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Abstract

The dynamic perspective on natural language suggests that texts change the value of
contextual parameters in much the way computer programs change the value of
program variables. One phenomenon where dynamic aspects emerge is that of anaphora
(introduction of referents for later anaphoric links), but intensionality and tense are
other candidate phenomena. However, most logics used in computer science for the
study of the semantics of program are often rather complicated and different from
classical logic. We describe a representation directly in classical logic using a categorial
grammar. In the logic a theory is defined (via axioms) to describe how in a text a
pronoun manages to pick up a referent that was introduced by a determiner. Besides
(nominal) anaphora we discuss how to handle intensionality present in (belief and
knowledge) attitude reports.

Introduction

We present a theoretical study of central semantical problems of anaphora and intensionality in
natural language texts (English). A basic knowledge of anaphora, intensionality and logic is
assumed.

As texts we take sequences of declarative and disambiguous sentences; hence each text has a
unique meaning and the objective is to define a semantical theory specifying, in some way and to
some extent, the meaning of each text.

We think that in order to use the texts to communicate our information about facts (or assump-

tions) concerning “the universe around us” the theory must handle anaphora and intensionality as
amply present in natural language. For instance, consider the following Love Story text:

- A man kisses a woman.
She believes that he loves her.

The pronouns (he, she,...) imply anaphoric links across sentences and attitude reports (believe
that,...) imply intensional properties for embedded sentences.2

We require that the theory must be a so-called correspondence theory of meaning — that a relation
between the language and certain “things” independent of the language must be specified. We also
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require that the theory is computational — that a “calculus” for manipulations of meanings of texts
must be specified.3 Both requirements can be directly satisfied using the model theory and the proof
theory, respectively, of a formal logical system. For instance, returning to the first sentence of the
Love Story we might tentatively represent it as the following formula in classical predicate logic:

3x(manx A 3 y(womany A kiss xy))

The model theory says that man and woman denote sets of objects, that kiss is a relation between
two objects and that the variables x and y can be instantiated to certain objects satisfying the given
constraints. The proof theory, on the other hand, lists axioms and inference rules for deriving or
rewriting the formula as such.

The representation of the second sentence is less straightforward. Even ignoring the proper
representation of the embedded sentence construction (symbolised by [---]) it seems necessary to
redo the already completed representation of the first sentence to accomodate the second sentence:

3x(manxA3y(womany A kissxy A belief y [ lovexyl))

This seems to render impossible a systematical and compositional analysis where the meaning of
an expression is systematically composed from the meanings of its parts.

Also, a seemingly innocent change (conjoining the two previous sentences to a single conditional
sentence) implies a drastic change for the representation (where the previous representations cannot
be reused in any straight-forward manner):

If a man kisses a woman then she believes that he loves her.
Vx(manx— Vy(womany > ...))

Of course, the representation in the logical system above is rather ad hoc. Discourse representation
theory (see [2,3,4] for references) deals with translations of texts in a systematical way, but, as the
name suggests, uses a separate representation level and does not yield a direct compositional
analysis in a logical system.

Our claim is that a compositional analysis in a logical system is possible, but that texts are
complicated and are best understood if one moves from static semantics (as above) to dynamic
semantics (to be fully explained later).

It must be emphasized that we can do dynamic semantics for natural language in alogical system
where the logical language itself has a static semantics! This can be done by choosing suitable
representations and axioms in the logical system. We briefly illustrate this point by considering a
recent non-classical logical system, namely dynamic predicate logic [3], which is based on the same
language as classical predicate logic, but where the following entailment holds (¢ and ¥ any
formulas):

(3xlx]) > P [x] = V x(olx] — $ [x])

Notice that the quantifier binds the variable outside the scope of the quantifier. The quantifiers and
operators have different behavior: existential quantification is externally dynamic, universal
quantification is extemnally static, and implication is intemally dynamic (between operands) but
externally static.

The entailment above allows for acompact and elegant treatment of many anaphora problems using
dynamic predicate logic, but compared to classical predicate logic it is less flexible and transparent.
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For instance the following simple entailment does not hold:

sk

However, a restricted version holds (when no overlap between active quantifier variables and free
variables in the formula). See [3] for details about dynamic predicate logic as well as references to
the extended logical system called dynamic Montague grammar.

Overview

First the general idea of logical semantics is described, subsuming both static and dynamic
semantics. Then static semantics is defined (based on the notion of truth values) and hereafier
dynamic semantics (based on the notion of information state changes).

Information states can be structured in many ways — we propose to let an information state be a
set of altematives.4 Even without saying more about what an altemative is we obtain interesting
definitions of vacuous, absurd and definite information states. Moreover, reductions are possible
if the information state changes are distributive and eliminative.

We argue that by a proper construction of the set of altematives anaphora can be handled in an
elegant way. We propose a representation in logical type theory using a categorial grammar. A tiny
example is provided. Finally we discuss how to incorporate intensionality in this framework.

A few words on notation. In schemas we take <> to mean: if and only if (for all appropriate
instantiations with expressions of the shown schema variables). We have two equality symbols: =
means equality by definition and = means equality by calculation (hence = implies =).

Logical Semantics for Natural Language

The main purpose of logical semantics for natural language is, we think, to provide a precise
description of the intuitive notion of a valid argument.5

Arguments can be built in several ways. We take an argument to consist of a sequence of texts
ty, ....., tn (the premises) and a single text t« (the conclusion). We arrange the argument as in the
following schema with the symbol .. in front of the conclusion:

t
tn

We translate each text ¢ in natural language to a formula #* in a suitable logical language — a logic.6
By a logic we mean a formal language endowed with a notion of entailment |=, which we require
must match the notion of a valid argument in the following sense:

4

= 1,0t F T

167

Proceedi ngs of NODALI DA 1991 167



A formal language is a language with a precise syntax and semantics.” The syntax defines the set
of formulas (for instance via formation rules). The semantics defines for each formula its meaning
(for instance a mathematical object). In general we write the meaning of the formula ¢ as [f]. This
hides the translation, but no confusion can arise. We shall also refer to [¢] as the meaning of the text
[

We require that although entailment is introduced as relation = between formulas (syntactical
objects) it must correspond to a relation R between the meanings of the formulas (semantical
objects):

theots = R(f),-.., [t [t])

Since we aim at using mathematical objects as the meanings, our goal is to find objects with
enough structure to make the definition of such a relation R possible. In the static semantics the
objects are rather coarse-grained, but in the dynamic semantics to be described later, the objects
are more fine-grained.

Static Semantics

In static semantics the meaning of a text is a truth value (0/1 for false and true) with respect to a
so-called model. It would actually be more appropriate to say that the meaning then is a function
from models to truth values, but since it tumns out that the model parameteris common to all meaning
compositions (based on the formation rules) it makes sense to use the “with respect to” phrase.

We write [f]y for the meaning of the text ¢ with respect to the model M = (D, d ), where D is the
domain (a set of objects) and d is the denotation (a function from constants to mathematical
structures of objects). There can be many kinds of constants: individual constants (denoting
objects), first order predicate constants (denoting relations overobjects), second order predicate
constants (denoting relations over objects as well as over relations over objects), etc. The denotation
of a predicate constant is often called its extension. The so-called order of a logic is not determined
by the orders of the constants present, but by the orders of the variables of quantification.

We assume that the formula ¢* is closed (no occurrences of free variables).8 To account for free
variables in sub-formulas the meaning must be given with respect to an assignment a (a function
from variables to mathematical structures of objects) besides the model M, but this complication
can be ignored here. As for constants there can be many kinds of variables. In first order logic,
quantificationis allowed overindividual variables only, whereas in higherorderlogic quantification
is allowed over predicate variables too.

Entailment is defined as:
t

< Forall M:if [t;]py =...= [ta]y =1 thenalso [t.]yy =1
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Dynamic Semantics

Dynamics imply the (continuous or discrete) change of something — in case of natural language
semantics we suggest to consider the change from one information state to another information
state of an agent (human or program) processing the texts.? We first present the general idealeaving
the details of information states unspecified. We then consider different specific structures as
information states.

We intuitively have the following distinguished information states:

Vacuous information state
The agent has no information at all.

Absurd information state
The agent has contradictory information.

Definite information state
The agent has maximal information.

Often there is only one vacuous and one absurd information state, written /o and /es, whereas there
are numerous definite information states.10 We often have a partial ordering of information states
corresponding to getting ‘‘better’’ informed.

In dynamic semantics we let [f] be a function from information states to information states.
Observe that there is no need to see the meaning relative to a model as in the static semantics
(although it is possible to do so0). If the initial information state is /, we have the following

information state changes:
ALY ARG IR A O R R A ONS §

We define the relevant resulting information states as follows:11

I =[t)(...[ta)(L)) L =[t.]J()

There are several different definitions of entailment possible. We here follow the slogan: entailment
makes explicit implicit information. More precisely: The conclusion ¢, is implicit in the premisses
t, ... & if no (important) change in information state occurs when ¢, is processed afier f}, ...ty
have been processed:

Here = is a suitable equivalence relation that compares information states for (important) changes;
if all changes are important then we can use = for =,

Information States as Sets of Alternatives

One way to specify information states is to let each information state be a set of alternatives that
has to be taken into account. Growth of information then comes down to elimination of altematives,
up to the level of definite information where all but one of the altematives have been eliminated.
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Let A = {a), a;, a3, ...} be a set of not further specified altemnatives and let an information state /
be a set of alternatives (/ ¢ A). The definitions of the vacuous and absurd information states are:

lo‘A ’ooﬂa

The definite information states are I = {a},a € A.
The information states have a partial ordering via the subset relation . For example:

{a1} € {a1,a:} C {a1,02,03}

{al a2} & {az, aa}

For a particular information state change [f] there are some interesting properties it may have:

Distributive information state changes t)(I) = L€JI (t}({a}) for all 1

Eliminative information state changes [¢)(I) C I for all I

Distributive information state changes mean that the agent works “point-wise”, i.e. based on the
definite information states. This property does not hold for agents dealing with defaults etc. An
illustrative example:

t = John might lie.

1) = I if there is an a € I such that “John lies”.
T | Io otherwise.

Note that if one has the information that “‘John does not lie” it is absurd to process ¢. It is easily seen
from the above definition that the information state change is not distributive, since the testac /
does not work point-wise. However, the information state change is eliminative, since Jo /7 for
all /.

Eliminative information state changes means that the agent gets ‘‘better informed’’ towards the
definite information states (with the exception that the only change from a definite information state
is to the absurd information state). This property does not hold for agents dealing with revision etc.

When these two properties are “‘universal” — that is fulfilled for all texts ¢ considered —
optimisations are possible:

o Distributive information state changes:
Instead of meaning [t] as a function from information states to information states, that is a
function from sets of altemnatives to sets of alternatives, we just specify a relation — ¢ between
alternatives:

e~ d <= d€t]({a})
The meaning [¢] is then obtained as:

[t)(I) = U{a' | a = o'}

a€l
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The condition a — ; @’ corresponds to the following idea in computer science:12
Non-deterministic execution of program t when in program state a yields program state a’.

e Distributive and eliminative information state changes:
The relation — ; now only holds between identical altematives; hence we just specify a set S;
of altematives.

We then simply have:

a—a & a=a A a€s,

Observe that if the information state changes are eliminative, but not distributive, optimisations of
the abovementioned kinds are not possible (although these information state changes are concep-
tually simplified).

Some final observations: Classical logic, which has a static semantics, can be viewed as having
an optimised dynamic semantics, where sets of models play the role as information states and all
information state changes are both distributive and eliminative. Also, and this is the line we shall
follow here, if the structure of the alternatives is not too complicated, it ought to be possible to make
denotations of classical logic function as information states. Since information states are sets of
altemnatives we need a logical system that makes sets (for instance as characteristic functions)
available as first class citizens. Logical type theory is such a logic.

Logical Type Theory

A type theory asserts certain terms to be of certain types. A type theory can make other assertions
too; for instance about the equality of terms or types. Terms and types belong to formal languages.
These language will be distinct here (but are often the same in advanced type theories).

In the simple type theory a type 7 is either basic (interpreted as a set of objects) or of the form T
—1" (interpreted as the set of functions from type T’ 10 type 1").13 The terms are so-called A-terms
from the A-calculus.14

In (simple) logical type theory the types are simple types with ¢ as the basic type of propositional
formulas. The set of object of type ¢ are the set of (classical) truth values {0,1}. Axioms and inference
rules must be given to ensure that the A-calculus can be seen as a higher-order logic based on
functions and predicates. The latter are characteristic functions (functions retuming truth values).
For our purposes it suffices to regard the terms as formulas in classical first-order predicate logic
augmented with A-terms. We write # : T when the formula g has type 1. See [5] for further details
about logical type theory.

Anaphora

The strategy for anaphora handling is to let each alternative be a pair: world and environment,
resembling the model and the assignment in case of static semantics. Hence a world is a function
from constants to mathematical structures of objects and an environment is a function from stores
to objects.15

We have a separate store for each (anaphoric) discourse markers indicated by a natural number
index:

A; man kisses a, woman.
She, loves him,.
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This gives distributive information state changes, since the different environments can be seen
point-wise. If we apply the abovementioned optimisation for distributive information state changes
then we get non-eliminative information state changes, since the definite information states must
also be used and not only the information states resulting from processing the texts.

Note: The chain of information states Iy, /y,...J, has eliminative information state changes with
respect 10 £,....5,,; hence for 1 < i < n we have:

L=[hl )cl,

Representation in Logical Type Theory

Besides the basic type t of truth values we introduce the following basic types:
¢ Enttes
i Indices

The variables x,y.z and v,w are of types e and i respectively.

The worlds are represented via models for logical type theory and the type of entities.16 The
environments are represented via the type of indices using a special constants for each store, that
is for each (anaphoric) discourse marker:17

my,.mi—e

The following definition (for 1 < i < k) expresses the equality of two environments on the values
of all stores except store j:

~Edow( A mijv=mjw)
1<jck
I#i

The following axioms (for 1 <i < k) expresses that we can change each value of each store

in all environments independently:

VwWrxIw(v~wamw=x)

Example using a Categorial Grammar

We use the following categorial grammar (here written as a phrase structure grammar, but see [1]
for details and a more substantial fragment):

S —=NPVP Sentence

VP — walk | whistle | ... Verb Phrase
NP — DETCN |he,|...| he Noun Phrase
DET — a; |...| a Determiner
CN —man|... Common Noun
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Consider the following tiny example (morphology ignored):
t= A, man walks.

Translation of lexical entries (variables X,Y of typee = i = i = 1):

(3:))° = AXY2owIv'v"(v ~ vV AX (miv') v v" AY (mv')v" w)
(he;)* = AXdvw(X (m;v)vw)
(p)* = dzdww(v=wAplz)
where p! = wealk | whistle | man | ... are constants of type e — ¢ corresponding to

p = walk | whistle | man | ...

Based on the grammar, where string concatenation corresponds to function application (shown
as juxtaposition as usual), we obtain the following meaning after A-conversions:

—¢ = (a;)* (man)® (walk)® = Avw(v ~; w A man (m; w) A walk (m; w))

Analogously:
¢’ = He, whistles. —; = Avw(v=wAa whistle(m,,w))

Sentence conjunction uses the operator ® = ApgAvw3v' (pvv agv'w) (variables p,q of type i—i—t)
and using the above-mentioned axioms we have the desired result:

— = @t = Avw(v ~; w A man (m; w) A walk (m, w) A whistle (m; w))

All there remains is to spell out the details of a suitable relation = and we have our entailment =
using a systematical and compositional analysis in a classical logic.

Intensionality

A common approach to intensionality rests on the notion of “possible worlds™ (see 1), usually
manipulated by new operators like 0 and ¢ Diamond. Such a “possible world™ corresponds to
the world component of our altemnatives in an information state. However, in our representation in
logical type theory we have kept a fixed world via models for the logical type theory and the type
of entities (the type of indices is used for the environments together with the discourse markers),
but this setup will not work any longer. One way out is to introduce a new basic type w of worlds
and let pt from above be constants of type w — e — ¢ instead of type e — ¢ just. A special marker
Myarla Of type i = w would then select the current world. We intend to spell out the details in a
future paper.

Notes

1) Notice that “intention” means purpose, aim, etc. whereas *intension” here (as well as in logic
and the philosophy of language) is the direct opposite of “‘extension” (cf. the distinction between
sense and reference)!

2) Neither the anaphora resolution nor the intensionality characterisation are too important here.
For the latter the following example might help: Even though the properties of being an
unmarried man and being a bachelor are extensional equivalent (fulfilled by the same indivi-
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duals) they are not (always) intensional equivalent; believing that a particular individual is an
unmarried man without believing that the same individual is a bachelor is entirely plausible.

3) However, if meanings are specified as mathematical objects and structures then in principle it
is always possible to use, say, an object-language axiomatisation of the number and set theory
of the meta-language.

4) Itismost convenientto think of an altemnative as a so-called (possible) world - that is, acomplete
description of a “state of affairs” — but other choices can be made as to be shown.

5) We do not require that such a description must provide an explanation of how humans perform
the judgement.

6) Remember that we assume the text to be disambiguous. If the text was ambiguous the proper
translation would depend on, but not necessarily be determined by, the context.

T) A formal calculus has just a precise syntax — possibly with some syntactical operations defined.
Occasionally the syntactical operations are regarded a having semantical content themselves.

8) Anaphora in texts is not to be handled by free variables in formulas.

9) Aninformation state is also called a knowledge state or a belief state.

10) One sure way to obtain contradictory information is to gather all possible and impossible pieces
of information — this explains the oo sign.

11) Better notation if argument before function, namely I, ® I [1,]...[t] etc.

12) Program states and information states are different notions. Also in computer science we have
a fixed interpretation in mind. See [5] for the application of dynamic logics to computer science.

13) There are other interpretations for the simple type theory than the element/set one given here,
for example proof/proposition and program/specification (due to the similarity in the explana-
tion of these pairs of notions).

14) The A-calculus comes in many guises — also without types.
15) More precisely from store names to objects (likewise with constant and variable it symbols).

16) The type of entities plays much the same role in dynamic semantics as the (single) domain for
static semantics. This changes when intensionality is added.

17) The environment/store matrix is transposed — instead of environments taking a store we have
stores taking an environment (or rather an index).
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