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Abstract 

We present two compilation techniques that, when 
combined, enable text to be generated from 
systemic grammars in real-time. The first 
technique involves representing systemic grammars 
as C++ class hierarchies--this allows the 
inheritance in the classification hierarchies to be 
computed automatically by the C++ compiler at 
compile-time. The second technique foUows from 
the stratified/renlizational nature of systemic 
description that results in a mapping from semantic 
/contextual features to the grammar--such a 
mapping means that detailed grammatical features 
can be inferred directly, without a top-down 
traversal of the systemic classification hierarchies. 
When the mapping provides the leaf nodes of an 
instantiation of the grammar (as might be expected 
in routine generation), no traversal of the grammar 
is necessary whatsoever, since all the realization 
information from higher-level nodes has been 
inherited by the leaf nodes at compile-time. In 
such cases the text can be output in less than a 
second even on relatively slow wolkstatinns; on a 
22 MIPS machine the run-time is too small to 
measure. 

We have developed a framework for real-time sentence 
generation that we hope to deploy in future work on real- 
time applications. Our emphasis has been on the 
compilation of linguistic inference. We would like to be 
able to perform generation in real-time even when 
making adjustments for the occupation of the user, the 
speed of the output device (short texts for slow devices), 

whether or not the situation is an emergency, whether the 
text is spoken or written, and other situational factors that 
may influence linguistic decisions. A prototype 
implementation of our framework generates situation- 
adjusted clauses in less than a second on relatively slow 
workstations, and is too fast to measure on a 22 MIPS 
machine. The computational slxategy behind this 
framework is twofold: First, we have developed an 
object-oriented approach to implementing systemic 
grammars where much of the grammatical processing is 
done automatically at compile-time by the C++ compiler. 
Second, we take advantage of stored (compiled) 
associations between situations and linguistic choices. 
Furthermore, there is an interesting synergistic 
relationship between these two compilation techniques. 

We will first present our object-oriented 
implementation of systemic grammar, and provide an 
example of the grammatical processing. An outline of 
our approach to storing situation-to-language associations 
will then be provided. Illustrative examples will then be 
used to clarify these two ideas. We will then discuss the 
relationship between these two computational techniques, 
and compare our framework to other approaches to 
generation. Finally, some conclusions will be drawn. 

An implementation of linguistic classification 

Halliday's theory of Systemic Grammar (for a good 
introduction see Winograd Chapter 6) is unusual in that 
the primary descriptive mechanism is classification. The 
classification hierarchies that appear in the linguistic 
literature are directly analogous to those found in biology 
(for instance). 
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While finguistic clas- 
sification alone may be 
an interesting theoreti- 
cal exercise, for any 
practical propose the 
grammar must relate 
these classes to linguis- 
tic structures. Just as 
biological classes can 
be related to biological 
properties (e.g. mam- 
mals have hair), lin- 
guistic classes can be 
related to structural 
properties (e.g. declar- 
ative clauses have sub- 
jects that precede the 
verb carrying the 
tense). Economy of de- 
scription is achieved in 
each case because instances of a class are not only attrib- 
uted the properties of that class, but also inherit the prop- 
erties of all its ancestor classes. In the case of language, 
these properties are expressed as constraints on the 
structure of the clause, noun phrase, prepositional phrase 
or whatever is being classified. These constraints are 
called realization rules and typically refer to which 
constituents must appear, the order in which the 
constituents appear, and so on. 

The importance of classification hierarchies in 
systemic grammar led us to consider object-oriented 
programming as an implementation strategy (for a good 
discussion of some object-oriented approaches to repre- 
senting linguistic knowledge, as well as a 
description of an object-oriented im- 
plementation of segment grammar, see ] 
De Smedt 90). We have chosen to e x -  I plore this idea using C++. The proto- 
type implementation is called 
SLANG++ (a C++ version of the | 
Systemic Linguistic Approach to I Natural-lan- 
guage DECLARATIVE 
Generation). 
C++ has two 
advantages: of 
primary impor- 
tance for this 
work is that all 
inheritance--including 
multiple inheritance--is I 

ParentSChildren ~ indicative 

Realization rules: 

computed at compile- 
time; an added benefit 
is that C++ provides a 
low-overhead run-time 
envkonment. The ob- 
jects that we are con- 
cerned with are clauses, 
noun phrases and so on, 
and each of these cate- 
gories has a correspond- 
ing classification hierar- 
chy. Systemic 
grammar's classifica- 
tion hierarchies are rep- 
resented straightfor- 
wardly as hierarchies of 
C++ classes. The real- 
ization rules associated 
with each of the system- 
ic classes are represent- 

ed in a procedural form to facilitate the inheritance and 
construction of the appropriate English structures. After 
the grammar has been compiled, a leaf node in the 
hierarchy contains a body of code that specifies the 
construction of English structures according to all the 
realization roles associated with it and its ancestors. As 
we will see below, this inheritance can help to avoid 
traversing the grammar at run-time. 

There are several steps involved in translating a 
systemic grammar into C++. Systemic linguists use a 
graphical notation that is impractical to use as input, and 
putting the grammar on-line is an important first step in 
the translation process. To this end we have used 

m 

INTERROGATIVE 
Parents ~ indicative 
Children yes/no 

wh- 
Realization rules: 

I a. usB 
FINITE 

Parents [ [ ~  clause 
Children k3_] indicative 

imperative 
INDICATIVE 

Parents ~ finite 
Children [gL..J de clarafiy~ 

i n t e r r o g a t i v e  

Figure 2. Simpfified Hypercard representation 

Hypercard TM to create a tool that al- 
lows a systemic grammar to be en- 
tered, browsed, and modified. The 
card for each grammatical class shows 
the name, parents, children, and real- 
ization rules. Using a mouse to select 
parents and children, or using the key- 
board to type class names, allows the 

user to move through 
the grammar to quick- 
ly find desired infor- 
mation. Entering a 
new class typically in- 
volves adding a child 
to an existing card, 
moving to the new 

card and entering the relevant infor- 
mation. The tool will not allow the 
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creation of invalid hierarchies. 
The Hypercard representation of the systemic grammar 

is then translated, by a simple program, into C++ code. 
The hierarchies that were represented as links between 
parent cards and child cards are translated into a C++ 
class definition hierarchy. The (possibly multiple) 
inheritance in the grammar is all automatically compiled 
by C++ before the generation system is given any input. 
This means that the class description for declarative (for 
instance) will contain all the realization rules from 
indicative,finite and clause as well. 

Since inheritance is computed at compile-time, more 
work expressed in terms of inheritance means greater 
run-time efficiency. If we have a text planner--or some 
other higher-level mechanism--that could select the leaf 
nodes of the classification hierarchy, then most of the 
grammatical processing could be done through 
inheritance. That is, most of the choices in the grammar 
would be determined by the inheritance, and would not 
have to be made explicitly at run-time. The problem is 
that the leaf nodes represent the most detailed and 
esoteric grammatical classes, which (as Hovy 1985, 
argues) should not have to he known by the higher level. 
In the next section we will show that this problem can be 
solved through the use of knowledge that associates 
situation classes with grammatical classes. There is no 
reason that such coarse-grained, compiled knowledge 
should not associate situations with detailed grammatical 
classes or even leaf nodes. In these cases the 
computational benefits of compiled inheritance are 
remarkable. 

Guidance from the Situation 

Our primary goal is to achieve the flexibility 
of natural-language even in applications 
where language must be processed in real 
time. In particular, we are interested in cases 
where language processing is routine, rather 
than the difficult special cases. McDonald, 
Meteer and Pustejovsky (1987) analyze the 
issue of efficiency in natural-language 
generation. They observe that: 

"The greater the familiarity a speaker has 
with a situation, the more likely he is to 
have modeled it in terms of a relatively 
small number of situational elements 
which can have been already associated 
with linguistic counterparts, making 
possible the highly efficient 'select and 
execute' style of generation" (p. 173). 

We are attempting to address the problem of how these 
situation-to-language associations can be stored and 
accessed in an efficient manner. 

Halliday (1973, 1978) shows that the situation or 
context (including, to some extent, the information the 
speaker wishes to convey) can also be described using 
classification hierarchies. He gives an interesting theory 
of situation-todanguage associations in his writings on 
"register," and some of these ideas have been discussed 
in the computational literature (e.g. Patten 1988a, 1988b; 
Bateman and Paris 1989). For our present purposes, 
however, it is sufficient to observe that detailed 
hierarchical classification schemes can be developed for 
situations. We represent these Hallidayan situation 
hierarchies using object-oriented representations in 
exactly the same manner as we represent the grammar. 
Situation classes in the hierarchy can be associated with 
some number of nodes in the grammatical hierarchy. 
Preferably these grammatical classes wiU be near the 
bottom of the hierarchy--ideally leaf nodes---because 
this will minimize the number of decisions that need to 
be made at run-time. The grammatical associations are 
prope~es of the situation classes, and are inherited at 
compile-time in exactly the same way as the realization 
rules in the grammar. 

Thus, when a situation class is instantiated, the 
grammatical classes associated with it are then 
instantiated. The compile-time inheritance in the 
grammar ensures that all the relevant realization rules are 
already contained in the grammatical nodes--the 
grammar does not have to be traversed to locate 
realization rules of the ancestors. But the compile-time 
inheritance also avoids traversal of the situational 
hierarchy by passing associations down the hierarchy. 

l i! ii i ili ii i 
i i iiii iiiii iii i  i! !i!ii i !iiiiii  ii !iiiii  !i i!iii  i iiiiiiiiiiii! ! iiiiii  ii          i  i i  i  !i i iii  !i  !i  ii    iii i   iiii iii  ii  ii ii ii iii Z!i i     i ¸ 
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The result is a simple and efficient transduction from 
situation and meaning to English structures. 

Examples 

The run-time operation of SLANG++ is best illustrated 
through examples. Our first example illustrates the 
processing of the grammar. Here we assume that the 
input to the system is a set of situational classes. That is, 
we assume the existence of a text planner that 
can pass sets of situational classes to our 
system--these examples are merely intended to 
illustrate our approach to realization. Suppose 
(following an example from Halliday 1978) the 
situation at hand involves a mother and child at 
home, and the child is misbehaving. The mother 
wants to control the behavior of the child by 
threatening to deprive the child of dessert. 
Given the situation hierarchy in Figure 4, one 
input to SLANG++ is the class deprivation (or 
more precisely threat-of-deprivaaon). 

Several other situation classes will be input as 
well (indicating that they are at home and so on), 
but these are handled in exactly the same way as 
deprivation. Once deprivation has been chosen, 
the situation-to-language knowledge indicates 
that the instantiation of several grammatical 

classes is in order. The grammatical classes 
associated with deprivation include 
declarative, benefactive, and negative. Again, 
just looking at one of these will suffice. The 
representation of the class declarative contains 
not only its own realization rules (to have the 
subject of the clause precede the finite verb), 
but also all the realization rules of all its 
ancestors (indicative, finite and clause) that 
were inherited at compile-time. Processing 
these realization roles to build syntactic 
structures is deterministic and inexpensive 
(see Patten 1988a, for a detailed description of 
this type of realization). Other realization 
rules are similarly inferred from other input 
situational classes. Thus, in very few steps, 
and without any expensive search, SLANG++ 
computes syntactic structures (or at least 
structural constraints) from situational classes 
toward the generation of the appropriate threat 
(e.g. I am not giving you a dessert). 

A second example will illustrate another 
important aspect of our approach---compile- 
time inheritance in the situation hierarchy. 

Sothcott (1985) describes a system that produces simple 
plans for building a house, does some text planning, then 
provides input to a sentence generator. Suppose the input 
is in the form of situational classes describing the 
building action and the role of the action in the 
construction process: Does it enable other actions? Is it 
enabled by the previous actions? Other relevant choices 
might include whether or not the addressee is the one 
responsible for this action. A simple hierarchy for this 

::!i; i':: ii! ili iil;::iii:~!::iiiiiii~!i!!:::/:iiiiiii~!iiiiiii:: !~i!i~ii~i~:i~i~:~,~:~!;~:~!~:iiiiiii~:i~:;~:ii~i~iiii~iii!..~f~̀~:~..:..~iii~!~i~!i~:~::~::i::i~i::i::i::~::i::ii~:: 
i!i/.!!!iiiiiiiiii!ii!ii!!i!i~ ~!iiii!ii!iii!iiiiiiiiliiii!iiiii!ii!/iiiii!ilili!iiiiiiiii~iiiii?! i iiiiiiiiiiiiii! i: i:!i:i:ii~iiii!ii~i!i::::ii:ili~i:[~ii~ili~iii! i: ~ii!i~iiii:ili!~:i!::!iii::i: 
iiiiiiiiiii: i iii: i ii liiiii !il: iiiiiiiiiiii iii iiiiiiiiiiiiii iiiiiiiiii iiiiii:iii i  @i  ii ili!i iii !iii  !ili ii!iiii! ii  ili:i:i.iii iiiiii iiiii i!iii iiii 

i!iiii iiiiiiiiii iliii i!iiiiiiiii i!!!!:iiiiiiiiii iii:i!ii iiiiiiii :!iii!ii!iiiii:ii!:!:! :i:i :i !ii i i!! ii i!!i!! ~i]iiii a~t~iii!iii!i::ii!!!ii!ilili 
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type of situation is shown in Figure 5. Suppose we want 
to describe the step of sanding the floors, which has two 
preconditions--the carpentry and painting must both be 
completed. Also, suppose we are relating the plan to the 
person responsible for sanding and painting. The 
following text is generated using a clause for each action: 
"If the carpentry has been finished and you've done the 
painting, then you can sand the floors." 

The generation is well illustrated by the processing 
requited for the first clause. Since the carpentry is the 
first enabling action, the situational class first-enabling is 
input. Since the addressee is not responsible for the 
carpentry, the situational class not-addressee-builder is 
input (the situation requires addressee-builder for the 
other two clauses, resulting in the second-person 
subjects). The first step in the generation process is to 
instanfiate these situational classes. The point of 
processing the situation hierarchy is to determine the 
grammatical classes associated with either the input 
situation classes or their ancestors. But the associations 
of a node's ancestors are all inherited by that node at 
compile-time. So, in the case where leaf situational 
classes are input, we are left with the much simpler 
problem of determining the grammatical classes 
associated with the input classes. If we consider the case 
of first-enabling, we see that it has inherited an 
association with the grammatical class present from its 
ancestor enabling, and the class perfective from its 
ancestor non-enabled. The tense of the clause is 
therefore immediately constrained to be present perfect. 
Other situational classes are instanfiated resulting in 
further grammatical choices (including the grammatical 
class declarative discussed above) that are processed in 
the manner described in the previous example. Thus, the 
situation hierarchy benefits from compile-time 
inheritance just as the grammar does. 

Discussion 

This approach to generation consists largely of following 
explicit pointers into the hierarchies and collecting sets of 
realization rules (that have been assembled at compile 
time) along the way. Two types of expensive search are 
avoided: first, the associative knowledge avoids 
searching for the grammatical cla~sses needed to satisfy 
situational requirements; second, the compile-time 
inheritance avoids traversing the grammar in search of 
ancestors and their realization rules. The result is an 
extremely efficient yet remarkably simple framework that 
follows naturally from combining Halliday's stratified 
classification with object-oriented programming. 

There is an interesting synergistic relationship between 
the situation-linguistic associations and the compile-time 
inheritance. On one hand, if no associational knowledge 
were available, then there would be no legitimate way to 
access nodes near the bottom of the hierarchy, and 
inheritance would not be a viable operation. On the other 
hand, ff there were no compile-time inheritance, then 
either a large portion of the grammar would have to be 
built into the associational knowledge, or an expensive 
grammar traversal would have to be performed at run- 
time. With both techniques working together, we achieve 
real-time performance while maintaining the desired 
modularity. 

Our emphasis on knowledge that links situations to 
language has resulted in SLANG++ having much in 
common with the MUMBLE generator of McDonald et 
al.---each involves mapping from generator input to 
preprocessed finguisfic knowledge, and each avoids an 
expficit traversal of the grammar. Indeed, although we 
use systemic grammar to represent linguistic knowledge, 
our system has more in common with MUMBLE than it 
does with other systemic generators such as Penman 
(Mann & Matthiessen 1983) and Proteus (Davey 1978). 
SLANG++ makes an important contribution to 
MUMBLE-style generation by demonstrating that 
systemic grammar can be processed in this fashion, and 
that the classificatory nature of systemic grammar 
actually enhances this approach if used in conjunction 
with compile-time inheritance. 

Thus far we have only considered the case where the 
coarse-grained situation-to-language knowledge guides 
the generation. In practice, generation will consist of a 
combination of coarse-grained and fine-grained 
inference, with more coarse-grained inference in more 
familiar situations. 

"When a situation is relatively unfamiliar, its pattern 
of elements will tend not to have any direct mapping 
to natural, preconstructed structures. When this 
occurs, the mapping will have to be done at a finer 
grain, i.e. using the more abstract text properties from 
wlfich preconstructed schema are built, and the 
process will necessarily require more effort" 
(McDonald et al., p. 173). 

An important aspect of our object-oriented 
implementation is that although grammatical information 
is inherited through the grammar, the inhented 
information is only copied to lower nodes in the 
hierarchy--the information still resides in the higher- 
level objects and can be accessed there at run time if 
necessary. If a sentence is only partially specified by 
situation-to-language knowledge, then fine-grained 
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linguistic knowledge must be invoked for the unresolved 
branches of the hierarchy. Decision specialists can be 
used to access the necessary information and make a 
choice. This technique is used in the Penman system 
(e.g. Mann 1985; Mann & Matthiessen 1983) as the 
primary strategy for processing systemic grammars. Our 
approach using inheritance and situation-linguistic 
associations improves efficiency in cases where these 
associations are available, but will not hamper fine- 
grained reasoning when it is necessary. It should 
therefore be possible to combine both kinds of reasoning 
(each of which has now been tested on large systemic 
grammars) to produce a system that is both efficient and 
robust. 

Conclusion 

We believe that the approach to natural-language 
generation that we have described here is of significant 
practical importance. Our C++ implementation of 
systemic grammar results in remarkable efficiency and 
simplicity. Even linguistically-sophisticated text that is 
tailored to the specific user and context can be generated 
in real-time, as demonstrated by our implementation. In 
cases where situation-to-language knowledge completely 
determines the text, we can generate appropriate 
sentences from a large systemic grammar in an amount of 
time that is too small to measure. This opens the door for 
natural-language generation in a wide range of time- 
critical applications. In cases where the situation-to- 
language knowledge does not completely determine the 
text, this knowledge can still make a significant 
contribution, with existing techniques for top-down 
hierarchy traversal able to do any remaining work. We 
believe that this surprisingly natural marriage of 
programming-language technology and linguistic theory 
provides a promising framework for application-oriented 
processing of natural language. 
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