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Abstract 

This paper introduces an algorithm for automatically acquiring the conceptual struc- 
ture of each word from corpus. The concept of a word is defined within the proba- 
bilistic framework. A variation of Belief Net named as Collocation Map is used to 
compute the probabilities. The Belief Net captures the conditional independences 
of words, which is obtained from the cooccurrence relations. The computation in 
general Belief Nets is known to be NP-hard, so we adopted Gibbs sampling for the 
approximation of the probabilities. 

The use of Belief Net to model the lexical meaning is unique in that the network is 
larger than expected in most other applications, and this changes the attitude toward 
the use of Belief Net. The lexical concept obtained from the Collocation Map best 
reflects the subdomain of language usage. The potential application of conditional 
probabilities the Collocation Map provides may extend to cover very diverse areas of 
language processing such as sense disambiguation, thesaurus construction, automatic 
indexing, and document classification. 

1 Introduct ion  

The level of  the conceptual  representat ion o f  words can be very complex in certain con- 
texts,  bu t  in this  paper  we assume ra ther  s imple s t ructure  in which a concept is a set 
of  weighted associated words. We propose an au tomat i c  concept acquisi t ion f ramework 
based on the condi t ional  probabi l i t ies  suppl iedd by a network representat ion of  lexical re- 
lat ions.  The  network is in the spir i t  of Belief Net, but  the probabi l i t ies  are not  necessarily 
Bayesian.  In fact this  var ia t ion of  Bayesian Net is discussed recently by (Neal, 1992). We 
employed the Belief Net with non Bayesian probabi l i t ies  as a base for represent ing the 
s ta t i s t ica l  re la t ions among concepts, and implemented  the detai ls  of  the computa t ion .  

Belief or Bayesian Nets have been extensively s tudied "in the normat ive  exper t  sys tems 
(Heckerman,  1991). Exper ts  provided the network with the Bayesian(subject ive)  proba-  
bil i t ies solely based on h is /her  technical  experiences. Thus  the net  has been also known 
as a Belief Net among a dozen other  names  tha t  share all or some of  the principles of  
Bayesian net. The  probabi l i s t ic  model  has been also used in the problems of in tegra t ing  
various sources of  evidences within sound framework (Cho, 1992). One of the powerful 
features of Belief Net is t ha t  the condi t ional  independences of the variables in the model  
are na tu ra l ly  captured,  on which we can derive a form of probabilistic inference. If  we 
regard the occurrence of a word as a model  variable and assume the variables occur within 
some condi t ional  influences of  the variables(words)  tha t  previously took place, the Belief 
approach appears  to be appropr ia t e  to compute  some aspects  of lexical re la t ions la tent  in 

1 This work was supported in part by a grant from Korea National Science Foundation as a basic 
research project and by a grant from Korea Ministry of Science and Technology in project "an intelligent 
multimedia information system platform and image signal transmission in high speed network" 

22 



the texts. The probabilities on dependent variables are computed from the frequencies, 
so the probability is now of objective nature rather than Bayesian. 

The variation of Belief Net we use is identical to the sigmoid Belief Net by Neal (1992). 
In ordinary Belief Nets, 2 ~ probabilities for a parent variable with n children should be 
specified. This certainly is a burden in our context in which the net may contain even 
hundred thousands of variables with heavy interconnections. Sigmoid interpretation of 
the connections as in artificial neural networks provides a solution to the problem without 
damaging the power of the network. Computing a joint probability is also exponential 
in an arbitrary Belief network, thus Gibbs sampling which originates from Metropolis 
algorithm introduced in 50's can be used to approximate the probabilities. To speed 
up the convergence of the sampling we adopted simulated annealing algorithm with the 
sampling. The simulated annealing is also a descendant of metropolis algorithm, and has 
been frequently used to compute an optimal state vector of a system of variables. 

From the Collocation Map we can compute an arbitrary conditional probabilities of 
variables. This is a very powerful utility applicable to every level of language processing. 
To name a few automatic indexing, document classification, thesaurus construction, and 
ambiguity resolution are promising areas. But one big problem with the model is that it 
cannot be used in real time applications because the Gibbs sampling still requires an ample 
amount of computation. Some applications such as automatic indexing and lexical concept 
acquisition are fortunately not real time bounded tasks. We are currently undertaking 
a large scale testing of the model involving one hundred thousand words, which includes 
the study on the cost of sampling versus the accuracy of probability. 

To reduce the computational cost in time, the multiprocessor model that is success- 
fully implemented for Hopfield Network(Yoon, 1992) can be considered in the context of 
sampling. Other options to make the sampling efficient should be actively pursued, and 
their success is the key to the implementation of the model to the real time problems. 

2 Def ini t ion of  Lexical  Concept  

Whenever we think of a word, we are immediately reminded of some form of meaning 
of the word. The reminded structure can be very diverse in size and the type of the 
information that the structure delivers. Though it is not very clear at this point what the 
structure is and how it is derived, we are sure that at least some type of the reminded 
structure is readily converted to the verbal representation. Then the content of vebral 
form must be a clue to the reminded structure. The reminded structure is commonly 
referred to as the meaning of a word. Still the verbal representation can be arbitrarily 
complex, yet the representation is made up of words. Thus the words in the clue to the 
meaning of a word seem to be an important element of the meaning. 

Now define the concept of a word as 

Def in i t ion  1 The lexical concept of a word is a set of associated words that are weighted 
by their associativeness. 

The notion of association is rather broadly defined. A word is associated with another 
word when the one word is likely to occur in the clue of the reminded structure of the other 
word in some relations. The association by its definition can be seen as a probabilistic 
function of two words. Some words are certainly more likely to occur in association with 
a particular word. The likeliness may be deterministically explained by some formal 
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theories, but we believe it is more of inductive(experimental) process. Now define the 
concept a of word w as a probabilistic distribution of its associated words. 

= { (w,, p d } ,  (l)  

where 

pi = P(Wl I w ) , a n d  
p i > T .  

Thus the set of associated words consists of those whose probability is above threshold 
value T. The probabilistic distribution of words may exist independently of the influence of 
relations among words though it is true that  relations in fact can affect the distribution. 
But in this paper we do not take other information into the model. If  we do so, the 
model will have the complexity and sophistication of knowledge representation. Such an 
approach is exemplified by the work of Goldman and Charniak (1992). 

Equation 1 can be further elaborated in several ways. It  seems that  the concept of 
a word as in Equation 1 may not be sufficient. That  is, Equation 1 is about the direct 
association of a given word. Indirect association can also contribute to the meaning of a 
word. Now define the expanded concept of a word as 

a ' (w)  = { (wi, Pi)} U { (vi, qi)}, (2) 

Ors 

where 

qi = P(  vi I o'(w)) ,and  

qi > T .  

= { (w,, pl)} u (3) 

If the indirect association is repeated for several depths a class of words in particular 
aspects can be obtained. A potential application of Equation 3 and 4 is the automatic 
thesaurus construction. Subsumption relation between words may be computed by care- 
fully expanding the meaning of the words. The subsumption relation, however, may not 
be based on the meaning of the words, but it rather be defined in statistical nature. 

The definition of lexical meaning as we defined is simple, and yet powerful in many 
ways. For instance, the distance between words can be easily computed from the rep- 
resentation. The probabilistic elements of the representation make the acquisition an 
experimental process and base the meaning of words on more consistent foundation. The 
computation of Equation 1, however, is not simple. In the next section we define Collo- 
cation Map and explain the algorithm to compute the conditional probabilities from the 
Map. 
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Figure 1: DG to DAG 

Figure 2: Word Dependency in Collocation Map 

3 Col locat ion Map 

Collocation map is a kind of Belief Net or knowledge map that  represents the dependencies 
among words(concepts). As it does not have decision variables and utility, it is different 
from influence diagram. One problem with knowledge map is that  it does not allow cycles 
while words can be mutual ly  dependent. Being DAG is a big advantage of the formalism 
in computing probabilistic decisions, so we cannot help but stick to it. A cyclic relation 
should be broken into linear form as shown in figure 1. Considering the size of collocation 
map and the connectivity of nodes in our context is huge it is not practical to maintain 
all the combination of conditional probabilities for each node. For instance if a node has 
n conditioning nodes there will be 2 n units of probability information to be stored in the 
node. We limit the scope to the direct dependencies denoted by arcs. 

Wha t  follows is about  the dependency between two words. In figure 2, 

P(b la)  = pl, (4) 
P(c la )  = p2. (5) 

Pl denotes the probability that  word b occurs provided word a occurred. Once a text 
is transformed into an ordered set of words, the list should be decomposed into binary 
relations of words to be expressed in collocation map. Here in fact we are making an 
implicit assumption that  if a word physically occurs frequently around another word, the 
first word is likely to occur in the reminded structure of the second word. In other words, 
physical occurrence order may be a cause to the formation of associativeness among words. 

Di = ( a , b , c , d , e , f , . . . , z ) .  

When Di is represented by a, b, c, • - -, z), the set of binary relations with window size 
3(let us  call this set/~3) format is as follows. 
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s 

D i = (ab, ac, bc, ad, bd, cd, b e , c e , d e , c f , . . . , ) .  

For words di and ct, P(c  tldi) can be computed at least in two ways. As mentioned 
earlier, we take the probability in the sense of frequency rather than belief. In the first 
method, 

P(c~ldi) ~ f ( c t d i )  (6) 
y(d~) ' 

where i < j.  

Each node di in the map maintains two variables f(di)  and f (d ie j ) ,  while each arc 
keeps the information of P(cjldi) .  From the probabilities in arcs the joint distribution 
over all variables in the map can be computed, then any conditional probability can be 
computed. Let S denote the state vector of the map. 

P ( g  = ~) = H P(S i  = si lS t = sj : j < i) . (7) 
i 

Computing exact conditional probability or marginal probability requires often exponen- 
tial resources as the problem is know to be NP-hard. Gibb's  sampling must be one of the 
best solutions for computing conditional or marginal probabilities in a network such as 
collocation map. It approximates the probabilities, and when optimal solutions are asked 
simulated annealing can be incorporated. Not only for computing probabilities, pattern 
completion and pattern classification can be done through the map using Gibb's  sampling. 

In Gibb's  sampling, the system begins at an arbitrary state or a given S, and a free 
variable is selected arbitrarily or by a selecting function, then the value of the variable 
will be alternated. Once the selection is done, we may want to compute P ( S  = g) or other 
fimction of S. As the step is repeated, the set of S's  form a sample. In choosing the next 
variable, the following probability can be considered. 

p ( s ~  = xlSt  = s~ : j ¢ i) 

P ( S t  = xlSt  = st : j < i ) .  

I ~  p ( s t  = st ISi = ~, & = ,k : k < j ,  k ¢ i).  (8)  
j>i 

The probability is acquired from samples by recording frequencies, and can be up- 
dated as the frequencies change. The second method is inspired by the model of (Neal 
1992) which shares much similarity with Boltzmann Machine. The difference is that the 
collocation map has directed ares. The probability that a node takes a particular value is 
measured by the energy difference caused by the value of the node. 

P(Si  = silSj = sj : j < i) = o'(si E s jwi j )  . 
j<i 

(9)  
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Hidden Units 

Figure 3: Collocation Map with Hidden Units 

1 
where a(t) - 

l + e - t  

A node takes -1 or 1 as its value. 

P ( S = g )  = I I P ( S i = s i l S ¢  =s¢ : j < i )  
i 

= H a ( s '  E s j w ' i ) "  (10) 
i i<i 

Conditional and marginal probabilities can be approximated from Gibb's  sampling. A 
selection of next node to change has the following probability distribution. 

P(S~ = xIS j = sj : j # i) 

+ (11) 
j<i  j> i  k<j ,k~i  

The acquisition of probability for each arc in the second method is more complicated 
than the first one. In principle, the general patterns of variables cannot be captured 
without the assistance of hidden nodes. Since in our case the pattern classification is not 
an absolute requirement, we may omit the hidden nodes after careful testing. If we employ 
hidden units, the collocation map may look as in figure 5 for instance. 

Learning is done by changing the weights in ares. As in (Neal, 1992), we adopt gradient 
ascent algorithm that maximize log-likelihood of patterns. 

L = l o g H  P(V =v) = E l ° g P ( V = O ) '  (12) 
V'ET 17' E T 

E 
ZXwij = ~ s l s j o ' ( - s l  ~ SkWik), (13) 

k<i 

where N = ]T[ . 

Batch learning over all the patterns is, however, unrealistic in our case considering 
the size of collocation map and the gradual nature of updating. It is hard to vision 
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that  whole learning is readjusted every time a new document is to be learned. Gradual 
learning(non batch) may degrade the performance of pattern classification probably by a 
significant degree, but what we want to do with collocation map is not a clear cut pattern 
identification up to each learning instance, but is a much more brute categorization. One 
way to implement the learning is first to clamp the nodes corresponding to the input set 
of binary dependencies, then run Gibb's  sampling for a while. Then, add the average of 
energy changes of each arc to the existing values. 

So far we have discussed about computing the conditional probability from Collocation 
Map. But the use of the algorithm is not limited to the acquisition of lexical concept. 
The areas of the application of the Collocation Map seems to reach virtually every corner 
of natural language processing and other text processing such as automatic indexing. 
An indexing problem is to order the words appearing in a document by their relative 
importance with respect to the document. Then the weight ¢(wi) of each word is the 
probability of the word conditioned by the rest of the words. 

ek(wi) = P(  wi l wj, j 5k i) . (14) 

The application of the Collocation Map in the automatic indexing is covered in detail 
in Han (1993). 

In the following we illustrate the function of Collocation Map by way of an example. 
The Collocation Map is built from the first 12500 nouns in the textbook collection in Penn 
Tree Bank. Weights are estimated using the mutual information measure. The topics of 
the textbook used includes the subjects on planting where measuring by weight and length 
is frequently mentioned. Consider the two probabilities as a result of the sampling on the 
Collocation Map. 

P(depthlinch ) = 0.51325, 

and 

P(weightl inch ) = 0.19969. 

When the sampling was loosened, the values were 0.3075 and 0 respectively. The first 
version took about two minutes, and the second one about a minute in Sun 4 workstation. 
The quality of sampling can be controlled by adjusting the constant factor, the cooling 
speed of temperature in simulated annealing, and the sampling density. The simple ex- 
periment agrees with our intuition, and this demonstrates the potentail of Collocation 
Map. It, however, should be noted that the coded information in the Map is at best local. 
When the Map is applied to other areas, the values will not be very meaningful. This may 
sound like a limitation of Collocation Map like approach, but can be an advantage. No 
system in practice will be completely general, nor is it desirable in many cases. Figure 4 
shows a dumped content of node tree in the Collocation Map, which is one of 4888 nodes 
in the Map. 

4 C o n c l u s i o n  

We have introduced a representation of lexical knowledge encoding from which an arbi- 
trary conditional probability can be computed, thereby rendering an automatic acquisition 
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< h23 > 
f: 

b: 

tree di(36494) ctr(92) 

inch mi(19) rooting mi(20) resistance mi(21) 
period mi(22) straw mi(31) evaporation mi(32) 
mulch mi(29) pulling mi(34) flower mi(5) 
plant mi(1) root mi(13) moisture mi(28) 

shrub mi(24) c(4)  0.043478 
water mi(26) c(3)  0.032609 
under-watering mi(36) c (1)  0.010870 
fertilizer mi(59) c(3)  0.032609 
tree mi(58) c (5)  0.054348 
March mi(54) c (2)  0.021739 
pecan mi(102) c(2) 0.021739 
temperature mi(106) c(1) 0.010870 
plant mi(9) c ( 1 )  0.010870 
fruit mi(107) c(1) 0.010870 
mulch mi(33) c(1)  0.010870 
blueberry mi(123) c(1) 0.010870 
shade mi(130) c(4) 0.043478 
planting mi(155) c(1) 0.010870 
bank mi(350) c(1) 0.010870 
branch mi(172) c(1) 0.010870 
landscape mi(368) c(2) 0.021739 
cooling mi(586) c(1) 0.010870 
ground mi(126) c(2) 0.021739 
inch mi(133) c(1) 0.010870 
period mi(181) c(1) 0.010870 
position mi(596) c(1) 0.010870 
pocket mi(605) c(2) 0.021739 
metal mi(612) c(1) 0.010870 
place mi(443) c(1) 0.010870 
grass mi(381) c(1) 0.010870 
command mi(1815) c(1) 0.010870 
bird mi(701) c(1) 0.010870 
building mi(307) c(1) 0.010870 

sprinkler mi(25) c (1)  0.010870 
system mi(35) c (1)  0.010870 
over-watering mi(37) c (1)  0.010870 
hole mi(60) c (1)  0.010870 
pound mi(61) c (3)  0.032609 
growing mi(105) c(2) 0.021739 
spring mi(42) c (2)  0.021739 
February mi(38) c (2)  0.021739 
thing mi(43) c (1)  0.010870 
cutting mi(114) c(1) 0.010870 
rabbiteye mi(122) c(1) 0.010870 
ajuga mi(124) c(1) 0.010870 
area mi(131) c(1) 0.010870 
slope mi(132) c(1) 0.010870 
trunk mi(225) c(5) 0.054348 
myrtle mi(194) c(2) 0.021739 
heating mi(585) c(1) 0.010870 
step mi(588) c(1) 0.010870 
root mi(141) c(4) 0.043478 
drying mi(590) c(1) 0.010870 
crowding mi(595) c(1) 0.010870 
transplanting mi(594) c(1) 0.010870 
evaporation mi(609) c(1) 0.010870 
stake mi(613) c(3) 0.032609 
people mi(267) c(1) 0.010870 
triangle mi(616) c(1) 0.010870 
breath mi(1334) c(1) 0.010870 
stone mi(1813) c(1) 0.010870 
Government mi(2337) c(1) 0.010870 

Figure 4: Dumped Content of the node tree in the Collocation Map < h23 > indicates 
the index of tree in the Map is 23. di(19) is an index to dictionary, ctr(92) says tree 
occurred 92 times, mi(19) indicates the index of inch in the Map is 19. c(4) of shrub says 
shrub occurred 4 times in the back list. 
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of lexical concept. The representation named Collocation Map is a variation of Belief Net 
that uses sigmoid function in summing the conditioning evidences. The dependency is 
not as strong as that of ordinary Belief Net, but is of event occurrence. 

The potential power of Collocation Map can be fully appreciated when the computa- 
tional overhead is further reduced. Several options to alleviate the computational burden 
are also begin studied in two approaches. The one is parallel algorithm for Gibbs sampling 
and the other is to localize or optimize the sampling itself. Preliminary test on the Map 
built from 100 texts shows a promising outlook, and we currently having a large scale 
testing on 75,000 Korean text units(two million word corpus) and Pentree Bank. The 
aims of the test include the accuracy of modified sampling, sampling cost versus accuracy, 
comparison with the Boltzman machine implementation of the Collocation Map, Lexical 
Concept Acquisition, thesaurus construction, and sense disambiguation problems such as 
in PP attachment and homonym resolution. 
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