containing a string which corresponds
to a template entry is analyzed for part-of-speech and
major phrasal boundaries. If the string entry from the
template aligns with one of the phrases, a pattern is gem
crated corresponding to the observed syntactic structure.
However, since the generated AutoSlog patterns are pro-
duced from single occurrences of context patterns, they
are not likely to capture patterns generalizing to vary-
ing contexts. In addition, the acquisition method is so
closely tied only to specific parts of the knowledge repre-
sentation (in that string entries only are matched) that
extending the coverage, or generalizing the domain ap-
pears to be as difficult as porting to entirely new do-
mains.

7. S t r u c t u r a l S i m i l a r i t y C l u s t e r i n g

The pattern systems described here a t tempt to relate
the use of terms in context to corresponding denotations.
One of the major assumptions made here, as well as in all
algorithmic computational linguistic systems, is one of
consislency of use and meaning - - that a term or phrase
(or any linguistic structure) used in a particular fashion
will give rise to a particular denotation. The goals of
any grammar induction or lexical semantic acquisition
problem are to define those particulars - - to find the

132

distinguishing features of the usage as they relate to the
features of the denotation.

The approach given here chooses to focus only on the
structural features of usage and denotation. By classify-
ing features relevant to the text~--,denotation mapping,
the aim is to provide a vocabulary and mechanism for
deriving and evaluating interpretation procedures.

It has been noted already that there exist paradig-
matic usages of terms to express particular concepts (the
LCPs). It is not a large leap to venture also that partic-
ular concepts have paradigmatic expressions in words -
idiomatic expressions, 'stock phrases' and proper names
being the most obvious examples. The relationship be-
tween the two can be approached from both directions -
by classifying the uses of a word in terms of their conven-
tional expression of a concept, or by classifying the ex-
pressions of a concept in terms of the words used. These
classifications create a vocabulary that can be used to
compare and relate words with concepts.

This work provides a step in forming such a vocab-
ulary by examining methods for classifying the struc-
tural properties of the words and denotations separately,
and in suggesting methods by which they could be uni-
fied. Classification methods for both lexical and seman-
tic structure are outlined here. An experimental im-
plementation of the lexical approach is presented in the
latter sections of the paper.

7 .1 . L e x i c a l s t r u c t u r e

Without considering its semantics, the use of a word can
be expressed solely by its lexical environment, or con-
text. Grammar-driven systems as well as pattern sys-
tems achieve their performance by relying on the ex-
pected structural properties of the language. We can
express the consistencies and paradigms in the usage of
a word in explicit terms of the similarities and common
structural properties of the lexical environment in which
that word appears,

A large collection of usages could be analyzed to find
natural classes of context, defined purely in terms of
the lexical environment, to give a vocabulary of context
types that can be used to compare and relate differing
words. The similarities of context would be determined
by the structural similarities of their component strings
of words. The presence and relative ordering of identical
words, words belonging to the same structural similar-
ity classes, or phrasal components, recursively defined in
terms of context types, would be the environment fea-
tures necessary for determining these classes.

Groups of contexts could be organized into context types

based on these similarity measures, with group member-
ship determined by similarity. The contexts could be
assembled into a hierarchical structure, in which groups
of high similarity combine to form higher-order clusters
encompassing the structural features of their component
groups.

Word classes could be defined inductively on this tree
of context types by classifying words according to the
sets of context types in which they have appeared. The
hierarchy of context types and word classes encodes the
specificity of the relation to the category. Lower levels
of the hierarchy have strict context constraints, while
higher levels, combining the classes beneath them, place
looser constraints on context patterns. By studying the
lexical context classes in relation to the semantic prop-
erties of the terms, we could illuminate those features of
context which correlate with, and in theory constrain,
their semantic properties.

An experimental method for performing these sorts of
classification is presented in the later part of this pa-
per, using string edit distance as a metric of similarity,
and agglomerative clustering techniques to provide the
classification structure.

7 .2 . S e m a n t i c s t r u c t u r e

In an analogous way, the predicate denotations of text
could be classified purely from their structural proper-
ties. In exactly the same manner as for context classes,
relation predicates could be grouped hierarchically based
on their structural features. The features one could use
to derive predicate classes include predicate arity, speci-
ficity, argument types, and structure depth, as well as
a semantic type hierarchy or lattice defined for specific
domain.

The large databases of parallel text and denotations that,
would be necessary for this are not as freely available as
text corpora for study. Representations would have to be
generated by hand. However, the work in template filling
and analysis contributed by the research community to
the TIPSTER effort has shown that deriving a sufficient
volume is not out of the question.

This classification of predicate structure would provide
a basis for examining the constraints which predicate
structure enforces on lexical realization.

7.3. I n t e g r a t i o n

The natural integration of these two lines of study would
result in a vocabulary of semantic and lexical classes that
would enable the correlation of the lexieal structure of a
text with its denotational structure, and the derivation

133

of structural mappings between the two.

As an example of the benefits this integration might give
to interpretation or IE systems, consider the following
example, from the TIPSTER/MUC-5 domain:

Imagine a researcher developing the domain-dependent
vocabulary for an IE system. Assume that the system
has a classification of the structural properties of gen-
eral text, and has also a type hierarchy for general and
domain-specific representations.

The researcher has annotated a short segment of text
with its interpretation in the problem domain. (See
fig. 2). In the figure, the indices relate segments of text
to their corresponding denotations. SMALL CAPS are
used in the denotation to indicate known quantities in
thc domain specific type hierarchy; mixed case is used
for unknown types.

[A[BIBM]B is jointly developing [cpractical X-
ray tools
for [Dthe manufacture of [Gdevices]G [Bbased
on 0.25 micron or small geometries]E]D]C with
[fUotorola]F]A.

DEVELOPMENTA
AGENT:
"IBM" B
"Motorola" F
PRODUCT:
"tools" c

TYPE:
X-RAY
USE:
MANUFACTURED

PiODUCT:
"devices" a

FEATURE_SIZE:
0.25 /~M E

Figure 2: A segment of text, marked against a predicate
interpretation

Now that the researcher has provided a connection be-
tween text and denotation, the system can use the clas-
sifications of context and mapping types as a vocabu-
lary to describe the relation. For instance, it is now
known that ' IBM', and also 'Motorola' , can be AGENT
arguments, and specifically the A G E N T arguments of a
DEVELOPMENT predicate. The system probably has an
LCP encoding the co-agentive functionality of 'wi th ' , but
now learns specifically that the DEVELOPMENT predicate

allows this behavior, and that a configuration giving that
interpretation is:

[A1 . . . PRODUCT with A2]

This knowledge can augment both the LCP for 'with'
and the mapping structures for DEVELOPMENT relations.

Once the system has been provided with more text-
denotation pairs particular to the domain, it may find
a correlation between lexical structures containing the
word 'developing' and DEVELOPMENT predicate struc-
tures, and then postulate mappings between the two,
building an LCP for 'developing'. Or, relying more heav-
ily on general structural knowledge, the system could use
an existing LCP for the word 'is', as represented by the
syntactic pattern

[ARGlis'X'ARG2 ...]

and the predicate structure
X-PRED

ARG1
ARG 2

(where the word 'X ' is correlated with the predicate X-
PRED). This general mapping for ' is ' could be used to
postulate a correlation between 'developing' and DEVEL-
OPMENT.

Only through the development of a catalog and vocabu-
lary of structural descriptions, however, could one hope
to build a system such as this.

8. Ed i t D i s t a n c e

One method for judging the similarity between strings
of lexical items (tokens) is the edit distance formulated
by Levenshtein ([13]). This is a similarity measure based
on the minimum number of token insertions, deletions,
and substitutions (mutations) required to transform one
string into another. A generalization of this edit distance
can be made by assigning differing weights to insertions
of particular tokens or classes of tokens, and by also as-
signing weights to token substitution pairs. Straight-
forward computational methods for finding the edit dis-
tance between two strings ([22, 24]) have been used on
a variety of problems in biology, genetics, speech and
handwriting analysis ([21]), as well as in syntactic anal-
ysis of formal languages ([14]). (For a good introduction
with applications to many domains, see [21].)

To demonstrate the generalized edit distance, consider
the two strings:

134

the path that is the path
the way that i:~ not the way

The first string can be transformed into the second by
a number of insertion, deletion, and substitution oper-
ations. Substitutions are commonly counted as two op-
erations, since they give the same effect as a deletion-
insertion combination. In this example, 'not ' could be
inserted; 'pa th ' could be substituted by 'way', then the
second 'pa th ' deleted at the end, then 'way' inserted;
' tha t ' could be deleted then reinserted, and then 'not '
inserted; etc. Many different sequences lead to the same
result, but there will be a minimum number of opera-
tions required for the transformation.

After a short inspection, we could expect a minimum
of 5 operations in this case - two for each change from
'path ' to 'way', and one for the insertion of 'not ' .

This distance measure can be generalized to compensate
for different similarities between types of tokens. For in-
stance, if one decides that 'way' and 'pa th ' are more sim-
ilar to each other than either is, say, to 'is ' or ' the' , then
it would be good to have the substitution o f ' p a t h ' - ' w a y '
amount to less than the possible substitution 'pa th ' - ' i s ' .
To accomplish this, a cost can be associated with each
operation, perhaps even a different cost for each sort
of insertion or substitution. Then a transformation of
minimum cost, rather than minimum operations, can be
defined. If one makes the simple assumption that a sub-
stitution costs no more than the corresponding deletion-
insertion pair, then this minimum cost can be shown to
obey metric properties, and defines the generalized edit
distance between the two strings, with larger distances
corresponding to less similar strings.

There is a straightforward method for computing edit
distance. In a prime example of dynamic programming,
the edit distance is computed for every pair of initial
substrings of the two strings under study, with results
for shorter substrings combining to give results for longer
substrings.

More explicitly, let our two strings be A =
(a 0 , a l , . . . , a m) and B = (bo,bl,...,bn), where a, is the
ith token in string A, starting with token 1. We let the
first component of the the string, a0, be a null token,
representing an empty position into which we can insert.

Define also the initial substring Ai = (a0, h i , . . . , hi) of
a string to be the first i tokens, including the null token
at the beginning.

The computation starts by assigning D(A0, B0)) = 0,
the cost of transforming a0 to b0, the null token to itself.

A

B I II-I the path] that is the [path
- 0 1 2 3 4 5 6

the 1 0 1 2 3 4 5
way 2 1 2 3 4 5 6
that 3 2 3 2 3 4 5

is 4 3 4 3 2 3 4
not 5 4 5 4 3 4 4
the 6 5 6 5 4 3 4
way 7 6 7 6 5 4 5

Figure 3: Dynamic programming for edit distance (' - ' is
the null token)

Each subsequent step in the computation proceeds with
the simple rule:

D(Ai, Bj_i) + Din.~rt(bj)
D(Ai, Bj) = min D(A,_,, Bj) + Dinsert(a,)

D(Ai-1, B j - 1) "l- Dsubstitute (ai , bj)

where Dinsert(X) is the cost for inserting z, and
Dsubstitute($~, y) is the cost of substituting x for y.

Starting with D(0,0), one can fill each D(i,j) in a ta-
ble, ending at D(m, n), the edit distance between the
two strings. The table is filled from upper left to lower
right, as each entry is computed from its upper, leftward,
and diagonal neighbors using the minimum rule above.
Figure 3 gives this table for the example strings.

8 . 1 . S t r i n g a l i g n m e n t s

As a by-product of the edit distance computation, one
can create an alignment of the two strings. This align-
ment matches the elements of the two sequences in linear
order and shows the correspondence between tokens and
substrings of the two matched strings. An alignment can
be generated directly from the table created in the edit
distance computation by following the path of minima
chosen during the computation from the upper left cor-
ner to the lower right. Rightward travel along this path
corresponds to insertion of a token from string A, down-
ward travel to tokens from string B, and diagonal paths
to substitutions. (Multiple minimum paths may result,
giving alternate but equivalent alignments.)

The alignment created from our two example strings (fig-
ure 4) gives the correspondence between the tokens of the
two initial strings. From the figure, it is easy to see the
structural similarities of the two strings.

Alignments can be created for sets of more than two

135

p i the i pat i that i isl j the i path I
the way that is not the way

Figure 4: A string alignment table

strings. These can be expressed in terms of extended
alignment tables, with added rows corresponding to the
additional strings. These alignment tables could fur-
ther be abstracted to probabilistic descriptions of the
sequences, using either a zero-order or Markov chain de-
scription. Chan and Wang ([3]) have used syntheses,
zero-order probabilistic descriptions of alignment tables
in order to generalize the edit distance and capture the
notion of distance between two sets of sequences. Tech-
niques such as this may prove useful in later work.

9. C o n t e x t C l u s t e r i n g

Ill keeping with a straightforward approach to this pre-
liminary work, a simple clustering technique was chosen
to produce hierarchical sets of keyword contexts with
similar structural properties. In this approach, contexts
judged most similar in terms of a generalized edit dis-
tance were grouped into clusters. This technique is sim-
ilar to some methods used in automatic grammar induc-
t, ion ([14]).

Clustering was chosen over grammar induction or other
abstract techniques for the simple reason that the result
is more easily explained from the data. The resultant
groupings indicate exactly which data contribute, and
alignments or syntheses can help to determine the exact
nature of the contribution. Grammar induction tech-
niques give results so far abstracted from the data that
analysis is often unclear.

The clustering procedure used was the group average
method, a variety of agglomerative hierarchical cluster-
ing often used in biological and genetic studies in nu-
merical taxonomy ([1]). The technique is agglomerative
in that groups of increasing size are built from smaller
groups. It is hierarchical in that each the members of a
cluster retain their pre-existing cluster organization, as
opposed to a flat structure in which the origins of cluster
members are not retained.

The hierarchy produced by the clustering algorithm is
useful in judging similarity in a variety of ways. Compar-
ing the clusters at one similarity level with those groups
either above or below in the hierarchy gives a good in-
dication of which properties are responsible for the indi-
cated level similarity. Properties of the data may become
apparent due to their uniform presence (or absence) at
a given level in the hierarchy.

136

9 .1 . L o c a l i t y in t h e e d i t d i s t a n c e

There is a degree to which purely configurational (syn-
tactic) considerations are local in nature. Syntactic well-
formedness and syntactic interactions are properties and
behaviors that seem to have a high locality of effect. The
presence of phrasal constituents in almost every syntac-
tic theory is evidence of the degree to which this belief
is held - - phrasal boundaries mark the limits of local
syntactic interactions for most word classes. Only some
word classes, such as verbs and event-denoting nouns,
seem to affect the placement and configuration of more
distant constituents. Most word types seem to affect
(and, conversely, are affected by) primarily the configu-
ration in their immediate vicinity.

In order to highlight the locality of these configurational
effects, the edit distance used in the experiments was
modified so as to decrease the importance of token dis-
tance from the keyword. One would like to weight near
tokens more heavily, but without ignoring the contri-
butions of distant ones. A window function (sometimes
called a step function) would be simplest, but would only
count near tokens and completely discount far ones. A
linear dropoff function would be able to include contri-
butions of all tokens, but because some strings are very
long, it would necessitate a slow dropoff if even the very
distant tokens were to contribute to the measure.

In the end, a geometrically decreasing weight function
was chosen, due to its useful properties:

• Near tokens are weighted more heavily than far to-
kens.

• All tokens in the string still contribute to the dis-
tance measure.

• A half power distance can be defined, which helps
in the understanding and analysis of the results.

The half power distance is the distance for which the
tokens on one side (those near the keyword) account for
half of the total possible edit distance, while those on
the other side (farther from the keyword) account for
the remainder. This helps give a more intuitive read-
ing for the resulting distance, with an effective window
around the keyword which can be treated equally with
the remainder of the string.

The implementation of this geometric dropoff requires
only a small change to the original dynamic program-
ming algorithm for edit distance. The table-filling rule
becomes:

D(Ai, Bj) =

D(Ai, Bj-1) + L i+j x Dinsert(bj)
min D(Ai.1, Bj) + L i+j x Dinsert(ai)

D(Ai-1, Bj-1) + L i+j X Dsubstitute(ai, bj)

where L is the locality factor, which is defined in terms
of the half power distance, Ph:

1 l / P h L p , , _ 1 L = ~ , s o t h a t - 3 "

9 . 2 . P r o b l e m ~ - s p e c i f i c w e i g h t s

While it would be ideal to perform the analysis using
only perfect equality of lexical items as a criterion, both
the number of contexts required for useful generalization,
and the immense computational cost of performing such
experiments are prohibitive. In order to make the test
procedures tractable in these experiments, lexical items
were not treated uniformly as purely lexical tokens. The
input was first divided into word classes based on stan-
dard part-of-speech classification, and edit distance costs
were assigned on the basis of those classes.

The text was initially tagged using a stochastic part-oh
speech tagger ([15]). The 48 tag types used were divided
into 12 equivalence classes (verbs, nouns, determiners,
adjectives, etc.) in order to simplify weight assignment.
To give members of a given class a higher self-similarity,
intra-class substitutions were assigned lower cost than
inter-class substitutions. Perfect lexical equality was still
accorded a cost of zero.

These particular classes were chosen on the basis of gen-
eral linguistic knowledge with respect to the underlying
functional aspects~ of the theory. It is hoped that in later
analyses, untagged text can be used in the system from
end to end, with context type and word classifications
coming as a result of the pattern clustering scheme.

10. C o n t e x t m e t h o d r e s u l t s

The context clustering algorithm described above was
run using a variety of different keywords. Two exam-
pies, of and without, are given to provide a basis of com-
parison with other methods in grammar induction and
selectional frame acquisition. One example of a word
relevant to the TIPSTER project is given, to illustrate
applications of the similarity clustering technique in ac-
quiring domain-specific lexicons.

199 occurrences of of, 197 of without and 150 of joint

were chosen randomly from the 1988 Wall Street Jour-
nal [26], part-of-speech tagged, and clustered using the
localized edit distance and the group average clustering
method. The half-power distance used was 6, giving 3 to-
kens per string. Because of processing constraints, only
the right-hand side of each lexical environment was used
in the clustering. In order to achieve clusters of equal
significance correlating both sides of the context, with-
out assuming some intrinsic cross-correlation, the sample
size would need to be increased dramatically.

The results of the clustering are given in two forms.
Dendogram tree structures are shown on the final page.
These diagram are presented in order to provide a rela-
tive indication of the structuring properties of the tech-
nique - to show that the clustering algorithm used pro-
vides more than a flat grouping. In these tree diagrams,
the vertical scale represents the similarity of merged clus-
ters. Two segments of the tree joined by a horizontal
segment indicates the merger of two clusters whose dis-
tance corresponds to the height of the commcting seg-
ment. Higher connections correspond to greater distance
(less similarity).

In addition to the dendograms, the context strings of
some of the significant clusters are given as aligmnents
in figures 5 through 13. The context strings are indexed
by number, matching identical (although almost illegibly
small) indices on the diagrams.

1 0 . 1 . P r e p o s i t i o n a l a r g u m e n t s

The prepositional keyword of was used to test whether
the method could extract general noun-phrase structure
(NPs being the usual right-hand complement of of).
Clusters representing the expected short NP patterns,
such as [DEW N], [DEW Adj N], and [DEW N-plural] were
generated.

Two of the more interesting low level clusters are illus-
trated in figures 5 and 6. Figure 6 is a cluster which
groups genetive NPs as the argument to of. Figure 5 il-
lustrates phrasal delineation by punctuation, promising
perhaps that the method could also derive the syntac-
tic phrase-structuring properties .and conventional uses
of punctuation.

Another test was run with the prepositional keyword
without, again to test the for NP structure, and to illus-
trate semantic subtyping of the arguments. Most of the
argument clusters found were phrases denoting an event
or action, either with a nominal event head (figure 7), or
with a participial phrase (figure 8).

The clustering for without also revealed as significant tile
idiomatic expression 'without admitting or denying x, '

137

121: of the a sahan au thor i ty - I
96: o f the dealer ,

136: of the gross na t iona l p r o d u c t
84: of the old one
63: of the proposed actions

Figure 5: of: the [MOD] NOUN DELIMITER

where x is a term carrying negative connotations (fig-
ure 9).

1 0 . 2 . D o m a i n - s p e c i f i c v o c a b u l a r y : j o i n t

A trial using an exemplary word from the TIPSTER do-
main was also run, to test whether the method could
extract paradigmatic use carrying semantic information.
The word joint was selected because of its semantic re-
latedness to the cooperative nature of the business tie-up
events (the domain of the TIPSTER task), and because
of its observed heavy use in relevant context. 150 oc-
currences of joint were taken randomly from the same
corpus, and clustered using the same techniques as for
of and without.

The simplest clusters for joint are of the form 'joint x ' ,
where x is a group behavior or a group (figure 10). This
kind of semantic collocation information can also be de-
rived through statistical hi-gram analysis ([7, 18]).

Tile phrasal clusters produced by the method, however,
cannot be obtained with bi-gram methods. Figures 11,12
and 13 illustrate clusters of paradigmatic usage of joint
ill the business reporting domain. These clusters reflect
tile semantic collocations tha t can be expected to appear
with joint. The appearance of these clusters shows that
the paradigmatic use embodied by the LCP is derivable
by purely structural lexical methods.

The more structured clusters shown here for joint (fig-
ures 11, 12, and 13) give patterns with direct applicabil-
ity to IE systems. In fact, these patterns were derived
previously through other techniques and are currently
used in the DIDEROT system to trigger extraction of joint
venture events.

1 1 . C o n c l u s i o n

This paper has presented a linguistic framework in which
to view the use of pattern-based extraction systems for

85: of the code 's spirit
47: of the dollar 's recent rise

146: of the company 's quarterly dividend
182: of the president-elect's favorite phrases

Figure 6: of: the N's NP

119: without a significant correction
38: without a significant retreat
19: without a proper hearing
ll:lwithout a legislative vote
42:lwithout a bone

168: w i t hou t any coat ta i l s
155: w i thou t any resul ts

61: w i t h o u t any au thor i za t ion wha t soever
36: without any congressional authorization

136: without any prior regulatory approval

Figure 7: w i t h o u t : [alany] EVENT-NOMINAL

93:
7:

138:
166:

4:
120:
192:

186:
20:

134:

47:
16:

150:
159:

without raising tax rates
without raising taxes
without hurting customer~
without telling them
without recognizing it
without borrowing money
without using installment notes

without taking a strike
without fomenting a revolutior
without complying with federal disclosure

without put t ing up any cash
without buying any shares
without ever entering the courthouse
without bail pending a hearing

Figure 8: w i t h o u t : xing Y

100:
91:

115:
104:
105:
146:
145:
140:
117:

52:
34:
38:
39:
50:

joint bid
joint bid
joint effort
joint appearances
joint appearance
oint ventures
oint ventures
oint ventures
oint ventures
oint venture
oint venture
oint ventures
oint ventures
oint chiefs

Figure 10: j o i n t : cooperative

122: joint venture of enron corp and sonat inc I
26: joint venture of sammis corp and transameric~ corp

124: joint venture of general motors corp and allied-signal inc

Figure 11: j o i n t : venture of x coRP and v INC

138

text understanding. The framework is based on the func-
tional aspects of denotational lexical semantics, treating
the lexical and semantic components of an expression as
mutual constraining parts, each imposing constraints on
the structure of the other.

The viewpoint leads to an investigation of the lexical-
semantic interaction in terms of a classification of struc-
tural properties. The two ends of the spectrum can
be analyzed separately, bringing independent structural
classifications to bear on the analysis of the interaction.

Methods were outlined for creating classifications of this
sort, to create hierarchical descriptions of context and
predicate types, which form a descriptive vocabulary for
analyzing the interaction of lexical and semantic proper-
ties in use.

Experiments were performed on structural clustering of
lexical context, using a localized edit distance as a mea-
sure of similarity. These experiments showed that struc-
ture clustering can derive the lexical information re-
quired for constructing LCPs.

F u t u r e d i rec t ions : Obviously, the current level of
these techniques is not sufficient to automatically create
patterns mapping lexical structure to semantic denota-
tions. What they do show, however, is that edit-distance
clustering is a useful technique for extracting the syntac-
tic portions of such patterns - from a set of less than 200
contexts in each case we see significant clusters, identi-
cal to patterns used in an existing IE system. Further
work is needed in order to fold the semantic mapping
into the clustering process. Metrics are needed for clas-
sifying both semantic structure and for the integrated
mappings. One solution might be to augment the string
edit distance with a predicate-similarity metric based on
tree-matching, with the relational structure treated as a
tree of predicates and arguments. This combined metric
could provide a measure of similarity for classifying the
structural mappings themselves.

Much of the community has discussed the need for se-
mantically marked text, much like that in the example
of figure 2, over which to run machine learning methods
such as these. A collection of text with relations explic-
itly marked out would provide an ideal set of learning
examples for the clustering technique shown, and for ex-
tension into methods integrating the semantic and syn-
tactic clustering.

Because of the cost in analysis time, the creation of such
a collection is currently unreasonable. In parallel re-
search, I am constructing tools to allow the researcher
to easily mark text relative to an arbitrary RR knowl-
edge representation scheme.

The similarity measure could benefit from further re-
search. As it is given, the edit distance provides no dis-
tinction between contiguous substring matches and arbi-
trary subsequence matching. A measurement for rever-
sals - the alternation of a pair A B with BA, for tokens
(or substrings) A and B - would be useful, &s this sort
of swapping is common in natural language. There have
been some attempts toward this in the genetics commu-
nity, but no significant success has been achieved.

The metric also could benefit from more advanced meth-
ods of comparing sets of strings, rather than pairs only.
In order for these techniques to be most effective in de-
riving lexical structure, the comparison metric should
give credit explicitly to those substructures responsible
for the assessed similarity. The present metric can only
do this on a pair-wise basis. The syntheses presented in
[3] provide one method for extension to sets of strings,
probabilistic grammars another.

The method also suffers from its computational complex-
ity. The clustering method is O(n~), where n is the num-
ber of contexts, while the edit-distance computations are
O(k2), where k is the average context length, making the
entire method O(k2n2). The context length, k is rela-
tively fixed, but the number of separate contexts n is
unbounded. For large numbers of context strings, the
computational cost is prohibitive. However, there is a
simple parallel reduction of the clustering which brings
the cost down to a tractable O(nk ~) for n processors. I
have begun to experiment with this algorithm on a CM-5
parallel computer.

References related to edit distance and context evalu-
ation, primarily from the biological literature, are con-
tinually coming to my attention. Unfortunately, I have
not had ample opportunity to judge their relation to the
present work.

Acknowledgements: I would like to thank James Puste-
jovsky and Paul Buitelaar for useful discussions in developing
this material. I would also like to thank the anonymous re-
viewers for their helpful comments in its improvement.

139

195: without admi t t ing or denying wrongdoing
59: without admi t t ing or denying guilt

123: without admi t t ing or denying any wrongdoing
194: without admi t t ing or denying wrongdoing
122: wi thout admi t t ing or denying the allegations

Figure 9: w i t h o u t : admit t ing or denying x

131:lJoint venture with bp america !nc [
l l9 :] jo int venture with icn pharmaceut icals mc I

73:l joint venture with aaa development corp I
] 67:lJoint venture with komori printing machinery co I
I 10:l joint venture agreement with pt as t ra international inc I [16:lJoint venture with french publisher hachette sa I

Figure 12: j o i n t : venture with x INC.

113: joint venture of dow chemical co , detroit , and corning glass works coming , n YY York
64: joint venture of dow chemical co in midland , mich , and corning glass works in corning, n
98: joint venture of landmark land corp , carmel , calif , and ranieri wilson co new

Figure 13: j o i n t : venture of x c o . LOCATIONx and Y co . LOCATIONy

140

2J '

ii

|

: !

8"

| | =

• | l

I I

, !l }

°w

• |

|

1 .}.__r"

:4

| -~

!
| ° r

| •

I I~-

t-O-

el

R e f e r e n c e s

1. Anderberg, M.R. (1973) Cluster Analysis for Applica-
tions, Academic Press, New York

2. Boguraev, B. and Briscoe, T., Eds. (1989) Computa-
tional Lexicography for Natural Language Processing,
Longman, London.

3. Chan, S.C., and Wang, A.K.C. (1991) "Synthesis and
recognition of sequences," IEEE Trans. on Pattern
Analysis and Machine Intelligence 13-12 pp. 1245-1255

4. Cowie, J., Guthrie, L., Pustejovsky, J., Wakao, T.,
Wang, J., and Waterman, S. (1993) "The Diderot In-
formation Extraction System," to appear in Proc. First
PA CLING Conference, Vancouver.

5. Grishman, R., Macleod, C., and Sterfing, J. (1992) "New
York University: Description of the PROTEUS System
&s Used for MUG-4," in Fourth Message Understand-
ing ConIerence (MUC-4), Morgan Kaufmann Publish-
ers, San Mateo

6. Grishman, R., Sterling, J. (1992) "Acquisition of selec-
tional patterns," in COLING 92, the Proceeding of the
14 th International Conf. on Computational Linguistics,
Nantes, France

7. llindle, D., and Rooth, M. (1991) "Structural Ambiguity
and Lexical Relations," Proceedings of the 29 th Annual
Meeting of the ACL.

8. Hobbs, J.R., Appelt, D., Tyson, M., Bear, J., and Isreal,
D. (1992) "SRI International: Description of the FAS-
TUS System used for MUC-4," in Fourth Message Un-
derstanding Conference (MUC-4), Morgan Kaufmann
Publishers, San Mateo

9. Hobbs, J., Stickel, M., Appelt, D., and Paul, M. (1990)
"Interpretation as Abduction," SRI International AI
Center Technical Note 449, Palo Alto

10. Itogeweg, P., and Hesper, B. (1984) "The alignment
of sets of sequences and the construction of phyletic
trees: An integrated method," J. Molecular Evolution,
20 pp. 175-186

11. Lehnert, W., Cardie, C., Fisher, D., Riloff, E., and
Williams, R. (1991) "Description of the CIRCUS System
as Used for MUC-3," in Third Message Understanding
Con]erence (MUC-3), San Diego, pp. 223-233

12. Lehnert, W., Cardie, C., Fisher, D., McCarthy, J.,
Riloff, E., and Soderland, S. "University of Mas-
sachusetts: MUC-4 Test Results and Analysis," in
Fourth Message Understanding Conference (MUC-~),
Morgan Kaufmann Publishers, San Mateo

13. Levenshtein, V.I. (1966) "Binary codes capable of cor-
recting deletions, insertions, and reversals." Cybernetics
and Control Theory 10-8 pp. 707-710; Russian original
(1965) Doklady Akademii Nauk SSR 163-4 pp. 845-848

14. Ira, S.Y., and Fu, K.S. (1977) "A clustering procedure
for syntactic patterns," IEEE Trans. on Systems, Man,
and Cybernetics, Oct. 1977.

15. Mcteer, M., Schwartz,R, and Weischedel,R. (1991)
"Empirical Studies in Part of Speech Labelling," Proc.
o] the 4th DARPA Workshop on Speech and Natural
Language, Morgan Kaufman Publishers, San Mateo,
pp. 331-336

16. Pustejovsky, J. (1991) "The Generative Lexicon," Com-
putational Linguistics, 17-4.

17. Pustejovsky, J. (forthcoming) The Generative Lexicon:
A Theory of Computational Lexicai Semantics, MIT
Press, Cambridge.

18. Pustejovsky, J. (1992) "The Acquisition of Lexical Se-
mantic Knowledge From Large Corpora," in Proceed-
ings of the Filth DARPA Workshop on Speech ~ Natural
Language

19. Pustejovsky, J . and Anick, P. (1988) "3'he Semantic
Interpretation of Nominals," Proc. of the 12 th Inter-
national Con]erence on Computational Linguistics, Bu-
dapest.

20. Pustejovsky, J. and Boguraev, B. (1993) Lexical knowl-
edge representation and natural language processing.
Artificial Intelligence, 1993.

21. Sankoff, D., and Kruskal, J.B., eds. (1983) Time
warps, string edits, and macromolecules, Addison-
Wesley, Reading, MA

22. Sellers, P.tI. (1974) "An algorithm for the distance be-
tween two finite sequences," J. Comb. Thy A16 pp. 253-
258

23. Smadja, F. (1989) "Macrocoding the Lexicon with Co-
occurrence Knowledge," First Int'l Language Acquisi-
tion Workshop, IJCAI 89

24. Wagner, R.A., and Fischer, M.J. (1974) "The string-to-
string correction problem," J. ACM 21 pp. 168-173

25. Wilks, Y., Fass, D., Gou, C.M., McDonald, J.E.,
Plate, T., and Slator, B.M. (1990) "Providing Machine
Tractable Dictionary Tools," Machine Translation 5

26. The Wall Street Journal, (1988) Dow Jones, Inc.

27. Zernik; U. (1990) "Lexical Acquisition: Where is the
Semantics?" Machine Translation 5, pp. 155-174

142

