
A GENERAL COMPUTATIONAL METHOD FOR GRAMMAR INVERSION

Tomek Strzalkowski
Courant Institute of Mathematical Sciences

New York University
715 Broadway, rm. 704
New York, NY 10003

tomek@cs.nyu.edu

ABSTRACT

A reversible grammar is usually understood as a
computational or linguistic system that can be used
both for analysis ~nd generation of the language it
defines. For example, a directive
pars_gen (Sent,For~n) would assign, depending upon
the binding status Of its arguments, the representation
in (Toronto,chased (Fido,John)) to the sentence Fido
chased John in To~onto, or it would produce one of
the several possib!e paraphrases of this sentence
given its represen~tion. Building such bi-directional
systems has long been considered critical for various
natural language processing tasks, especially in
machine translation. This paper presents a general
computational method for automated inversion of a
unification-based p~ser for natural language into an
efficient generator. It clarifies and expands the
results of earlier work on reversible grammars by this
author and the others. A more powerful version of
the grammar inversion algorithm is developed with a
special emphasis being placed on the proper treat-
ment of recursive ~rules. The grammar inversion
algorithm described here is at the core of the
Japanese-English :machine translation project
currently under development at NYU.

R E V E R S I B L E G R A M M A R S

A reversible grammar is usually understood as
a computational or linguistic system that can be used
both for analysis ~ d generation of the language it
defines. For : example, a directive
pars_gen (Sent,Form) would assign, depending upon
the binding status of its arguments, the representation
in (Toronto, chased (Fido,John)) to the sentence Fido
chased John in Toronto, or it would produce one of
the several possibly paraphrases of this sentence
given its representation. In the last several years,
there have been a growing amount of research
activity in reversibi¢ grammars for natural language,
particularly in condecfion with machine translation
work, and in natural language generation. Develop-
ment of reversible 'grammar systems is considered
desirable for variet), of reasons that include their
immediate use in both parsing and generation, a

reduction in the development and maintenance effort,
soundness and completeness of linguistic coverage,
as well as the match between their analysis and syn-
thesis capabilities. These properties are important in
any linguistic system, especially in machine transla-
tion, and in various interactive natural language sys-
tems where the direction of communication fre-
quently changes. In this paper we are primarily
interested in the computational aspects I of reversibil-
ity that include bi-directional evaluation and dual
compilation of computer grammars, inversion of
parsers into efficient generators, and derivation of
"generating-versions" of existing parsing algorithms.
Some of the recent resea~h in this area is reported in
(Calder et al., 1989; Dymetman and Isabelle, 1988;
Dymetman et al., 1990; Estival, 1990; Hasida and
Isizaki, 1987; Ishizaki, 1990; Shieber, 1988; Shieber
et al., 1990; Strzalkowski, 1990a-c; Strzalkowski and
Peng, 1990; van Noord, 1990; and Wedekind, 1988).
Dymetman and Isabelle (1988) describe a top-down
interpreter for definite clause grammars that statically
reorders clause literals according to a hand-eoded
specification, and further allows for dynamic selec-
tion of AND goals 2 during execution, using the tech-
nique known as the goal freezing (Colmerauer, 1982;
Naish, 1986). Shieber et al. (1990) propose a mixed
top-down/bottom-up interpretation, in which certain
goals, namely those whose expansion is defined by
the so-called "chain rules", 3 are not expanded during
the top-down phase of the interpreter, but instead
they are passed over until a nearest non-chain rule is
reached. In the bottom-up phase the missing parts of
the goal-expansion tree will be filled in by applying

i For linguistic aspects of reversible grammars, see (Kay,
1984; Landsbergen, 1987; Neuman, 1990; Steedman, 1987).

2 Literals on the fight-hand side of a clause create AND
goals; literals with the same predicate names on the left-hand sides
of different clauses create OR goals.

3 A chain rule is one where the main binding.carrying argu-
ment (the "head") is passed unchanged from the left-hand side to
the fight. For example, assert(P) -->
subj(Pl),verb(P2),obj(PI,P2,P), is a chain rule with respect to the
argument P. assuming that P is the 'head' argument.

91

the chain rules in a backward manner. This tech-
nique, known as 'head-driven' evaluation, can be
applied quite profitably to various grammar compila-
tion tasks, including the inverse computation, but it
requires that the underlying grammar is given in a
form where the information about the semantic heads
in nonterminals is made explicit. In addition, the pro-
cedure, as described in (Shieber et al, 1990), makes
no attempt to impose a proper ordering of the "non-
chain" goals, which may have an adverse effect on
the generator efficiency. 4

The grammar inversion method described in
this paper transforms one set of PROLOG clauses
(representing a parser, eg.) into another set of
clauses (representing a generator) using an off-line
compilation process. The generator is thus just
another PROLOG program that has the property of
being an inverse of the parser program, that is, it per-
forms inverse computation. 5 A unification grammar
is normally compiled into PROLOG tO o b t a i n an exe-
cutable program (usually a parser). Subsequently, the
inversion process takes place at the PROLOG c o d e

level, and is therefore independent of any specific
grammar formalism used. The obtained inverted pro-
gram has been demonstrated to be quite efficient, and
we noted that the same technique can be applied to
parser/generator optimization. Our method is also
shown to deal adequately with recursive clauses that
created problems in purely top-down compilation. 6
The inter-clausal inversion procedure discussed here
effects global changes in goal ordering by moving
selected goals between clauses and even creating
new clauses. The net effect is similar to that achieved
in the head-driven evaluation, except that no explicit
concept of 'head' or 'chain-rule' is used. The algo-
rithm has been tested on a substantial coverage PRO-
LOG grammar for English derived form the PRO-
TEUS Parser Grammar (Grishman, 1986), and the
Linguistic String Grammar for English (Sager,
1981). 7

* Some concern has also been voiced (Gardent and Plain-
fosse, 1990) about the termination conditions of this algorithm.

5 Some programs may in fact be multi-directional, and there-
fore may have several ' inverses' or 'modes ' .

6 Shieber et al. (1990) have shown that some recursive
clauses c.annot be executed using top.down evaluation thus
motivating the use of a mixed top-down/bouom-up evaluation of
their 'head.driven' compilation.

At present the grammar consists of 400+ productions.

IN AND OUT ARGUMENTS IN LITERALS

Literals in the grammar clauses can be marked
for the "modes" in which they are used. When a
literal is submitted to execution then those of its argu-
ments which are bound at that time are called the "in"
arguments. After the computation is complete, some
of the previously unbound arguments may become
bound; these are called the "out" arguments. For
example, in concat([a,b],[c,d],Z), which is used for
list concatenation, the first two arguments are "in",
while the third is "out". The roles are reversed when
concat is used for decomposition, as in
concat(X,Y,[a,b,c,d]). In the literal
subject(A1,A2,NUM,P), taken from an English gram-
mar, AI and A2 are input and output strings of words,
NUM is the number of the subject phrase, and P is
the final translation. When the grammar is used for
parsing, the "in" argument is A1; the "out" arguments
are A2, NUM and P; when it is used for generation,
the "in" argument is P; the "out" arguments are A1
and NUM. In generation, A2 is neither "in" nor "out".

"In" and "out" status of arguments in a PROLOG
program can be computed statically at compile time.
The general algorithm has been described in (StrTal-
kowski, 1990c; Strzalkowski and Peng, 1990).

ESSENTIAL ARGUMENTS: AN EXTENSION

The notion of an essential argument in a PRO-
LOG literal has been first introduced in (Strzalkowski,
1989), and subsequently extended in (Strzalkowski,
1990bc; Sttzalkowski and Peng, 1990). In short, X is
an essential argument in a literal p (" .- X • --) if X is
required to be "in" for a successful evaluation of this
literal. By a successful evaluation of a literal we
mean here the execution that is guaranteed to stop,
and moreover, that will proceed along an optimal
path. For instance, an evaluation of the goal
mere (a,L), with an intention to find a list L of which
a is a member, leads to a non-terminating execution
unless L's value is known. Likewise, a request to
generate a main verb in a sentence when the only
information we have is its root form (or "logical
form") may lead to repeated access to the lexicon
until the "correct" surface form is chosen. Therefore,
for a lexicon access goal, say
acclex (Word,Feats,Root), it is reasonable to require
that both Feats and Root are the essential arguments,
in other words, that the set {Feat,Root} is a minimal
set of essential arguments, or a MSEA, for acclex.
The following procedure computes the set of active

92

i

MSEA's in a clause head literal, s

PROCEDURE MSEAS(MS,MSEA,VP,i,OUT)

[computing active MSEAs]

Given a clause p (X 1 , . " ,X,) :- r1(Xl, | ." .Xl.kt),
• " , rs(X,.l ""Xs.~,), where i_>1, we compute the

set of active MSEAs in the head predicate p as fol-
lows: 9

(1) Start with MSEA = (~,
VP = V A R ({ X i , ' ' ' ,X,}), i=1, and
OUT = OUT0 = 0 . The set of active MSEA's for
p is returned in MS.

(2) For i = l , ' " , s , let MR i be the set of active
MSEA's of r i, and let MRUi = {ml.j I j = l . . . ri}
be obtained from MR i by replacing all variables
by their corresponding actual arguments of ri.

(3) Compute the set MPi = {I.q.j I j = l - - . ri}l , where
IXi.j = (VAR (mi.j) - OUTi-l.k), where OUTi_t.6 is
the set of all :'out" arguments in literals r~ to
r i - l .

(4) For each l.tij in MPi where l ~ . s do the follow-
ing:

(a) if l.tid = O then:

(i) compuie set OUTj of "out" arguments of
ri;

(ii) compute OUTij := OUTj u OUTi-l.t;

(iii) call
MSEAS (MSi. j,|.[i_l .k, VP,i + 1, OUTi.j);

(b) otherwise, if ~i.j ~ (~ then find all distinct
minimal size sets vt c VP such that when-
ever the arguments in vt are "in", then the
arguments ida I.ti,j are "out". If such vt 's exist,
then for eve W vt do:

(i) assumeiv, is "in" in p;

(ii) compute the set OUTi.h of "out" argu-
ments in all literals from r I to ri;

(iii) call
MSEAS,(MSi.h ,I.ti_1.t t.A,,, VP,i + l,OUTi.h);

(c) otherwise, if no such v, exist, MSij := ¢~.

(5) Compute MS :=: t,...) MSij;
j=l..r

' Active MSEA's are those existing with a given definition
of a predicate. Other, non-active MSEA's can be activated when
• h e clauses making up thi~ definition are altered in some way. The
procedure can be straightforwardly augmented to compute all
MSEAs (Strzalkowski, 1990c).

9 For i=l the sets of essential arguments are selected so as to
minimize the number of possible solutions to 1.

(6) For MSEAS (MS,MSEA,VP,s+I,OUT), i.e., for
i = s + l , d o M S := {MSEA}.

As a simple example consider the following clause:

sent(P) :- vp(N,P),np(N).

Assuming that MSEA'S for vp and np are {P} and
{N}, respectively, and that N is "out" in vp, we can
easily compute that {P} is the MSEA in sent. To see it,
we note that MRU1 for vp is { {P} } and, therefore,
that I.q.l = {P}. Next, we note that MRU2 for np is
{ {N}}, and since OUTi.1 from vp is {N}, we obtain
that l.t2.1 = ~ , and subsequently that {P} is the only
MSEA in sent.

The procedure presented above is sufficient in
many cases, but it cannot properly handle certain
types of recursive definitions. Consider, for example,
the problem of assigning the set of MSEA's to
mem(Elem,List), where mem (list membership) is
defined as follows:

mem (Elem, [First IList]) :-
mere (Elem,List).

mem (Elem, [Elem I List]).

The MSEAS procedure assigns MS=[{Elem},{List} },
we note however, that the first argument of mem can-
not alone control the recursion in the first clause
since the right-hand side (rhs) literal would repeat-
edly unify with the clause head, thus causing infinite
recursion. This consideration excludes {Elem} from
the list of possible MSEAs for mere. In (Strzalkowski,
1989) we introduced the directed relation always
unifiable among terms, which was informally charac-
terized as follows. A term X is always unifiable with
term Y if they unify regardless of any bindings that
may occur in X, providing that variables in X and Y
are standardized apart, and that Y remains unchanged.
According to this definition any term is always
unifiable with a variable, while the opposite is not
necessarily Irue. For example, the variable X is not
always unifiable with the functional term f(Y)
because binding X with g(Z) will make these two
terms non-unifiable. This relation can be formally
characterized as follows: given two terms X and Y we
say that Y is always unifiable with X (and write X_<Y)
iff the unification of X and Y yields Y, where the vari-
ables occurring in X and Y have been standardized
apart. 1° Since _< describes a partial order among
terms, we can talk of its transitive closure _<*. Now
we can augment the MSEAS procedure with the fol-
lowing two steps (to be placed between steps (2) and

,0 So defined, the relation always uni~ble becomes an in-
verse of another relation: less instantiat~d, hence the particular
direction of S sign.

93

(3)) that would exclude certain MSEAs from re.cur-
sive clauses.

(2A)
If r i = p then for every mi, u E MRUi if for every
argument Yt ~ mi.,,, where Yt is the l-th argument
in ri, and Xi is the l-th argument in p, we have
that Xt_<* Yi then remove mi, u from MRU i.

(2B)
For every set mi, uj = mi. u u { Zi. j }, where Zi,j is
the j-th argument in r~ such that it is not already
in mi.u and it is not the case that YiS'Zid, where
Yj is a j-th argument in p, if mi.ui ts not a super-
set of any other mi, t remaining in MRUi, then
add mi, ui to MRU1.

In order for the MSEAS procedure to retain its practi-
cal significance we need to restrict the closure of <_ to
be defined only on certain special sets of terms that
we call ordered series. H It turns out that this res-
tricted relation is entirely sufficient in the task of
grammar inversion, if we assume that the original
grammar is itself well-defined.

DEFINITION 1 (argument series)
Let p (. • • Yo " • •) : - r l , • • • ,rn be a clause, and
ril, " " • ,rid be an ordered subset of the literals on the
right-hand side of this clause. Let ri~,t be either a
literal to the right of rlk or the head literal p. The
ordered set of terms < Y o , X i , Y l , " ' " ,Xk,Yk,Xk+l > is
an argument series iff the following conditions are
met:

(1) Xk+~ is an argument in ri~+~;

(2) for every i=1 " . - k , Xi is different from any Xj
for j <i;

(3) for every j = l " . - k, X i and Yi are arguments to
%, that is, r l j (. . . X i , Y j . . .), such that if Xj is

"in" then Yj is "out" 12; and

(4) for every j = 0 . . - k , either Xj+i=Y j or
X j+ 1 = f (Yj) or Yj=f (X j+l), where f (X) denotes a
term containing a subterm X.

Note that this definition already ensures that
the argument series obtained between X0 and Xk+t is
the shortest one. As an example, consider the follow-
ing clauses:

u A similar concept of g u i d e - s t r u c t u r e is introduced in
(Dymetman et al., 1990), however the ordered series is less restric-
tive and covers a larger class of recursive programs.

12 yj may be partially "out"; see (Strzalkowski, 1990c) for
the definition of delayed "out" status.

vp(X) :- np(X,Y),vp(Y).
np f f (x),x).

Assuming that the argument X in the literal vp (X) on
the left-hand side (lhs) of the first clause is "in", we
can easily check that <X,X,Y ,Y> constitutes an argu-
ment series between arguments of vp in the first
clause.

DEFINITION 2 (weakly ordered series) 13
An argument series < Y o , X 1 , Y 1 , . . . ,Xk,YkX~+i> in
the clause P : - r l . . . r , is weakly ordered iff
Yo_<*Xk+l [or Xk+l_<'Y0], where _<* is a closure of <_
defined as follows:

(1) for every i=1 . - . k, such that r i j (" " X j , Y i " ")
there exists a clause
r i j (" " ,X,Y, . - ") : - s l , • "" , s , , where X and Y
unify with X; and Y./, respectively, such that
X_<*Y [or Y_<*:(];

(2) for every i=O. . "k, Xi+l=Yi or Xi+l=f(Yi) [or
ri=f (Xi+l)].

Looking back at the definition of mem (Elem,List) we
note that the first (recursive) clause contains two
ordered series. The first series, <Elem,Elem >, is not
ordered (or we may say it is ordered weakly in both
directions), and therefore Elem on the left-hand side
of the clause will always unify with Elem on the
right, thus causing non-terminating recursion. The
other series, <[First IList],List>, is ordered in such
a way that [First IList] will not be always unifiable
with List, and thus the recursion is guaranteed to ter-
minate. This leaves {List} as the only acceptable
MSEA f o r mem.

Consider now the following new example:

vp(X) : - np (X ,Y) , vp (Y) .
vp(X) :- v(X).
np (x,f (x)).

Note that the series <X,X,Y ,Y> in the first clause is
ordered so that X_<*Y. In other words, Y in vp on the
rhs is always unifiable with X on the lhs. This means
that a non-terminating recursion will result if we
attempt to execute the first clause top-down. On the
other hand, it may be noted that since the series is
ordered in one direction only, that is, we don't have
Y_<*X, we could invert it so as to obtain Y_<*X, but not
X_<*Y. To accomplish this, it is enough to swap the
arguments in the clause defining np, thus redirecting
the recursion. The revised program is guaranteed to

,3 A series can also be strongly ordered in a given direction,
if it is weakly ordered in that direction and it is not weakly ordered
in the opposite direction.

94

F

terminate, providing that vp's argument is bound,
which may be achieved by further reordering of
goals.t4 !

The ordered Series relation is crucial in detect-
ing and removing!of non-terminating left-recursive
rules of the grammar. The first of the following two
algorithms finds if an argument series is ordered in a
specified directio n, without performing a partial
evaluation of goals~ The second algorithm shows how
a directed series can be inverted.

ALGORITHM l (finding if Yo_<'Xk+~ (weakly))
Given an: argument series
<Y0,Xl ,Y1, " '" ,X~,YkX~+1 > do the following:

(1) Find if for every i = 0 . . , k, either Xi+l=Yi or
Xi+l=f(Yi); if the answer is negative, return NO
and quit.

(2) For every i=1 • • • k, find a clause
ri~(" " . X , Y . " ' :) : - s l , " " , s in such that Xj and
Yj unify with X and Y, respectively, and there is a
leading series ~.X • • • Y> such that X_<*Y. Return
NO if no such clause is found, and quit.

(3) In the special i case when k=0, i.e., p has no
right-hand side, Yo_<°X~ if either Yo=X~ or
Xl=f(Yo) . If this is not the ease return NO, and
quit.

(4) Otherwise, return YES.

When ALGoRrrHM i returns a YES, it has generated
an ordered path (i.e,, the series with all the necessary
subseries) between X 0 and Xk+l to prove it. If this
path is ordered in one direction only, that is, there
exists at least one pair of adjacent elements Xi and Yj
within this path such that either Xi=f(Yj) or
Yj=f(Xi), but not Xi=Yj, then we say that the path is
properly ordered. :In addition, if we force ALGO-
RITHM I tO generate all the paths for a given series,
and they all turn out to be properly ordered, then we
will say that the series itself is properly ordered. We
can attempt to invert a properly ordered path, but not
the one which is only improperly ordered, i.e., in
both directions. Therefore, for a series to be inverti-
ble all its paths must be properly ordered, though not
necessarily in the sahae direction) s

ALGORITHM 2 (inverting properly ordered series)
Given a clause p ! - r l , - . . , r , , and an argument

14 Reordering of goals may be required to make sure that ap-
propnate essenual arguments are bound.

ts Recursion defi~ed with respect to improperly ordered
series is oonsidered ill-formed.

series <Yo,X1,Y1, ' ' ' ,Xk ,YkX,+i> such that it is
properly (weakly) ordered as X0_<'Xk+l [or
Xk+l_<'X0], invert it as follows:

(1) For each %(-- . ,Xj ,Yj , " ') appearing on the
rhs of the clause, find all clauses
rlj(. . . ,X,Y, . . .) :- s l , "'" ,sin such that X and
Y unify with X/and Yj, respectively, and there is
a proper ordering X_<*Y [or Y_<*X].

(2) Recursively invert the series <X . . • Y>; for the
special case where m =0, that is, rij clause has no
rhs, exchange places of X and Y.

(3) For every pair of Yi and Xi+t (i=O.." k), if either
Yi=f(Xi+l) or Xi+l=f(Yi), where f is fully
instantiated, exchange Yi with Xi+l, and do noth-
ing otherwise.

We now return to the MSEAS procedure and add a
new step (2C), that will follow the two steps (2A)
and (2B) discussed earlier. The option in (2C) is used
when the expansion of a MSEA rejected in step (2A)
has failed in (2B). In an earlier formulation of this
procedure an empty MSEA was returned, indicating
an non-executable clause. In step (2C) we attempt to
rescue those clauses in which the recursion is based
on invertible weakly ordered series.

(2C)
Find an argument Y~ ~ mi.u, a t-th argument of r i,
such that Xt_<" Yt, where Xt is the t-th argument in
the head literal p and the series <Xt " '" Yt> is
properly ordered. If no such Yt is found, augment
mi,u with additional arguments; quit if no further
progress is possible) 6 Invert the series with
ALGORITHM 2, obtaining a strong.ly ordered series
< X ' t " " Y't> such that Y't_< X't. Replace Yi
with Y't in rni,u and add the resulting set to
MRU~.

At this point we may consider a specific linguistic
example involving a generalized left-recursive pro-
duction based on a properly ordered series) 7

[1] sent (V1, V 3,Sem) :-
np(V1,V2,Ssem),
vp (V2, V3,[Ssem],Sem).

[2] vp (V1, V3,Args, Vsem) :-
vp (V1, V2, [Csem I Args], Vsera),
np(V2, V3, Csem).

Is As in step (2B) we have to maintain the minimality of
m~...

i~ This example is loosely based on the grammar described
in (Shieber et al., 1990).

95

[3] vp (V1, V2,Args, Vsem) :-
v (VI, V2,Args, Vsem).

[41 v (V1, V2, [Obj, Subj],chased (Subj, Obj)) :-
chased (VI, V2).

[5] chased ([chased IX],X).
[6] np ([john I X],X,john).
[71 np ([fido IX],X,fido).

We concentrate here on the clause [2], and note that
there are three argument series between the vp
literals: <V1,VI>, <Args, [Csem IArgs]>, and
<Vsem,Vsem >, of which only the second one is
invertible. We also note that in clause [3], the collec-
tion of MSEAs for vp include {V1} and {Vsem},
where V1 represents the surface suing, and Vsem its
"semantics". When we use this grammar for genera-
tion, {V1} is eliminated in step (2A) of the MSEAS
procedure, while {Vsem}, is rescued in step (2C),
where it is augmented with Args which belongs to the
invertible series. We obtain a new set {Args',Vsem},
which, if we decide to use it, will also alter the clause
[2] as shown below, is

[2a] vp(V1,V3,[Csem IArgs],Vsem) :-
vp (V1, V2,Args, Vsem),np (V2, V3, Csem).

This altered clause can be used in the generator code,
but we still have to solve the problem of having the
[Csem IArgs] bound, in addition to Vsem. 19 It must
be noted that we can no longer meaningfully use the
former "in" status (if there was one) of this argument
position, once the series it heads has been inverted.
We shall return to this problem shortly.

INTRA-CLAUSAL INVERSION

The following general rule is adopted for an
effective execution of logic programs: never expand
a goal before at least one of its active MSFEAs is "in".
This simple principle can be easily violated when a
program written to perform in a given direction is
used to run "backwards", or for that matter, in any
other direction. In particular, a parser frequently can-
not be used as a generator without violating the
MSEA-binding rule. This problem is particularly
acute within a fixed-order evaluation strategy, such
as that of PROLOG. The most unpleasant consequence
of disregarding the above rule is that the program
may go into an infinite loop and have to be aborted,
which happens surprisingly often for non-trivial size

Is In our inversion algorithm we would not alter the clause
until we find that the MSEA needs to be used.

19 Vsem is expected to be "in" during generation, since it car-
ties the "semantics" of vp, that is, provides the input to the genera-
tor.

programs. Even if this does not happen, the program
performance can be seriously hampered by excessive
guessing and backtracking. Therefore, in order to
run a parser in the reverse, we must rearrange the
order in which its goals are expanded. This can be
achieved in the following three steps:

PROCEDURE INVERSE

(1) Compute "in" and "out" status of arguments for
the reversed computation. If the top-level goal
parse (String,Sem) is used to invoke a generator,
then Sere is initially "in", while String is
expected to have "out" status.

(2) Compute sets of all (active and non-active)
MSEAs for predicates used in the program.

(3) For each goal, if none of its MSEAs is "in" then
move this goal to a new position with respect to
other goals in such a way that at least one of its
MSEAs is "in". If this "in" MSEA is not an active
one, recursively invert clauses defining the
goal's predicate so as to make the MSEA become
active.

In a basic formulation of the inversion algorithm the
movement of goals in step (3) is confined to be
within the fight-hand sides of program clauses, that
is, goals cannot be moved between clauses. The
inversion process proceeds top-down, starting with
the top-level clause, for example parse (String,Sere)
• - sent(String,[],Sere). The restricted movement
inversion algorithm INVERSE has been documented in
detail in (Strzalkowski, 1990ac). It is demonstrated
here on the following clause taken from a parser pro-
gram, and which recognizes yes-no questions:

yesnoq (A1,A4,P) :-
verb (A1,A2,Num,P2),
subject (A2,A3,Num,P1),
object (A3,A4,P I,P2,P).

When rewriting this clause for generation, we would
place object first (it has P "in", and A3, P1, P2 "out"),
then subject (it has the essential PI "in", and A2 and
Num "out"), and finally verb (its MSEA is either
{A1} or {Num,P2}, the latter being completely "in"
now). The net effect is the following generator
clause: 2o

yesnoq (A1,A4,P) :-
object (A3,A4,P I,P2,P),
subject (A2,A3,Num,P1),
verb (A1,A2,Num,P2).

INVERSE works satisfactorily for most grammars, but
it cannot properly handle certain types of clauses

20 Note that the surface linguistic string is not generated
from the left to the tight.

96

where no definite ordering of goals can be achieved
even after redefinition of goal predicates. This can
happen when two or more literals wait for one
another to have bindings delivered to some of their
essential argument. The extended MSEAS procedure
is used to define a general inversion procedure INTER-
CLAUSAL tO be discussed next.

INTER-CLAUSA'L INVERSION
Consider again the example given at the end of

the section on essential arguments. After applying
MSEAS procedure we find that the only way to save
MSEA {Args, Vsera} is to invert the series
~.Args,[Csem IArgs]> between vp literals. This
alters the affected, clause [2] as shown below (we
show also other clauses that will be affected at a later
stage): 2]

[1] sent(Sen) :-
np (Ssem), W ([Ssem],Sem).

[2] vp([Csem IArg:],Vsem) :-
vp (Args, VSem),np (Csem).

[3] vp (Args, Vsem)':-
v (Args, Vs(m).

In order to use the second clause for generation, we
now require [CsemlArgs] to be "in" at the head literal
vp. This, however, is not the case since the only input
we receive for generation is the binding to Sera in
clause [1], and subsequently, Vsem in [2], for exam-
ple, ?-sent (chased (Fido,John)). Therefore the code
still cannot be executed. Moreover, we note that
clause [1] is now deadlocked, since neither vp nor np
can be executed first. 22 At this point the only remain-
ing option is to usel interclausal ordering in an effort
to inverse [1]. We move v from the rhs of [3] to [1],
while np travels from [1] to [3]. The following new
code is obtained (the second argument in the new vp"
can be dropped, and the new MSEA for vp" is
{Args}): 2a

7
aZ The string variables VI, V2, etc. are dropped for clarity.

22 Them are situations when a clause would not appear
deadlocked but still require expansion, for example if we replace
[11 by sent(Sem,Ssern) :-Ivp(Ssern,Sem), with Ssem bound in sent.
This clause is equivalent to sent(Sera,Ssem) :-

. . .

Vsem=Ssern,vp(Vsem,Sem), but since the series m 121 has been in-
verted we can no longerlmeaningfull y evaluate the ths fiterals in
the given order. In fact we need to evaluate vp first which cannot be
done until Vsem is bound.

An alternative is:to leave Ill intact (except for goal order-
ing) and add an "interface" clause that would relate the old vp to
the new vp'. In such case the procedure would generate an addi-
tional argument for vp t ih order to remm the final value of Ar&s
which needs to be passed to np.

[1'1 sent(Sere) :-
v (Args, Sera),vp'(Args).

[2'] vp"([Csem IArgs]) :-
vp'(Args),np (Csem).

[3'] vp'([Ssem]) :-
np (Ssem).

This code is executable provided that Sere is bound in
sent. Since Args is "out" in v, the recursion in [2'] is
well defined at last. The effect of the interclausal
ordering is achieved by adopting the tNTERCLAUSAL
procedure described below. The procedure is
invoked when a deadlocked clause has been
identified by INVERSE, that is, a clause in which the
right-hand side literals cannot be completely ordered.

PROCEDURE INTERCLAUSAL(DLC)

[Inter-clausal inversion]

(1) Convert the deadlocked clause into a special
canonical form in which the clause consists
exclusively of two types of literals: the
unification goals in the form X=Y where X is a
variable and Y is a term, and the remaining
literals whose arguments are only variables (i.e.,
no constants or functional terms are allowed).
Any unification goals derived from the head
literal are placed at the front of the rhs. In addi-
tion, if p (. . . X . - .) is a recursive goal on the
rhs of the clause, such that X is an "in" variable
unifiable with the head of an inverted series in
the definition of p, then replace X by a new vari-
able X1 and insert a unification goal XI=X. The
clause in [1] above is transformed into the fol-
lowing form:

[1] sent(Sem) :-
np (Ssem),
A rgs = [Ssem],
vp (Args, Sem).

(2) Select one or more non-unification goals, starting
with the "semantic-head" goal (if any), for static
expansion. The "semantic-head" goal is the one
that shares an essential argument with the literal
at the head of the clause. Recursive clauses in
the definitions of goal predicates should never be
used for expansion. In the example at hand, vp
can be expanded with [3].

(3) Convert the clauses to be used for goal expan-
sion into the canonical form. In our example [3]
needs no conversion.

(4) Expand deadlocked goals by replacing them with
appropriately aliased fight-hand sides of the
clauses selected for expansion. In effect we per-
form a partial evaluation of these goals. Expand-
ing vp in [1] with [3] yields the following new

97

clause:

[la] sent (Sere):-
np (Ssem),
Args =[Ssem],
v (Args,Sem).

(5) Find an executable order of the goals in the
expanded clause. If not possible, expand more
goals by recursively invoking INTFERCLAUSAL,
until the clause can he ordered or no further
expansion is possible. In our example [la] can
be ordered as follows:

[lb] sent (Sem) :-
v(Args,Sem),
Args=[Ssem],
np (Ssem).

(6) Break the expanded clause back into two (or
more) "original" clauses in such a way that: (a)
the resulting clauses are executable, and (b) the
clause which has been expanded is made as gen-
eral as possible by moving as many unification
goals as possible out to the clause(s) used in
expansion. In our example v(Args, Sem) has to
remain in [lb], but the remainer of the rhs can be
moved to the new vp" clause. We obtain the fol-
lowing clauses (note that clause [2] has thus far
remained unchanged throughout this process):

lib] sent (Sem) :-
v (Args,Sem),
vp'(Args,_).

[2b] vp'([Csem IArgs],Sem) :-
vp'(Args,Sem),
np (Csem).

[3b] vp'(Args,_) :-
Args =[Ssem],
np (S sem).

(7) Finally, simplify the clauses and return to the
standard form by removing unification goals.
Remove superfluous arguments in literals. The
result are the clauses [1'] to [3'] above.

CONCLUSIONS

We described a general method for inversion
of logic grammars that transforms a parser into an
efficient generator using an off-line compilation pro-
cess that manipulates parser's clauses. The resulting
"inverted-parser" generator behaves as if it was
"parsing" a structured representation translating it
into a well-formed linguistic string. The augmented
grammar compilation procedure presented here is
already quite general: it appears to subsume both the
static compilation procedure of Strzalkowski (1990c),
and the head-driven grammar evaluation technique of

Shieber et al. (1990).

The process of grammar inversion is logically
divided into two stages: (a) computing the collections
of minimal sets of essential arguments (MSEAs) in
predicates, and (b) rearranging the order of goals in
the grammar so that at least one active MSEA is "in"
in every literal when its expansion is attempted. The
first stage also includes computing the "in" and "out"
arguments. In the second stage, the goal inversion
process is initialized by the procedure INVERSE,
which recursively reorders goals on the right-hand
sides of clauses to meet the MSEA-binding require-
ment. Deadlocked clauses which cannot be ordered
with INVERSE are passed for the interclausal ordering
with the procedure I/qTERCLAUSAL. Special treatment
is provided for recursive goals defined with respect to
properly ordered series of arguments. Whenever
necessary, the direction of recursion is inverted
allowing for "backward" computation of these goals.
This provision eliminates an additional step of gram-
mar normalization.

In this paper we described the main principles
of grammar inversion and discussed some of the cen-
tral procedures, but we have mostly abstracted from
implementation level considerations. A substantial
part of the grammar inversion procedure has been
implemented, including the computation of minimal
sets of essential arguments, and is used in a
Japanese-English machine translation system. 24

ACKNOWLEDGEMENTS

This paper is based upon work supported by
the Defense Advanced Research Project Agency
under Contract N00014-90-J-1851 from the Office of
Naval Research, and by the National Science Foun-
dation under Grant IRI-89-02304. Thanks to Marc
Dymetman, Patrick Saint-Dizier, and Gertjan van
Noord for their comments on an earlier version of
this paper.

REFERENCES

Calder, Jonathan, Mike Reape and Henk
Zeevat. 1989. "An Algorithm for Generation in
Unification Categorial Grammar." Proc. 4th Conf.
of the European Chapter of the ACL, Manchester,
England, April 1989. pp. 233-240.

Colmerauer, Alain. 1982. PROLOG II:
Manuel de reference et modele theorique. Groupe

24 Further details can be found in (Peng and Strzalkowski,
1990; Strzalkowski and Peng, 1990; and Peng, forthcoming).

98

d'Intelligence Artificielle, Faculte de Sciences de
Luminy, Marseille.

Dymetrnan, Marc and Pierre Isabelle. 1988.
"Reversible Logic' Grammars for Machine Transla-
tion." Proc. 2nd Int. Conf. on Machine Translation,
Carnegie-Mellon Univ.

Dymetman, Marc, Pierre Isabelle and Francois
Perrault. 1990. "A Symmetrical Approach to Pars-
ing and Generation." COLING-90, Helsinki, Fin-
land, August 1990.! Vol. 3, pp. 90-96.

Estival, Dominique. 1990. "Generating
French with a Reversible Unification Grammar."
COLING-90, Helsinki, Finland, August 1990. Vol. 2,
pp. 106-111.

Gardent, Claire and Agnes Plainfosse. 1990
"Generating from; Deep Structure." COLING-90,
Helsinki, Finland, August 1990. Vol 2, pp. 127-132.

Grishman, Ralph. 1986. Proteus Parser Refer-
ence Manual. Proteus Project Memorandum #4,
Courant Institute Of Mathematical Sciences, New
York University.

Hasida, Koiti, Syun Isizaki. 1987. "Depen-
dency Propagation i A Unified Theory of Sentence
Comprehension and Generation." IJCAI-87, Milano,
Italy, August 1987.!pp. 664-670.

Ishizaki, Masato. 1990. "A Bottom-up Gen-
eration for Principle-based Grammars Using Con-
straint Propagation." COLING-90, Helsinki, Fin-
land, August 1990. Voi 2, pp. 188-193.

Kay, Martin. 1984. "Functional Unification
Grammar: A Formalism for Machine Translation."
COLING-84, Stanftrd, CA, July 1984, pp. 75-78.

Landsbergen, Jan. 1987. "Montague Gram-
mar and Machine Translation." Eindhoven, Holland:
Philips Research M,S. 14.026.

Naish, Lee. 1986. Negation and Control in
PROLOG. Lecture Notes in Computer Science, 238,
Springer.

Newman, P. !990. "Towards Convenient Bi-
Directional Grammar Formalisms." COLING-90,
Helsinki, Finland, August 1990. Vol. 2, pp. 294-298.

Peng, Ping. forthcoming. "A Japanese/English
Reversible Machine Translation System With Sub-
language Approach." Courant Institute of
Mathematical Sciences, New York University.

Peng, Ping and Tomek Strzalkowski. 1990.
"An Implementation of a Reversible Grammar."
Proc. 8th Canadiad Conf. on Artificial Intelligence,
Ottawa, Canada, Jude 1990. pp. 121-127.

Sager, Naomi~ 1981. Natural Language Infor-
mation Processing. Addison-Wesley.

Shieber, Smart, M. 1988. "A uniform archi-
tecture for parsing and generation." COLING-88,
Budapest, Hungary, August 1988, pp. 614-619.

Shieber, Stuart, M., Gertjan van Noord, Robert
C. Moore, Fernando C. N. Pereira. 1990. "A
Semantic-Head-Driven Generation." Computational
Linguistics, 160), pp. 30--42. MIT Press.

Steedman, Mark. 1987. "Combinatory Gram-
mars and Parasitic Gaps." Natural Language and
Linguistic Theory, 5, pp. 403-.439.

Strzalkowski, Tomek. 1989. Automated Inver-
sion of a Unification Parser into a Unification Gen-
erator. Technical Report 465, Department of Com-
puter Science, Courant Institute of Mathematical Sci-
ences, New York University.

Strzalkowski, Tomek. 1990a. "An algorithm
for inverting a unification grammar into an efficient
unification generator." Applied Mathematics Letters,
3(1), pp. 93-96. Pergamon Press.

Strzalkowski, Tomek. 1990b. "How to Invert
a Parser into an Efficient Generator. an algorithm for
logic grammars." COLING-90, Helsinki, Finland,
August 1990, Vol. 2, pp. 347-352.

Strzalkowski, Tomek. 1990c. "Reversible
logic grammars for natural language parsing and gen-
eration." Computational Intelligence, 6(3), pp. 145-
171. NRC Canada.

Strzalkowski, Tomek and Ping Peng. 1990.
"Automated Inversion of Logic Grammars for Gen-
eration." Proc. of 28th ACL, Pittsburgh, PA, June
1990. pp. 212-219.

van Noord, Gertjan. 1990. "Reversible
Unification Based Machine Translation." COLING-
90, Helsinki, Finland, August 1990. VO1. 2, pp. 299-
304.

Wedekind, Jurgen. 1988. "Generation as
structure driven derivation." COLING-88, Budapest,
Hungary, August 1988, pp. 732-737.

99

