
Real-Time Generation from

Systemic Grammars

Terry Patten* and Daniel S. Stoops *'~

The Department of Computer and Information Science
The Ohio State University

2036 Neff Ave. Mall, Columbus, Ohio 43210

t AT&T Bell Laboratories
6200 E. Broad St., Columbus, Ohio 43213

Abstract

We present two compilation techniques that, when
combined, enable text to be generated from
systemic grammars in real-time. The first
technique involves representing systemic grammars
as C++ class hierarchies--this allows the
inheritance in the classification hierarchies to be
computed automatically by the C++ compiler at
compile-time. The second technique foUows from
the stratified/renlizational nature of systemic
description that results in a mapping from semantic
/contextual features to the grammar--such a
mapping means that detailed grammatical features
can be inferred directly, without a top-down
traversal of the systemic classification hierarchies.
When the mapping provides the leaf nodes of an
instantiation of the grammar (as might be expected
in routine generation), no traversal of the grammar
is necessary whatsoever, since all the realization
information from higher-level nodes has been
inherited by the leaf nodes at compile-time. In
such cases the text can be output in less than a
second even on relatively slow wolkstatinns; on a
22 MIPS machine the run-time is too small to
measure.

We have developed a framework for real-time sentence
generation that we hope to deploy in future work on real-
time applications. Our emphasis has been on the
compilation of linguistic inference. We would like to be
able to perform generation in real-time even when
making adjustments for the occupation of the user, the
speed of the output device (short texts for slow devices),

whether or not the situation is an emergency, whether the
text is spoken or written, and other situational factors that
may influence linguistic decisions. A prototype
implementation of our framework generates situation-
adjusted clauses in less than a second on relatively slow
workstations, and is too fast to measure on a 22 MIPS
machine. The computational slxategy behind this
framework is twofold: First, we have developed an
object-oriented approach to implementing systemic
grammars where much of the grammatical processing is
done automatically at compile-time by the C++ compiler.
Second, we take advantage of stored (compiled)
associations between situations and linguistic choices.
Furthermore, there is an interesting synergistic
relationship between these two compilation techniques.

We will first present our object-oriented
implementation of systemic grammar, and provide an
example of the grammatical processing. An outline of
our approach to storing situation-to-language associations
will then be provided. Illustrative examples will then be
used to clarify these two ideas. We will then discuss the
relationship between these two computational techniques,
and compare our framework to other approaches to
generation. Finally, some conclusions will be drawn.

An implementation of linguistic classification

Halliday's theory of Systemic Grammar (for a good
introduction see Winograd Chapter 6) is unusual in that
the primary descriptive mechanism is classification. The
classification hierarchies that appear in the linguistic
literature are directly analogous to those found in biology
(for instance).

183

While finguistic clas-
sification alone may be
an interesting theoreti-
cal exercise, for any
practical propose the
grammar must relate
these classes to linguis-
tic structures. Just as
biological classes can
be related to biological
properties (e.g. mam-
mals have hair), lin-
guistic classes can be
related to structural
properties (e.g. declar-
ative clauses have sub-
jects that precede the
verb carrying the
tense). Economy of de-
scription is achieved in
each case because instances of a class are not only attrib-
uted the properties of that class, but also inherit the prop-
erties of all its ancestor classes. In the case of language,
these properties are expressed as constraints on the
structure of the clause, noun phrase, prepositional phrase
or whatever is being classified. These constraints are
called realization rules and typically refer to which
constituents must appear, the order in which the
constituents appear, and so on.

The importance of classification hierarchies in
systemic grammar led us to consider object-oriented
programming as an implementation strategy (for a good
discussion of some object-oriented approaches to repre-
senting linguistic knowledge, as well as a
description of an object-oriented im-
plementation of segment grammar, see]
De Smedt 90). We have chosen to e x - I plore this idea using C++. The proto-
type implementation is called
SLANG++ (a C++ version of the |
Systemic Linguistic Approach to I Natural-lan-
guage DECLARATIVE
Generation).
C++ has two
advantages: of
primary impor-
tance for this
work is that all
inheritance--including
multiple inheritance--is I

ParentSChildren ~ indicative

Realization rules:

computed at compile-
time; an added benefit
is that C++ provides a
low-overhead run-time
envkonment. The ob-
jects that we are con-
cerned with are clauses,
noun phrases and so on,
and each of these cate-
gories has a correspond-
ing classification hierar-
chy. Systemic
grammar's classifica-
tion hierarchies are rep-
resented straightfor-
wardly as hierarchies of
C++ classes. The real-
ization rules associated
with each of the system-
ic classes are represent-

ed in a procedural form to facilitate the inheritance and
construction of the appropriate English structures. After
the grammar has been compiled, a leaf node in the
hierarchy contains a body of code that specifies the
construction of English structures according to all the
realization roles associated with it and its ancestors. As
we will see below, this inheritance can help to avoid
traversing the grammar at run-time.

There are several steps involved in translating a
systemic grammar into C++. Systemic linguists use a
graphical notation that is impractical to use as input, and
putting the grammar on-line is an important first step in
the translation process. To this end we have used

m

INTERROGATIVE
Parents ~ indicative
Children yes/no

wh-
Realization rules:

I a. usB
FINITE

Parents [[~ clause
Children k3_] indicative

imperative
INDICATIVE

Parents ~ finite
Children [gL..J de clarafiy~

i n t e r r o g a t i v e

Figure 2. Simpfified Hypercard representation

Hypercard TM to create a tool that al-
lows a systemic grammar to be en-
tered, browsed, and modified. The
card for each grammatical class shows
the name, parents, children, and real-
ization rules. Using a mouse to select
parents and children, or using the key-
board to type class names, allows the

user to move through
the grammar to quick-
ly find desired infor-
mation. Entering a
new class typically in-
volves adding a child
to an existing card,
moving to the new

card and entering the relevant infor-
mation. The tool will not allow the

184

creation of invalid hierarchies.
The Hypercard representation of the systemic grammar

is then translated, by a simple program, into C++ code.
The hierarchies that were represented as links between
parent cards and child cards are translated into a C++
class definition hierarchy. The (possibly multiple)
inheritance in the grammar is all automatically compiled
by C++ before the generation system is given any input.
This means that the class description for declarative (for
instance) will contain all the realization rules from
indicative,finite and clause as well.

Since inheritance is computed at compile-time, more
work expressed in terms of inheritance means greater
run-time efficiency. If we have a text planner--or some
other higher-level mechanism--that could select the leaf
nodes of the classification hierarchy, then most of the
grammatical processing could be done through
inheritance. That is, most of the choices in the grammar
would be determined by the inheritance, and would not
have to be made explicitly at run-time. The problem is
that the leaf nodes represent the most detailed and
esoteric grammatical classes, which (as Hovy 1985,
argues) should not have to he known by the higher level.
In the next section we will show that this problem can be
solved through the use of knowledge that associates
situation classes with grammatical classes. There is no
reason that such coarse-grained, compiled knowledge
should not associate situations with detailed grammatical
classes or even leaf nodes. In these cases the
computational benefits of compiled inheritance are
remarkable.

Guidance from the Situation

Our primary goal is to achieve the flexibility
of natural-language even in applications
where language must be processed in real
time. In particular, we are interested in cases
where language processing is routine, rather
than the difficult special cases. McDonald,
Meteer and Pustejovsky (1987) analyze the
issue of efficiency in natural-language
generation. They observe that:

"The greater the familiarity a speaker has
with a situation, the more likely he is to
have modeled it in terms of a relatively
small number of situational elements
which can have been already associated
with linguistic counterparts, making
possible the highly efficient 'select and
execute' style of generation" (p. 173).

We are attempting to address the problem of how these
situation-to-language associations can be stored and
accessed in an efficient manner.

Halliday (1973, 1978) shows that the situation or
context (including, to some extent, the information the
speaker wishes to convey) can also be described using
classification hierarchies. He gives an interesting theory
of situation-todanguage associations in his writings on
"register," and some of these ideas have been discussed
in the computational literature (e.g. Patten 1988a, 1988b;
Bateman and Paris 1989). For our present purposes,
however, it is sufficient to observe that detailed
hierarchical classification schemes can be developed for
situations. We represent these Hallidayan situation
hierarchies using object-oriented representations in
exactly the same manner as we represent the grammar.
Situation classes in the hierarchy can be associated with
some number of nodes in the grammatical hierarchy.
Preferably these grammatical classes wiU be near the
bottom of the hierarchy--ideally leaf nodes---because
this will minimize the number of decisions that need to
be made at run-time. The grammatical associations are
prope~es of the situation classes, and are inherited at
compile-time in exactly the same way as the realization
rules in the grammar.

Thus, when a situation class is instantiated, the
grammatical classes associated with it are then
instantiated. The compile-time inheritance in the
grammar ensures that all the relevant realization rules are
already contained in the grammatical nodes--the
grammar does not have to be traversed to locate
realization rules of the ancestors. But the compile-time
inheritance also avoids traversal of the situational
hierarchy by passing associations down the hierarchy.

l i! ii i ili ii i
i i iiii iiiii iii i i! !i!ii i !iiiiii ii !iiiii !i i!iii i iiiiiiiiiiii! ! iiiiii ii i i i i !i i iii !i !i ii iii i iiii iii ii ii ii ii iii Z!i i i ¸

185

The result is a simple and efficient transduction from
situation and meaning to English structures.

Examples

The run-time operation of SLANG++ is best illustrated
through examples. Our first example illustrates the
processing of the grammar. Here we assume that the
input to the system is a set of situational classes. That is,
we assume the existence of a text planner that
can pass sets of situational classes to our
system--these examples are merely intended to
illustrate our approach to realization. Suppose
(following an example from Halliday 1978) the
situation at hand involves a mother and child at
home, and the child is misbehaving. The mother
wants to control the behavior of the child by
threatening to deprive the child of dessert.
Given the situation hierarchy in Figure 4, one
input to SLANG++ is the class deprivation (or
more precisely threat-of-deprivaaon).

Several other situation classes will be input as
well (indicating that they are at home and so on),
but these are handled in exactly the same way as
deprivation. Once deprivation has been chosen,
the situation-to-language knowledge indicates
that the instantiation of several grammatical

classes is in order. The grammatical classes
associated with deprivation include
declarative, benefactive, and negative. Again,
just looking at one of these will suffice. The
representation of the class declarative contains
not only its own realization rules (to have the
subject of the clause precede the finite verb),
but also all the realization rules of all its
ancestors (indicative, finite and clause) that
were inherited at compile-time. Processing
these realization roles to build syntactic
structures is deterministic and inexpensive
(see Patten 1988a, for a detailed description of
this type of realization). Other realization
rules are similarly inferred from other input
situational classes. Thus, in very few steps,
and without any expensive search, SLANG++
computes syntactic structures (or at least
structural constraints) from situational classes
toward the generation of the appropriate threat
(e.g. I am not giving you a dessert).

A second example will illustrate another
important aspect of our approach---compile-
time inheritance in the situation hierarchy.

Sothcott (1985) describes a system that produces simple
plans for building a house, does some text planning, then
provides input to a sentence generator. Suppose the input
is in the form of situational classes describing the
building action and the role of the action in the
construction process: Does it enable other actions? Is it
enabled by the previous actions? Other relevant choices
might include whether or not the addressee is the one
responsible for this action. A simple hierarchy for this

::!i; i':: ii! ili iil;::iii:~!::iiiiiii~!i!!:::/:iiiiiii~!iiiiiii:: !~i!i~ii~i~:i~i~:~,~:~!;~:~!~:iiiiiii~:i~:;~:ii~i~iiii~iii!..~f~̀~:~..:..~iii~!~i~!i~:~::~::i::i~i::i::i::~::i::ii~::
i!i/.!!!iiiiiiiiii!ii!ii!!i!i~ ~!iiii!ii!iii!iiiiiiiiliiii!iiiii!ii!/iiiii!ilili!iiiiiiiii~iiiii?! i iiiiiiiiiiiiii! i: i:!i:i:ii~iiii!ii~i!i::::ii:ili~i:[~ii~ili~iii! i: ~ii!i~iiii:ili!~:i!::!iii::i:
iiiiiiiiiii: i iii: i ii liiiii !il: iiiiiiiiiiii iii iiiiiiiiiiiiii iiiiiiiiii iiiiii:iii i @i ii ili!i iii !iii !ili ii!iiii! ii ili:i:i.iii iiiiii iiiii i!iii iiii

i!iiii iiiiiiiiii iliii i!iiiiiiiii i!!!!:iiiiiiiiii iii:i!ii iiiiiiii :!iii!ii!iiiii:ii!:!:! :i:i :i !ii i i!! ii i!!i!! ~i]iiii a~t~iii!iii!i::ii!!!ii!ilili

186

type of situation is shown in Figure 5. Suppose we want
to describe the step of sanding the floors, which has two
preconditions--the carpentry and painting must both be
completed. Also, suppose we are relating the plan to the
person responsible for sanding and painting. The
following text is generated using a clause for each action:
"If the carpentry has been finished and you've done the
painting, then you can sand the floors."

The generation is well illustrated by the processing
requited for the first clause. Since the carpentry is the
first enabling action, the situational class first-enabling is
input. Since the addressee is not responsible for the
carpentry, the situational class not-addressee-builder is
input (the situation requires addressee-builder for the
other two clauses, resulting in the second-person
subjects). The first step in the generation process is to
instanfiate these situational classes. The point of
processing the situation hierarchy is to determine the
grammatical classes associated with either the input
situation classes or their ancestors. But the associations
of a node's ancestors are all inherited by that node at
compile-time. So, in the case where leaf situational
classes are input, we are left with the much simpler
problem of determining the grammatical classes
associated with the input classes. If we consider the case
of first-enabling, we see that it has inherited an
association with the grammatical class present from its
ancestor enabling, and the class perfective from its
ancestor non-enabled. The tense of the clause is
therefore immediately constrained to be present perfect.
Other situational classes are instanfiated resulting in
further grammatical choices (including the grammatical
class declarative discussed above) that are processed in
the manner described in the previous example. Thus, the
situation hierarchy benefits from compile-time
inheritance just as the grammar does.

Discussion

This approach to generation consists largely of following
explicit pointers into the hierarchies and collecting sets of
realization rules (that have been assembled at compile
time) along the way. Two types of expensive search are
avoided: first, the associative knowledge avoids
searching for the grammatical cla~sses needed to satisfy
situational requirements; second, the compile-time
inheritance avoids traversing the grammar in search of
ancestors and their realization rules. The result is an
extremely efficient yet remarkably simple framework that
follows naturally from combining Halliday's stratified
classification with object-oriented programming.

There is an interesting synergistic relationship between
the situation-linguistic associations and the compile-time
inheritance. On one hand, if no associational knowledge
were available, then there would be no legitimate way to
access nodes near the bottom of the hierarchy, and
inheritance would not be a viable operation. On the other
hand, ff there were no compile-time inheritance, then
either a large portion of the grammar would have to be
built into the associational knowledge, or an expensive
grammar traversal would have to be performed at run-
time. With both techniques working together, we achieve
real-time performance while maintaining the desired
modularity.

Our emphasis on knowledge that links situations to
language has resulted in SLANG++ having much in
common with the MUMBLE generator of McDonald et
al.---each involves mapping from generator input to
preprocessed finguisfic knowledge, and each avoids an
expficit traversal of the grammar. Indeed, although we
use systemic grammar to represent linguistic knowledge,
our system has more in common with MUMBLE than it
does with other systemic generators such as Penman
(Mann & Matthiessen 1983) and Proteus (Davey 1978).
SLANG++ makes an important contribution to
MUMBLE-style generation by demonstrating that
systemic grammar can be processed in this fashion, and
that the classificatory nature of systemic grammar
actually enhances this approach if used in conjunction
with compile-time inheritance.

Thus far we have only considered the case where the
coarse-grained situation-to-language knowledge guides
the generation. In practice, generation will consist of a
combination of coarse-grained and fine-grained
inference, with more coarse-grained inference in more
familiar situations.

"When a situation is relatively unfamiliar, its pattern
of elements will tend not to have any direct mapping
to natural, preconstructed structures. When this
occurs, the mapping will have to be done at a finer
grain, i.e. using the more abstract text properties from
wlfich preconstructed schema are built, and the
process will necessarily require more effort"
(McDonald et al., p. 173).

An important aspect of our object-oriented
implementation is that although grammatical information
is inherited through the grammar, the inhented
information is only copied to lower nodes in the
hierarchy--the information still resides in the higher-
level objects and can be accessed there at run time if
necessary. If a sentence is only partially specified by
situation-to-language knowledge, then fine-grained

187

linguistic knowledge must be invoked for the unresolved
branches of the hierarchy. Decision specialists can be
used to access the necessary information and make a
choice. This technique is used in the Penman system
(e.g. Mann 1985; Mann & Matthiessen 1983) as the
primary strategy for processing systemic grammars. Our
approach using inheritance and situation-linguistic
associations improves efficiency in cases where these
associations are available, but will not hamper fine-
grained reasoning when it is necessary. It should
therefore be possible to combine both kinds of reasoning
(each of which has now been tested on large systemic
grammars) to produce a system that is both efficient and
robust.

Conclusion

We believe that the approach to natural-language
generation that we have described here is of significant
practical importance. Our C++ implementation of
systemic grammar results in remarkable efficiency and
simplicity. Even linguistically-sophisticated text that is
tailored to the specific user and context can be generated
in real-time, as demonstrated by our implementation. In
cases where situation-to-language knowledge completely
determines the text, we can generate appropriate
sentences from a large systemic grammar in an amount of
time that is too small to measure. This opens the door for
natural-language generation in a wide range of time-
critical applications. In cases where the situation-to-
language knowledge does not completely determine the
text, this knowledge can still make a significant
contribution, with existing techniques for top-down
hierarchy traversal able to do any remaining work. We
believe that this surprisingly natural marriage of
programming-language technology and linguistic theory
provides a promising framework for application-oriented
processing of natural language.

References

Bateman, J. A., C. L. Paris, Phrasing a text in terms the
user can understand. In Proceedings of the Eleventh
International Joint Conference on Artificial
Intelligence, 1989, pp. 1511-1517.

Davey, A. Discourse Production. Edinburgh: Edinburgh
University Press, 1978.

De Smedt, K. Incremental sentence generation.
Technical Report 90-01, Nijmegen Institute for
Cognition Research and Information Technology,
1990.

Halliday, M. A. K., Language as Social Semiotic.
London: Edward Arnold, 1978.

Halliday, M. A. K., Explorations in the Functions of
Language. London: Edward Arnold, 1973.

Hovy, E. Integrating text planning and production in
generation. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, 1985, pp.
848--851.

Kempen, G. (ed.), Natural Language Generation.
Dordrecht: Nijhoff, 1987.

Mann, W. C., The anatomy of a systemic choice. In
Discourse Processes 8, 1985, pp. 53-74.

Mann, W., C. Matthiessen, Nigel: a systemic grammar
for text generation. ISI/RR-83-105, 1983.

McDonald, D., M. Meteer (Vaughan), J. Pustejovsky,
Factors Contributing to Efficiency in Natural
Language Generation. In G. Kempen (ed.) op. cit.,
1987, pp. 159-181.

Patten, T., Systemic Text Generation as Problem Solving.
New York: Cambridge University Press, 1988a.

Patten, T., Compiling the interface between text planning
and realization. In Proceedings of the AAAI
Workshop on Text Planning and Realization. 1988b,
pp. 45-54.

Patten, T., G. Ritchie, A Formal Model of Systemic
Grammar. In G. Kempen (ed.) op. cit., 1987, pp.
279-299.

Sothcott, C., EXPLAN: a system for describing plans in
English. M.Sc. dissertation, Dept. of Artificial
Intelfigence, Univeristy of Edinburgh, 1985.

Winograd, T., Language as a Cognitive Process, Vol. 1.
Reading, Mass.: Addison-Wesley, 1983, Chapter 6.

Hypercard is a trademark of Apple Computer
Incorporated.

188

