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A B S T R A C T  

This paper describes a method for obtaining the 
semantic representation for a syntax tree in Sys- 
temic Grammar  (SG). A prototype implementation 
of this method - -  the REVELATION1 semantic inter- 
preter - -  has been ldeveloped. It is derived from 
a SG generator foe a large subset of English - -  
GENESYS - -  and is !thus, in contrast with most re- 
versible grammars, fan interpreter based on a gen- 
erator. A task decomposition approach is adopted 
for this reversal process which operates within the 
framework of SG, thus demonstrating that Systemic 
Grammars can be reversed and hence that  a SG is 
a truly bi-directional formalism, 

p 

Introduct ion  

SG (see Butler [4] for a good introduction) is a 
useful model of lan~guage, having found many ap- 
plications in the areas of stylistics, text analy- 
sis, educational linggistics and artificial intelligence. 
Some of these applications have been colnputa- 
tional, the best known probably being Winograd's  
SHRDLU [22]. Howdver, most computational appli- 
cations have been designed from a text-generation 
viewpoint (such as Davey's PROTEUS [6], Manta 
and Matthiessen's NmEL [16, 17] and Fawcett and 
rlhtcker's ¢ENESYS [!0]). 

Because of this text-generation viewpoint of sys- 
ten tic grammarians, the mechanism for sentence 
analysis within SG (the reverse of the sentence gen- 
eration process) h ~  received much less attention. 
This paper describes one stage of the sentence anal- 
ysis process: s e m a n t i c  i n t e r p r e t a t i o n . l  

1 This assumes that Isentence analysis can be decomposed 
into t w o  p r o c e s s e s :  s y n t a c t i c  a n a l y s i s  (parsing) plus semantic 

In Fawcett 's SG, 2 a syntax tree (whose leaves de- 
fine a sentence) is generated from a set of semantic 
choices. R.EVELATION1 reverses this process: it at- 
tempts to find the set of semantic choices needed 
to generate a given syntax tree. In sentence gener- 
ation, a tree is generated, but only the leaves (the 
words) are 'output ' ,  the rest of the tree is simply 
deleted. In tile reverse process, when a sentence is 
input, a syntax tree must first be found before it can 
be interpreted. REVELATION1 assumes that  a sepa- 
rate SG parser (not discussed here) is available; for 
an example of such a parser see O'Donoghue [20]. 
Thus REVELATION1 directly mirrors the generator, 
while the parser mirrors tlle tree deletion process. 

REVELATION1 has been developed within the 
PoPI.OG environment, a It is coded in a com- 
bination of P o P l l  [1] and Prolog [5] and utilizes 
GENESYS. GENESYS is a very large SG generator for 
English, written in Prolog (Fawcett and Tucker [10]) 
and it is version PG1.5 that has been used for the de- 
velopment and testing of REVELATIONI. GENESYS 
and REVELATION are part of a much larger project, 
the COMMUNAL 4 Project, the aim of which is 
to build a natural language interface to a rich SG 
oriented IKBS in tim domain of personnel manage- 

interp|~etation. These p r o c e s s e s  a r e  not necessarily sequential, 
although it greatly simplifies things if they are treated as 
such. tlere I assume a sequential scheme in which the parsing 
process passes a syntax tree to the interpreter. 

2Fawcett's Systemic Functional Grammar [8, 9], his devel- 
opment of a HMlidayan SG. 

3POPLOG is a multi-language development environment 
contaiifing incremental compilers for POPII (the base lan- 
guage), Prolog, Comnmn Lisp and Standard ML, an inte- 
grated editor and numerous support tools [12]. 

4The COMMUNAL Project at University of ~Vales Col- 
lege of Cardiff (UWCC) Computational Linguistics Unit and 
Leeds University School of Computer Studies was s p o n s o r e d  
by RSRE Malvern, ICL and Longman. 
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Figure 1: A Typical Pal.5 Syntax Tree 

ment. 

This is not the first time a semantic interpreter 
has been attempted for a large SG: Kasper [13] has 
developed a sentence analysis method (both pars- 
ing and interpretation together in my terminology) 
based on the NIGEL grammar. In his approach the 
SG is compiled into a Functional Unification Gram- 
mar (FUG) (see Kay [14], a representation language 
with some systemic links) and then existing (but ex- 
tended) FUG parsing techniques are used to find a 
syntax tree plus an interpretation for a sentence. 

The REVELATION1 approach differs from this com- 
pilation method since the interpretation is achieved 
within a systemic framework. No other SG-based 
model (to my knowledge) has been used for both 
generation and interpretation in this way. 

S y s t e m i c  G r a m m a r  

Fawcett's SG is a meaning-oriented model of lan- 
guage in which there is a large 'and/or '  network of 
semantic features, defining the choices in meaning 
that are available. A syntax tree is generated by 
traversing multiple paths (see later) through this 
network, making choices in meaning, and so defin- 
ing the meaning of the syntax tree to be generated. 
These choices fire realization rules which specify tile 
structural implication of choosing certain features; 
they map the semantic choices onto syntactic struc- 
tures and so transform the chosen meaning into a 
syntax tree (and hence a sentence) which expresses 
that meaning. 

As an example of the syntax trees which are gem 
erated by Pol.5, consider Figure 1. Systemic syn- 
tax trees consist of a number of levels of structure 
called units; the tree in Figure 1 has four: one clause 
(CI), two nominal groups (ngp) and a quantity- 
quality group (qqgp). The components (immedi- 
ate constituents) of each unit are elements of struc- 

ture labelled to represent the functions fulfilled by 
that component with respect to its unit. For exam- 
ple: subject (S), main verb (M), second complement 
(C2) and ender (E) in the clause, superlative de- 
terminer (ds) and head (h) in the nominal groups, 
superlative deictic determiner (dds) and apex (a) 
in the quantity-quality group. Some items may ex- 
pound more than one function in a unit, e.g. "is" 
flmctions both as operator (O) and period-marking 
auxiliary (Xpd) in the clause and is labelled with 
the conflated functional label O / X p d .  Some ele- 
ments may be conflated with participant roles, e.g. 
"who" is a subject playing the role of agent (At)  
and so is labelled S /Ag .  Similarly "the big+est 
one" is a complement playing the role of affected 
(Af) and hence is labelled C2 /Af .  The immedi- 
ate constituent of an element of structure is either a 
lexical item (either a word or punctuation, in which 
case we say that the item expounds the element, e.g. 
the lexical item "one" expounds h), or a further unit 
(when we say a unit fills the element, e.g. the unit 
qqgp fills ds). 

Ilaving introduced the type of syntax tree that is 
generated, let us now consider the actual process of 
generation. The key concept in SG is that of choice 
between small sets of meanings (systems of semantic 
features). For example, the NUMBER system contains 
tile choices s i n g u l a r  and p l u r a l .  The choiee sys- 
tems in a systemic grammar are linked together by 
'and' and 'or' relationships to form a complex sys- 
tem network, specifying the preconditions and con- 
sequences of choosing features. Consider the sys- 
tem network presented in Figure 2 (an excerpt from 
eo 1.5 which contains ~450 systems, some contain- 
ing many more features than the binary systems il- 
lustrated in this example). In the systemic nota- 
tion curly braces represent conjunctions and verti- 
cal bars represent exclusive disjunctions, i.e. choice. 
The upper-case labels are the names of systems and 
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MOOD ] information__ 
[ directive 

I retrospective05 __.) 
• ] not-retrospective 

kEXPl~CT I expect(15.4)_._ 
] not-expect k V, TYPI~ ] 

I 

pas t-from- expect (15.7) 
not-past-from-expect 

immediate-expect(15.6) 
unmarked-expect (1 S.5 ) 

Figure 2: A fragment of the English 'tense' Network 

directive 
information, 
information, 
information, 
information, 
information, 
information, 
information, 

retros )strive, not-expect ..................................................................... "touch" 
retrol mctive, expect, immediate-expect ................................... "has beenahout to touch" 
retros ~sctive, expect, unmarked-expect .................................... "has heengoing to touch" 
n o t - r e t r o s p e c t i v e ,  expect, immediate-expect, past-from-expect . . . . . . . . .  'qsabout to have touched" 
not-retrospective, expect, immediate-expect, not-past-from-expect . . . . . . . . . . . .  'qsahout to touch" 
not-retrospective, expect, unmarked-expect, past-from-expect . . . . . . . . . . .  "is going to have touched" 
n o t - r e t r o s p e c t i v e ,  e x p e c t ,  unmarked-expec t ,  n o t - p a s t - f r o m - e x p e c t  . . . . . . . . . . . . . .  "is go ing  to t o u c h '  

t 

Figure 3: Examples of 'tense' Selection Expressions and their realizations 

] 

15.5 : unmarked-expect : 
G Q 73, G < "going to". 

15.6 : immediate-expect : 

G @ 73, G < "about to". 

15.7 : past-from-expe'ct : 

Xpf @ 85, Xpf < "have", 

if period-marked then Xpd <+ "en" 

else if unmarked-passive then Xp <+ "en". 

Figure 4: iRealisation Rules 

the lower-case labels are the names of the features in 
those systems. Each sjrstem has an entry condition; 
a precondition which must be met in order to en- 
ter the system and make a choice. For example, to 
enter the RETR0 (retrOspectivity) and EXPECT (ex- 
pectation) systems, information must have been 
chosen. To enter the PFE (past from expectation) 
system, both n o t - r e t ~ o s p e c t i v e  and expec t  must 
have been chosen. The :sets of choices in meaning de- 
fined by this network fr:agment are listed in Figure 3. 
Each set of choices is a s e l e c t i o n  e x p r e s s i o n ,  i.e. 
a path (typically bifurcating) through the network. 

Associated with certain features are realization 
rules. In Figure 2, the bracketted numbers are point- 
ers to realization rules;i thus realization rule 15.7 is 
triggered by the feature p a s t - f r o m - e x p e c t .  A real- 
ization rule specifies the structural consequences of 

choosing a feature; they map the semantic choices 
onto syntactic structures. Often conditions are in- 
volved; consider the realization rules shown in Fig- 
ure 4 (PG1.5 contains ~500 realization rules, many 
of which are far more complex than these examples). 
The main types of rule are: 

* Components  Rules: ElaN, stating that  the el- 
ement E1 is at place II in the current unit 
(thus placing an ordering on the components 
of the unit currently being generated). These 
place numbers are relative rather than physi- 
cal; an element at place S states that  the el- 
ement (if realized) will appear after elements 
whose places are less than N and before those 
elements whose places are greater than 1I. 

Filling Rules: is_filled_by U, defining the 
unit U to be generated, e.g. U=ngp.  

. Conflation Rules: F2 by F1, stating that  the 
two functions F1 and F2 are conflated with 
one another in the current unit (e.g. a Sub- 
ject which also functions as an Agent). 

. Exponence Rules: El<Word, stating that the 
element El is expounded by an item (e.g. 
N<"open"), i.e. exponents creates terminal 
constituents. 

• Re-entry Rules: for F re_enter_at f, stat- 
ing that the function F is filled by a unit which 
is generated by re-entering the network a t t h e  
feature :t. 

• Preference Rules: f o r  F p r e f e r  I f . . . ] ,  
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Selection Expressio~ 
for qqgp filling as | Figure 6: AO Tree Primitives 

Figure 5: A Pro to type  Semantic Representation 

stat ing that  when re-entering to generate a 
unit to fill the function F, the features [ : f . . .  ] 
should be preferred, either absolutely (i.e. 
'pre-selection') or tentat ively (expressed as a 
percentage). 

A sentence is generated by generating the syntax 
tree for the sentence, the leaves in this tree being 
the words of the sentence. The tree is generated by 
generating each of its units in a top-down fashion. 
Each unit is generated by a single pass through the 
system network. This pass is expressed as a selec- 
tion expression which lists the features chosen on 
that  pass. For example,  suppose we wanted to gen- 
erate the sentence "the prisoner was going to have 
been killed". The  selection expression for the clause 
would contain the features (plus many  others, of 
course): 

information, not-retrospective, expect, 
unmarked-expect, past-from-expect. 

Any realization rules associated with features in the 
selection expression are then executed. Rules 15.5 
and 15.7 in Figure 4 generate a structure whose 
leaves are " . . .  going to . . .  have . . .  (be)en . . . " .  For 
example,  to generate the clause structure in Fig- 
ure 1, the following realization s ta tements  were ex- 
ecuted: 

is_filled_by C1 
S@35, 0@37, M@94, C2@I06, E@200 
hg by S, Xpdby 0, Af by C2 
O<"is", N<"open", M<+"+ing", E<"?" 
for Ag re_enter_at stereotypical_thing 
for Af re_enter_at thing 

The re-entry realization s ta tements  show which 
functions are to be filled by re-entering the system 
network to generate further units. Re-entry can be 
thought  of as a recursive function call which gener- 
ates a lower layer of structure in the tree - -  but 
typically with some of the choices 'preferred'  via 
the preference realization s ta tement .  Thus the syn- 
tax tree in Figure 1 is generated with four passes: 

the clause is generated first, followed by the nomi- 
nal group filling the subject agent, followed by the 
nominal group filling the affected complement ,  and 
finally the quanti ty-quali ty group filling the superla- 
tive determiner. 

The information required to generate a syntax 
tree can be expressed as a tree of selection expres- 
sions; this is the s e m a n t i c  r e p r e s e n t a t i o n  for the 
sentence. Each node in t h e  semantic representa- 
tion corresponds to a unit in the syntax  tree and 
is labelled by the selection expression for tha t  unit. 
For example,  a semantic  representation of the form 
shown in Figure 5 is needed to generate the syntax 
tree in Figure 1. 

I n t e r p r e t i n g  a S y n t a x  T r e e  

Given a syntax tree, the aim of interpretat ion is to 
find the semantic representation which would gener- 
ate that  tree. This semantic  representation includes 
all the features that  are needed to generate the tree 
and so defines the 'meaning content '  of the syntax 
tree. 

In the process of generation, a syntax tree is gen- 
erated by generating its units; in the process of  in- 
terpretat ion a syntax tree is understood by inter- 
preting all of its units in a precisely analogous way. 
Thus a unit interpretat ion is the selection expres- 
sion which generated tha t  unit. In general there can 
be more than one selection expression for any given 
unit, since the same syntactic s tructure can have 
more than one meaning, just  as a whole sentence 
can have more than one meaning. The  potential  
unit interpretations are defined by constructing an 
AO tree ~ whose goal (root) is to prove unit realiza- 
tion, i.e. prove tha t  the unit can be generated. Each 
potential  solution of this AO tree defines a poten- 

5 AO (AND/OR) trees provide a means for describing task 
decomposition. These structures were first proposed by Sla- 
gle [21] and have since been used in a variety of applications 
including symbolic integration and theorem proving (Nilsson 
[18] lists a number of applications with references). The AO 
tree notation used throughout this paper is illustrated in Fig- 
ure 6 with leaves - -  terminal tasks which cannot be decom- 
posed any further - -  being represented as bold nodes. 
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Figure 7: Decomposition of Unit Interpretation 

tial selection expression for the unit. The semantic 
representation for the tree is given by some feasible 
combination of the :potential selection expressions 
for each unit in the: syntax tree. Not all combina- 
tions of selection expressions are feasible since the 
generation passes, alnd hence the selection expres- 

i 

sions, are interdepelident. Thus: 

• A pass is dependent upon previous, higher 
passes througl~ the use of the unary boolean 
operators on_.p~ev_pass and o n _ f i r s t _ p a s s  in 
conditions inside realization rules. These op- 
erators are usdd to test the values of features 
in passes for ~igher units in the syntax tree. 
For example !the condition on..:first_l~ass 
written is only true if uritten is selected on 
the first pass. 

• Subsequent passes are dependent upon the 
pre-sclections that are made with the pref- 
erence rules. For example, when gen- 
erating a que:stion (such as that in Fig- 
ure I) it is n#cessary to pre-select the fea- 
ture seeking-'specification-of-thing for 
the nominal group which fills the subject 
agent. This t ensures that a Wh-subject is gen- 
erated. 

Decomposing Unit Interpretation 

The first step in unit interpretation is the de- 
composition of the :unit's structure into a set of 
descriptors; 6 each describing a different aspect of 
the unit 's structure. For example, the descriptors 
required to describe the clause in Figure 1 are: 

un i t  (c1) 
e l ( 1 , s ) ,  e l ( 2 , 0 ) ,  el(3,M),  e1(4,C2), e l (5 ,E)  
conf(S,Ag), conf(O,Xpd), conf(C2,Af) 
stem(O, "is"), .stem(M,"open"), stem(E, "?") 
suff ix (M, "+ing" ) 

6A descriptor is simply an abstract description of a real- 
ization; it attempts to ~apture the effect of the realization 
statements without using any of their syntax. 

re_enter(S,Ag), re_enter(C2,Af) 

Tile u n i t  descriptor specifies the name of the cur- 
rent unit, the e l  descriptor specifies the order- 
ing of the component  elements, the ¢on:f descrip- 
tor specifies the conflation relationships, the stem 
and s u f f i x  descriptors specify the items expound- 
ing lexical elements, and the r e _ e n t e r  descriptor 
specifies the non-terminal elements requiring a sub- 
sequent pass to generate a unit to fill them. 

D e c o m p o s i t i o n  1 [Unit Interpretation] Unit in- 
terpretation is achieved by proving that  the unit can 
be realized. To do this, the unit 's  structure is de- 
scribed, using a set of descriptors, and hence unit 
realization is decomposed into a number of separate 
realizations, with one realization for each descriptor. 
Thus unit interpretation is achieved by realizing all 
descriptors (hence realizing the whole unit).  This 
decomposition is illustrated in Figure 7. 

Each descriptor is realized by some realization 
s tatement  (which will appear somewhere in the re- 
alization rules). There is a simple mapping between 
descriptors and suitable realization statements.  For 
some descriptors there is only a single suitable re- 
alization statement:  for example, u n i t ( U )  is only 
realized by the s ta tement  is_filled_by O. Other 
descriptors can be realized by a number of differ- 
ent realization statements: for example, e l ( i , E l i )  
is realized by statements of the form EliQN, where 
the place N is greater than the places for El i_ i  and 
less than the places for El i+l .  This ensures correct 
ordering of the constituent elements. 

For each descriptor, a search of the realization 
ruh,s is performed to find any s ta tements  which re- 
alize the descriptor. For example, for the descrip- 
tor u n i t ( e l )  we would search for all occurrences 
of i s _ f i l l e d . b y  Cl in the realization rules. After 
the search is complete there will be a set of poten- 
tially active rules for each descriptor, with each po- 
tentially active rule containing a suitable s ta tement  
(or possibly more than one suitable s ta tement)  that  
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Figure 8: Decomposition of Descriptor Realisation 

would realize the descriptor. Associated with each 
potentially active rule is a set of preconditions, one 
precondition for each suitable statement.  (If the 
s ta tement  has no precondition, then the set of pre- 
conditions will be empty.)  

D e c o m p o s i t i o n  2 [Descriptor Realization] Prov- 
ing that  a descriptor can be realized is decomposed 
into (i) activating any one of its potentially active 
rules, and (ii) proving that  any one of the precondi- 
tions associated with that  rule holds true (assuming 
there are any preconditions). This decomposition is 
illustrated in Figure 8. 

What  is required for a rule to be active? A rule 
can only be active if there is a feasible path (feasi- 
ble in the sense that  all features on that  path can 
be selected) through the system network to a fea- 
ture associated with that  rule. There will be at 
least one potential  path to each rule; 'a t  least' is 
required since a rule can have more than one poten- 
tim path if (i) it is associated with more than one 
feature or (ii) it is dependent upon a disjunctive en- 
try condition. Thus the potential paths to a rule 
can be represented as a boolean expression; i.e. as 
an exclusive disjunction of conjunctions: 

pathl xor path2 xor ... xor pathN 

where the p a t h  components are conjunctions com- 
posed from the features in each potential path and 
the exclusive disjunction represents choice between 
potential  paths. This expression can be simplified 
into an expression of the form: 

common and 
( v a r i a n t l  xo r  . . .  xor  v a r i a n t N )  

where common is a conjunction of features that  
is common to all potential  paths and v a r i a n t l  

• . .  variantN are the conjunctions of features pecu- 
liar to each potential path• This expression can be 
considered as a precondition for rule activation and 
so must be true for the rule to be active. 

D e c o m p o s i t i o n  3 [Rule Activation] Rule Activa- 
tion is achieved by activating one of the potential 
paths to that  rule. The potential  paths can be de- 
composed into a common component  and a number 
of variant components.  One potential  path is active 
if and only if the common component  is active and 
its variant component is also active. This decompo- 
sition is illustrated in Figure 9. 

At this stage in the decomposition all tip nodes 
are problems of the form 'boolean expression = T ' ,  
i.e. satisfiability problems. In order to define how 
satisfiability problems are solved, the concept of a 
t ruth function must first be introduced. A truth 
function is a mapping between features and a three 
valued logic (with truth values false, true and unde- 
fined) which defines the value of each feature; true 
indicating selected and false indicating not selected• 
Tile problem of satisfiability for a boolean expres- 
sion involves finding a t ruth function such that  the 
boolean expression evaluates ? to be true, such a 
truth function is called a satisfying t ruth function 
for tile boolean expression. Unfortunately, this is 
all intractable problem since a disjunction with n 
disjuncts can have 3 " - 1  potential  satisfying t ruth 
functions, i.e. the task is exponential in problem size 
(in fact, the problem of satisfiability has the honor 
of being the first NP-Complete  problem; see Garey 
and Johnson [11]). As is the case with inherently in- 
tractable problems; it is not worth searching for an 
efficient, exact algorithm to perform the task; it is 

7Evaluation is performed with respect to Kleene's three 
valued logic [15]. 
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Figure 10: Part  of the AO Tree for Clause Interpretation 

more appropriate to:consider a less ambitious prob- 
lem. Consider the problem of partial satisfiability: it 
is essentially the salfie as satisfiability except that  it 
does not a t tempt  to  satisfy disjunctive components 
(since it is these components which make the satis- 
fiability problem 'hard') .  It requires a redefinition 
of a t ruth function: i n  partial satisfiability a t ruth 
function is a mappin~g between boolean expressions 
(rather than simply features) and truth values. For 
example, the expres§ion (a  o r  b) and ¢ and no t  
d is partially satisfied by the fimction v: 

v : v(a o r  b ) = T ,  v ( c ) = T ,  v ( d ) = F  

Since disjunctions are effectively ignored, there is 
a single unique partially satisfying truth function 
for any boolean expression. Thus tip nodes labelled 
with satisfiability problems are (partially) decom- 
posed into a numbei, of and-nodes; each and-node 
being labelled by a feature (possibly negated) or a 

disjunction which must be true. As an example of 
a fldly decomposed AO tree for unit interpretation, 
consider the skeleton tree in Figure 10 which de- 
fines the potential interpretations of the clause in 
Figure 1. 

A potential solution of an AO tree is specified by 
a subset of the leaves that  are necessary for the root 
task to be achieved. A backtracking search is used 
to generate potential solutions: since the AO tree is 
finite, it is possible to inspect the structure of the 
tree and order the search in such a way so that  the 
minimum amount  of backtracking is performed, s A 
feasible interpretation for a unit is one of the po- 
tential solutions in which the s tatements  labelling 
the leaves are all consistent. There are two ways in 
which a leaf s ta tement  may be inconsistent: 

s The search scheme involves incrementally evaluating and 
pruning the AO tree. Full details can be found in O'Donoghue 
[19], an in-depth report on the interpreter. 
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Selection Expression for CI filling Z 

I s i t t t a t ion ,  congru.entt-si t ,  in . f?rrnat lon,  seeker ,  n o . c o r ~ - m o d M i t y ,  I p e r l o o - r n a r k e a j  a l n g [ e - o u ~ l ( l e r - s t h ,  m a t s r i 3 | ,  two-role .process ,  I 
a g e n t - c ~ n t r e ( l . t r p ,  plUS-Sllecte~, ~ t l~en t .~ - th~me-mat . aou[h t ,  I 
oVert.~ffected:a.U, ogerl.~Hected.s~l.pr,~sentecl~ qver  t¢ affe~Yed, af- u nt  he rna t i s ed ,  l 
c~nglng-colanguj r&t ion&J-s t  a t  e, c nang tng -  posi t  Lone&J- con f igura t ion  , l 
cnanglng . s ta te -o l .openness ,  tm &k e. o p t  n ,~.ge nt.  ;5- t h e rne- a.f" J 

Selection Expression f(~r ngp fillings Selection Expllession for ng p filling C2 
I s ' I t h i n k  . r g c n t - t h i n . ~ s t e r e o t y p i ~ . l - t h i n g ,  [ ' t h i n g  K , . t ~a ing~s t e r eo typ i c&l - t , i , g ,  ' . . . .  . . . .  . . . .  

I l l  putsrdex,  s'~ekto,g-spec'~fi~&tmn-Ol-thtng, outslcter, cffltur~l-c|~s~stPc~.ttpn-recov~r&.vLe, • I 
nurn&n| ty . spec |neo . ss t ,  h u m a n - s s t ,  peTson-sat c o u n t l s n . c c r ,  s e l ec t eo - l rom.Dy- supe r l~ t l v | z&t | on  I 

! 

Sclection expression for qqgp filling ds 

[ qpa l i t y ,  q u a l i t y : o f . t h i n g ,  presentinK-qu~l. l l ty.?f-[ .hi~g,  I olmerlSlOrl-quall ty,  SIZe, big,  no t .po~en t t a l ly -oen&vloura l -qu&l i ty  . 
I 

Figure 11: A Semantic Representation found by REVELATION I 

• The s ta tements  logically contradict,  for exam- 
ple: leaves labelled a = T and a = F.  Or 
b o r  e = T a n d b = F , e = F .  

• The s ta tements  systemically contradict,  for 
example: a = T and b = T when a and b 
are members of the same choice system (from 
which at most one feature can be chosen). 

The leaf s tatements  in a feasible solution define 
which features must be true (i.e. selected) for the 
unit to be realized, i.e. they specify a selection ex- 
pression for the unit. 

R e s u l t s  a n d  D i s c u s s i o n  

The semantic representation found by REVELATION 1 
for the syntax tree in Figure 1 is presented in Fig- 
ure 11. We can get a flavor of the semantic repre- 
sentation by identifying key features: the sentence 
is a question (information, seeker) about an on- 
going event (pe r iod -marked )  which involves open- 
ing something (make-open). It is a person that  we 
are seeking ( p e r s o n - s s t ) .  The  thing that  is being 
opened is selected by superlativization (in fact it is 
the biggest)  and it is recoverable from the previous 
discourse (the "one" referring to something that  has 
previously been mentioned).  

Unfortunately this semantic representation is in- 
complete. One of the factors contributing to this in- 
completeness is that  of 'unrealized' selections: these 
are features which have no associated realization 
(e.g. not-expect in Figure 2). Consider tile way 
in which interpretat ion works: it tries to prove that  
observed realizations have taken place and in so do- 
ing infer the features that  were selected. However, 
if a realization does not take place as a (not nec- 
essarily direct) result of a selection, then there is 
no way to infer that  the unrealized feature was se- 

lected. Consider the POLARITY system where there 
is a choice between p o s i t i v e  and n e g a t i v e .  The 
p o s i t i v e  choice is unrealized where as n e g a t i v e  is 
associated with the realization rule: 

17:negative: 
do_support, 
0 <+ "n't". 

Suppose we have a positive clause, "Who is opening 
the biggest one?" (the example sentence from Fig- 
ure 1). There is no way to tell from the structure of 
the clause that  the sentence is positive. However 
by inspecting the realization rule associated with 
negative we find that  the (unconditional) state- 
ment 0 < + " n ' t "  can never be active as this would 
realize the sentence "Who isn't opening the biggest 
one?". Thus rule 17 can never be active and so 
n e g a t i v e  can' t  be chosen, hence p o s i t i v e  must be 
chosen. Thus by a process of eliminating features 
which cannot be true, it is possible to determine 
unrealized features. REVELATION2 (currently under 
development) will a t t empt  to implement this pro- 
cess of elimination by moving forward through the 
system network (after a partial semantic represen- 
tation has been obtained) systematically verifying 
any realization rules that  it meets, eliminating fea- 
tures that  cannot be chosen and so possibly inferring 
something about  unrealized features which need to 
be chosen. 

The other factor contributing to incompleteness 
is the definition of partial satisfiability. Some fea- 
tures in the network do not have realization rules 
at tached to them: typically these appear as condi- 
tions on s tatements  in realization rules. However, 
if any of these features appear in disjunctive con- 
ditions or disjunctive entry conditions to systems, 
then nothing can be inferred about  their values since 
the definition of partial satisfiability ignores all dis- 
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junctions. This problem can only be overcome by 
searching for (exact) satisfying t ru th  functions from 
which all feature values can be inferred. REVELA- 
TION2 at tempts  to solve this problem by deferring 
the search for exact satisfying t ruth functions un- 
til after a partial in,terpretation has been obtained: 
the partial interpretation is obtained as for REVE- 
LATION1, and then any disjunctions that  have been 
ignored while obtaining this interpretation are ex- 
actly satisfied to try and fill the gaps in the partial 
interpretation. 

In addition to the work on the next generation of 
interpreter, some work is being carried out on P(~ 1.5 
to make it more efficient; it is being tuned for inter- 
pretation by simplifying and normalizing conditions 
in the realization rules. This involves ' t ightening up' 
the conditions by su~bstituting xor  for o r  wherever 
possible and reducin'g the scope of any valid disjunc- 
tions that  remain (eig. a and (b or  c) rather than 
a and b or a and c). 

Clearly efficiency is a problem, since the AO trees 
explode into or-nod:es, through the use of (i) dis- 
junctive entry conditions in the system network and 
(ii) disjunctive conditions in the realization rules. It 

[ 

has been proved (Brew [3]) that systemic classifica- 
tion is NP-Hard and is thus inherently intractable. 
This led to the choice of partial satisfiabillty rather 
than exact satisfiablility (which itself is NP-Ilard) 
in REVELATIONI, and the development of an effi- 
cient technique for isearching the AO trees which 
utilizes incremental ievaluation and pruning to re- 
duce the number of backtracking points (full details 
in O'Donoghue [19])i The delayed use of exact satis- 
fiability being inves!igated in REVELATION2 is sim- 
ilar to Brew's 'partial '  algorithm for checking sys- 
temic descriptions. IBrew's checking algorithm has 
two stages, the first i being a simplification stage in 
which all disjunctive:entry conditions are eliminated 
from the system netivork by replacing them with a 
uniquely generated feature. The resultant simplified 
network can then be searched efficiently. The second 
stage involves checking all of the features generated 
in the first stage, each generated feature referring to 
a disjunctive entry c~ondition. IIere also we find a 
delaying tactic in which disjunctions are satisfied as 
late as possible in the search. 

Although no theoretical calculations as to the 
complexity of the REVELATION1 method and Pc, l.5 
have been nndertaken, we can get a feel for the scale 
of the problem by considering the amount  of CPU 
time that  was needed to obtain the semantic repre- 
sentation of Figure 1!1. On a SPARCstation 1 with 
16M this task required ,~25 CPU seconds, with this 

time being halved on a Sun 4/490 with 32M. When 
reading these timings bear in mind that  REVELA- 

TION1 is coded in POPLOG languages which are in- 
crementally compiled into an interpreted virtual ma- 
chine code. 

Conclusions  

REVELATION1 has demonstrated that  Fawcett 's SG 
is a bi-directional formalism, although in the case 
of PG 1.5, some reorganization was required to make 
it run ill reverse. The main problem in reversing a 
SG seems to be that  systemic grammars are written 
from a predominantly text-generation viewpoint. In 
developing their grammars systemic grammarians 
are concerned with how the grammar  will generate 
rather than its suitability for interpretation. For 
instance, special care ought to be taken when ex- 
pressing conditions in realization rules: writing a 
xor  b rather than a o r  b can be a godsend to an 
interpreter. Similarly, simplifying and normalizing 
conditions so that  they are as simple and specific as 
possible is a great aid to interpretation. It reduces 
the search space and hence speeds up interpretation 
- -  even though, from a generative point of view, it 
may make more sense to express a condition in a 
'long winded' fashion that  captures the generaliza- 
tion the linguist is a t tempting to make. 

Fawcett states (private communication) that  in 
developing his version of SG (which is different in 
a number of ways - -  especially in the realization 
component - -  from the NIGEL grammar  of Mann 
and Matthiessen) he always had in mind its poten- 
tial for reversibility. Perhaps the surprising thing 
is not that  modifications in GENESYS are indicated 
by work on REVELATION, but  how few modifications 
appear to be required. Clearly, the need now is for 
close collaboration between the builders of the suc- 
cessor versions of GENESYS and and the successor 
versions of REVELATION. Current  research has pre- 
cisely this goal; and we shall report  the results in 
due course. 

REVELATION1 combined with Fawcett 's SG ap- 
pears to be a step in the right direction towards 
a hi-directional systemic grammar.  REVELATION2 
may take a step closer. But a bi-directional systemic 
grammar will only be achieved when interpretation- 
minded people and generation-minded people get to- 
gether and collaborate in developing such a gram- 
mar. 
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