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A b s t r a c t  

We present a uniform computational 
architecture for developing reversible 
grammars for parsing and generation, and 
for bidirectipnal transfer in MT. We sketch 
the principles of a general reversible ar- 
chitecture and show how they are real- 
ized in the rewriting system for typed fea- 
ture structu:res developed at the Univer- 
sity of Stuttgart. The reversibility of pars- 
ing and gen:eration, and the bidirection- 
ality of tralisfer rules fall out of general 
properties of the uniform architecture. 

1 PRINCIPLES FOR A UNIFORM AR- 
CHITECTURE 

The principles for a uniform architecture 
for pars ing/generat ion and bidirectional trans- 
fer are a l r e a d y  contained in some P R O L O G  
implementat ions:  of logic grammars  like DCGs. 
For example,  [Sliieber 88] proposes to apply the 
idea of Earley deduction [Perei ra /Warren 83] to 
generation. With  the noticeable exception of 

[Dymetman et al. 90], all of  these approaches use 
a context-free based mapping to relate a string 
of  words with a semantic  s tructure.  Almost all 
of these approaches also rely on some specific 
propert ies of the grammars  intended to be pro- 
cessed (semantic  heads, guides, leading features, 
specific representat ion of subcategorizat ion,  etc.). 
They are also dependent  on the direction in which 
they are used: even if the g rammar  specifica- 
tion is the same, two different compilers gener- 
ate two different programs for parsing and gener- 
ation. Using the P R O L O G  deduction mechanism 
to have a simple and direct implementat ion of a 
parser /genera tor ,  one has to solve some problems 
due to the P R O L O G  evaluation method,  for ex- 
ample terminat ion on unins tant ia ted  goals: goals 
have to be evaluated in a different order for pars- 
ing and generation. A reordering of goals per- 
formed by a rule compiler can be based on a di- 
rect specification of the ordering by  the grammar 
writer  [Dymetman/ I sabe l le  88], or can be derived 

*Research reported in this paper is partly supported by the German Ministry of Research and Technology (BMFT, 
Bundesminister ffir Forschung und Technologic), under grant No. 08 B3116 3. The views and conclusions contained herein 
are those of the autl~or and should not be interpreted as representing official policies. 
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by a compiler by analysing the dataflow using only 
input /output  specifications [Strzalkowski 90]. 

But if we regard the grammar as a set of con- 
straints to be satisfied, parsing and generation dif- 
fer only in the nature of the "input", and there is 
no reason to use two different programs. An inter- 
esting approach which uses only one program is 
described in [Dymetman/Isabelle 88]. Within this 
approach, a lazy evaluation mechanism, based on 
the specification of input /output  arguments, is im- 
plemented, and the evaluation is completly data- 
driven: the same program parses or generates de- 
pending only on the form of the input term. Fur- 
thermore, a reversible grammar need not to be 
based only on constituency. [Dymetman et al. 90] 
describes a class of reversible grammars ("Lexi- 
cal Grammars")  based on a few composition rules 
which are very reminiscent of categorial gram- 
mars. Other kinds of approaches can also be en- 
visaged, e.g. using a dependency structure and 
linear precedence relations [Reape 90] (see also 
[Pollard/Sag 87]). 

From these experiments, we can outline desir- 
able properties of a computational framework for 
implementing reversible grammars: 

A unique general deductive mechanism is 
used. Grammars define constraints on the 
set of acceptable structures, and there is no 
distinction between "input" and "output". 

To abolish the input /output  distinction, the 
same kind of data structure is used to encode 
both the string and the linguistic structure, 
and they are embedded into one data struc- 
ture that represents the relation between the 

string and the associated linguistic structure 
(c.f. the HPSG sign [Pollard/Sag 87]). 

Specific mapping properties, based on con- 
stituency, linear precedence or flmctional 
composition, are not part of the formalism 
itself but are encoded explicitly using the 
formalism. 

The deductive mechanism should be compu- 
tationally well-behaved, especially with re- 
spect to completeness. 

In the next section, we show how these prop- 
erties are realized in the Typed Feature Structure 
rewriting system implemented at the University of 
Stuttgart  1. We then discuss the parsing and gen- 
eration problem, and bidirectionality of transfer in 
MT. Assuming that we have the proper machin- 
ery, problems in parsing or generation can arise 
only because of a deficiency in the grammar2: in 
the last section, the termination problem and effi- 
ciency issues are addressed. 

2 A R E W R I T E  M A C H I N E  F O R  T Y P E D  
F E A T U R E  S T R U C T U R E S  

The basic motivation behind the Typed Fea- 
ture Structure rewriting system is to provide a 
language which has the same deductive and log- 
ical properties of logic programming languages 
such as PROLOG, but which is based on feature 
terms instead of first order terms [Ai't-Kaci 84, 
A~t-Kaci 86, Emele/Zajac 90a]. Such a language 
has a different semantics than the Herbrand se- 
mantics: this semantics is based on the notion of 
approximation, which captures in a computational 

1The TFS system has been implemented by Martin Emele and the author as part of the POLYGLOSS project. 
2As it is often the case in generation when using a grammar built initially for parsing. 
3See also [Emele/Zajac 90a] for a fixed-point semantics. 
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framework the idea that feature structures repre- 
sent partial information [Zajac 90b] 3. Of course, 
as in PROLOG,i problems of completeness and el- L 
ficiency have to be addressed. 

The universe: of feature terms is structured in 
an inheritance hierarchy which defines a partial 
ordering on kinds of available information. The 
backbone of the hierarchy is defined by a par- 
tial order _< on !a set of type symbols T .  To this 
set, we add two more symbols: T which repre- 
sents complet ly underspecified information, and 
_l_ which represents inconsistent information. Two 
type symbols have a common most general sub- 
type (Greatest Lower Bound - GLB): this sub- 
type inherits ale information associated with all 
its super-types. We define a meet operation on two 
type symbols A and B as A A B = glb(A, B). For- 
mally, a type hierarchy defined as a tuple (T, <, A) 

i 
is a meet semi-lattice. A technicality arises when 
two types A and B have more than one GLB: in 
that case, the set of GLBs is interpreted as a dis- 
junction. 

As different shts of attribute-value pairs make 
sense for differen~t kind of objects, we divide our 
feature terms into different types. Terms are closed 
in the sense that ~ach type defines a specific associ- 
ation of features iand restrictions on their possible 
values) which are I appropriate for it, expressed as a 
feature structure '(the definition of the type). Since 
types are organized in an inheritance hierarchy, 
a type inherits all the features and value restric- 
tions from all its 'super-types. This type-discipline 
for feature structures enforces the following two 
constraints: a term cannot have a feature which 

is not appropriate for its type 4 and conversely, a 
pair of feature and value should always be defined 
for some type. Thus a feature term is always typed 
and it is not possible to introduce an arbitrary fea- 
ture in a term (by unification): all features added 
to some term should be appropriate for its type. 
We use the attribute-value matrix (AVM) nota- 
tion for feature terms and we write the type sym- 
bol for each feature term in front of the opening 
square bracket of the AVM. A type symbol which 
does not have any feature defined for it is atomic. 
All others types are complex. 

A type definition has the following form: the 
type symbol to be defined appears on the left- 
hand side of the equation. The right-hand side 
is an expression of conjunctions and disjunctions 
of typed feature terms (Figure 1). Conjunctions 
are interpreted as meets on typed feature terms 
(implemented using a typed unification algorithm 
[Emele 91]). The definition may have conditional 
constraints expressed as a logical conjunction of 
feature terms and introduced by ' : - ' .  The right- 
hand side feature term may contain the left- 
hand side type symbol in a subterm (or in the 
condition), thus defining a recursive type equa- 
tion which gives the system the expressive power 
needed to describe complex linguistic structures. 

A subtype inherits all constraints of its super- 
types monotonically: the constraints expressed as 
an expression of feature terms are conjoined using 
unification; the conditions are conjoined using the 
logical and operation. 

i .  4 C h e c k e d  a t  c o m p d e  t i m e .  
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Figure 2: Type  hierarchy for LIST and A P P E N D  (T and .1_ omit ted) .  

A set of type  definitions defines an inheri- 
tance hierarchy of feature terms which specifies 
the available approximations.  Such a hierarchy is 
compiled into a rewrit ing system as follows: each 
direct link between a type  A and a subtype B 
generates a rewrite rule of the form A[a] ~ B[b] 
where [a] and [b] are the definitions of A and B, 
respectively. 

The interpreter  is given a "query" (a feature 
te rm)  to evaluate: this input  te rm is already an 
approximat ion of the final solution, though a very 
rough approximation.  The  idea is to incremen- 
tally add more information to tha t  t e rm using the 
rewri te  rules in order  to get step by step closer 
to the solution: we stop when we have the best 
possible approximation.  

A rewrite step for a te rm t is defined as follows: 
if u is a subterm of t of type A and there exists a 
rewrite rule A[a] ~ B[b] such tha t  A[a] N u ~ _l_, 
the r ight-hand side B[b] is unified with the sub- 

te rm u, giving a new te rm t'  which is more spe- 
cific than  t. This rewri te  step is applied non- 
deterministically everywhere in the te rm until no 
fur ther  rule is applicable 5. Actually, the rewriting 
process stops ei ther when all types are minimal 
types or when all subterms in a te rm correspond 
exactly to some approximat ion defined by a type 
in the hierarchy. A t e rm is "solved" when any sub- 
te rm is either more specific than  the definition of 
a minimal  type,  or does not  give more information 
than the definition of its type.  

This defines an i f  and only if  condition for a 
t e rm to be a solved-form, where any addition of 
information will not  bring anyth ing  new and is 
implemented using a lazy rewriting strategy: the 
application of a rule A[a] ~ B[b] at a subterm u 
is actually tr iggered only when A[a] N u U d[a]. 
This lazy rewrit ing s t ra tegy implements a fully 
data-driven computa t ion  scheme and avoids use- 
less branches of computat ion.  Thus,  there is no 

5Conditions do not change this general scheme and are omitted from the presentation for the sake of simplicity. See 
for example [Dershowitz/Plaisted 88], and [Klop 90] for a survey. 
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Figure 3: Rewrite rules for LIST and A P P E N D .  

need to have a special t r ea tment  to avoid what  cor- 
responds to the evaluation of un-instant ia ted goals 
in PROLOG,  since a general t r ea tmen t  based on 

i 

the semantics oflthe formalism itself is built in the 
evaluation s t ra tegy of the interpreter .  

The choice of which subterm to rewrite is 
only par t ly  driven by the availability of infor- 
mat ion  (using the lazy rewrit ing scheme). When 
there are several subterms that  could be rewrit- 
ten, the computa t ion  rule is to choose the outer- 
most ones (inner-most strategies are usually non- 
terminat ing)  6. Such an outer-most  rewrit ing strat- 
egy has interesting terminat ion properties, since 
there are problems where a TFS program will 
te rminate  when the corresponding PROLOG pro- 
gram will not z. 

For a given subterm , the choice of which rule to 

apply is done non-deterministically,  and the search 
space is explored depth-first using a backtrack- 
ing scheme. This s t ra tegy is not complete, though 
in association with the outer-most  rule and with 
the lazy evaluation scheme, it seems to terminate  
on any "well-defined" problem, i.e. when terms 
introduced by recursive definitions during exe- 
cution are strictly decreasing according to some 
mesure (for example,  see the definition of guides 
in [Dymetman  et al. 90] for the parsing and gener- 
ation problems). A complete breadth-first  search 
s t ra tegy is planned for debugging purposes. 

The interpreter  described above is implemented s 
and has been used to test several models such 
as LFG, HPSG, or DCG on toy examples 
[Emele/Zajac  90b, Emele et al. 90, Zajac 90a]. 

8This outer-mos t rewriting strategy is similar to hyper-resolution in logic programming. The lazy evaluation mech- 
anism is related to the 'freeze' predicate of, e.g. Prolog-II and Sicstus Prolog, though in Prolog, it has to be called 
explicitly. 

7e.g. the problem: of left-recursive rules in naive PROLOG implementations of DCGs 
SA prototype version is publically available. 
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3 P A R S I N G ,  G E N E R A T I O N ,  A N D  BIDI -  
R E C T I O N A L  T R A N S F E R  

3.1 P a r s i n g / g e n e r a t i o n  

A grammar describes the relation between 
strings of words and linguistic structures. In or- 
der to implement a reversible grammar,  we have 
to encode both kinds of structure using the same 
kind of data  structure provided by the TFS lan- 
guage: typed feature structures. A linguistic struc- 
ture will be encoded using features and values, and 
the set of valid linguistic structures has to be de- 
clared explicitly. A string of words will be encoded 
as a list of word forms, using the same kind of def- 
initions as in Figure 1. 

To abolish the distinction between "input" and 
"output",  the relation between a string and a lin- 
guistic structure will be encoded in a single term 
with, for example, two features, s t r i n g  and syn 
and we can call the type of such a structure SIGN 9. 

The type SIGN is divided into several subtypes 
corresponding to different mappings between a 
string and a linguistic structure. We will have at 
least the classifcation bewteen phrases and words. 
The definition of a phrase will recursively relate 
subphrases and substrings, and define the phrase 
as a composition of subphrases and the string 
as the concatenation r of substrings. The formal- 
ism does not impose constraints on how the re- 
lations between phrases and strings are defined, 
and the grammar writer has to define them ex- 
plicitly. One possibility is to use context-free like 
mappings, using for example the same kind of 
encoding as in DCGs for PATR-like gramars or 

tIPSG [Emele/Zajac 90b]. But other possibilities 
are available as well: using a kind of functional 
composition reminiscent of categorial grammars 
as in [Dymetman et al. 90], or linear precedence 
rules [Pollard/Sag 87, Reape 90]. 

For example, a rule like [Shieber 86] l° 

N P  V P  : 
(S head)= (YP  head) 
(S headform) = finite 
(UP syncat f irst)  = (NP) 
(VP syncat rest) -- (end). 

is encoded in TFS using a type S for the sentence 
type with two features np and vp for encoding the 
constituent structure, and similarly for NPs and 
VPs. The string associated with each constituent 
is encoded under the feature s t r i n g .  The string 
associated with the sentence is simply the concate- 
nation of the string associated with the VP and 
the string associated with the NP: this constraint 
is expressed in a condition using the APPEND rela- 
tion on lists (Figure 4). 

The difference between the parsing and the 
generation problem is then only in the form of the 
term given to the interpreter for evaluation. An 
underspecified term where only the string is given 
defines the parsing problem: 

An underspecified term where only the seman- 
tic form is given defines the generation problem: 

9This is of course very reminiscent of HPSG, and it should not come as a surprise: HPSG is so far the only formal 
linguistic theory based on the notion of typed feature structures [Pollard/Sag 87]. A computational formalism similar to 
TFS is currently under design at CMU for implementing HPSG [Carpenter 90, Franz 90]. 

1°Using a more condensed notation for lists with angle brackets provided by the TFS syntax: a list 
CONS[first :  Mary, r e s t :  CONS[first :  s i n g s ,  r e s t :  NIL]] is written as <Mary s ings>.  
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S head: |tran.:/a.g,: .T. R / / /  

L Larg2: CORSWALLJ j j 

is also specified in the condition part, and these 
contrastive definitions are defined separately from 
the lexical definitions. 

In both cases , the same interpreter uses the 
same set of rewrite rules to fill in "missing in- 
formation" according to the grammar definitions. 
The result in both cases is exactly the same: a fully 
specified term containing the string, the semantic 
form, and also all other syntactic information like 
the constituent Structure (Figure 5). 

The transfer problem for one direction or the 
other is stated in the same way as for parsing or 
generation: the input term is an under-specified 
"bilingual sign" where only one structure for one 
language is given. Using the contrastive grammar, 
the interpreter fills in missing information and 
builds a completely specified bilingual sign 11 . 

3.2 B i - d i r e c t i o n a l  t rans fer  in M T  

We have sketrched above a very general frame- 
work for specifying mappings between a linguis- 
tic structure, effcoded as a feature structure and 
a string; also encoded as a feature structure. We 
apply a similar technique for specifying MT trans- 
fer rules, which we prefer to call "contrastive 
rules" since there is no directionality involved 
[Zajac 89, Zajac;90a]. 

The idea is rather simple: assume we are work- 
ing with linguistic structures similar to LFG's 
functional structures for English and French 
[Kaplan et al. 8~]. We define a translation rela- 
tion as a type TAU-LEX with two features, eng for 
the English structure and f r  for the French struc- 
ture. This "bilingual sign" is defined on the lexical 
structure: each shbtype of TAU-LEX defines a lexi- 
cal correspondence between a partial English lexi- 
cal structure and. a partial French lexical structure 
for a given lexical equivalence. Such a lexical con- 
trastive definition also has to pair the arguments 
recursively, and this is expressed in the condition 
part of the definltion (Figure 6). The translation 
of syntactic features, like tense or determination, 

4 T H E  T E R M I N A T I O N  P R O B L E M  A N D  
E F F I C I E N C Y  I S S U E S  

For parsing and generation, since no constraint 
is imposed on the kind of mapping between the 
string and the semantic form, termination has 
to be proved for each class of grammar and 
the for the particular evaluation mechanism used 
for either parsing or generation with this gram- 
mar. If we restrict ourselves to class of grammars 
for which terminating evaluation algorithms are 
known, we can implement those directly in TFS. 
However, the TFS evaluation strategy allows more 
naive implementations of grammars and the outer- 
most evaluation of "sub-goals" terminates on a 
strictly larger class of programs than for corre- 
sponding logic programs implemented in a con- 
ventional PROLOG. Furthermore, the grammar 
writer does not need, and actually should not, be 
aware of the control which follows the shape of the 
input rather than a fixed strategy, thanks to the 
lazy evaluation mechanism. 

tIPSG-style grammars do not cause any prob- 
lem: completeness and coherence as defined 
for LFG, and extended to the general case 

11See also [Reape ',90] for a "Shake'n'Bake" approach to MT (Whitelock). 
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by [Wedekind 88], are implemented in HPSG 
using the "subcategorization feature principle" 
[Johnson 87]. Termination conditions for parsing 
are well understood in the framework of context- 
free grammars.  For generation using feature struc- 
tures, one of the problems is that  the input  could 
be "extended" during processing, i.e. arbitrary 
feature structures could be introduced in the se- 
mant ic  par t  of the input  by unification with the 
semantic part  of a rule. However, if the semantic 
part  of the input  is fully speficied according to a 
set of type definitions describing the set of well- 
formed semantic structures (and this condition is 
easy to check), this cannot arise in a type-based 
system. A more general approach is described in 
[Dymetman et al. 90] who define sufficient prop- 
erties for terminat ion for parsing and generation 
for the class of "Lexical Grammars"  implemented 
in PROLOG.  These properties seem generalizable 
to other classes of grammars  as well, and are also 
applicable to TFS implementations.  The idea is 
relatively simple and says that  for parsing, each 
rule must  consume a non empty  part  of the string, 
and for generation, each rule must  consume a non 
empty  part  of the semantic form. Since Lexical 
Grammars  are implemented in PROLOG,  left- 
recursion must  be eliminated for parsing and for 
generation, but  this does not apply to TFS imple- 
mentat ions.  

Terminat ion for reversible transfer grammars  is 
discussed in [van Noord 90]. One of the problems 
mentioned is the extension of the "input",  as in 
generation, and the answer is similar (see above). 
Itowever, properties similar to the "conservative 
guides" of [Dymetman et al. 90] have to hold in 
order to ensure termination.  

The lazy evaluation mechanism has an al- 
most optimal behavior on the class of prob- 

lems that  have an exponential complexity 
when using the "generate and test" method 
[van Hentenryck/Dincbas 87, A[t-Saci/Meyer 90]. 
It is driven by the availability of information: as 
soon as some piece of information is available, the 
evaluation of constraints in which this information 
appears is triggered. Thus,  the search space is ex- 
plored "intelligently", never following branches of 
computat ion that  would correspond to uninstan- 
ciated PROLOG goals. The lazy evaluation mech- 
anism is not yet fully implemented in the current 
version of TFS,  but with the partial implementa- 
tion we have, a gain of 50% for parsing has already 
been achieved (in comparison with the previous 
implementat ion using only the outer-most rewrit- 
ing strategy). 

The major  drawback of the current implemen- 
tat ion is the lack of an efficient indexing scheme 
for objects. Since the dictionaries are accessed us- 
ing unification only, each entry is tried one after 
the other, leading to an extremely inefficient be- 
havior with large dictionaries. However, we think 
that  a general indexing scheme based on a com- 
bination of methods used in PROLOG implemen- 
tations and in object-oriented database systems is 
feasible. 

C O N C L U S I O N  

We have described a uniform constraint-based 
architecture for the implementat ion of reversible 
unification grammars.  The advantages of this ar- 
chitecture in comparison of more traditional logic 
(i.e. PROLOG) based architectures are: the in- 
p u t / o u t p u t  distinction is truly abolished; the eval- 
uation terminates on a strictly larger class of prob- 
lems; it is directly based on typed feature struc- 
tures, not first order terms; a single fully data- 
driven constraint evaluation scheme is used; the 
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constraint evaluation scheme is directly derived 
from the semantics of typed feature structures. 
Thus, the TFS i language allows a direct imple- 
mentat ion of reyersible unification grammars.  Of 
course, it does not dispense the grammar  designer 
with the proof O f general formal properties that  
any well-behaved grammar  should have, but it 
does allow the g rammar  writer to develop gram- 
mars without  thinking about any notion of control 
or input /output :  distinction. 
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