
R e s o l v i n g P l a n A m b i g u i t y for R e s p o n s e G e n e r a t i o n

Peter van Beek and Robin Cohen
Depar tment of Computer Science

University of Waterloo
Waterloo, Ontario

CANADA N2L 3G1

A b s t r a c t
Recognizing the plan underlying a query aids in the
generation of an appropriate response. In this paper,
we address the problem of how to generate coopera-
tive responses when the user's plan is ambiguous. We
show that it is not always necessary to resolve the
ambiguity, and provide a procedure that estimates
whether the ambiguity matters to the task of formu-
lating a response. If the ambiguity does matter, we
propose to resolve the ambiguity by entering into a
clarification dialogue with the user and provide a pro-
cedure that performs this task. Together, these pro-
cedures allow a question-answering system to take
advantage of the interactive and collaborative nature
of dialogue in recognizing plans and resolving ambi-
guity.

Introduction
Somewhat obviously, plan recognition is the process
of inferring an agent's plan from observation of the
agent 's actions. The agent's actions can be physical
actions or speech actions. Four principal methods
for plan recognition have been proposed in the
literature. The methods are plausible inference
(Allen [1], Carberry [2], Litman [15], Sidner [25]),
parsing (Huff and Lesser [9]), circumscribing a
hierarchical representat ion of plans and using deduc-
tion (Kautz [12, 13]), and abduction (Charniak and
McDermot t [6], Konolige and Pollack [14], Poole
[24]).

Our particular interest is in the use of plan recog-
nition in question-answering systems, where recog-
nizing the plan underlying a user's queries aids in the
generation of an appropriate response. Here, the
plans and goals of the user, once recognized, have
been used to: supply more information than is expli-
citly requested (Allen [1], Luria [16]), handle prag-
matically ill-formed queries and resolve some inter-
sentential ellipses (Carberry [2, 3, 4]), provide an
explanation from the appropriate perspective
(McKeown et hi. [17]), respond to queries that result
from an invalid plan (Pollack [20, 21, 22]), and avoid
misleading responses and produce user-specific
cooperative responses (Joshi et a]. [10, 11], van Beck
and Cohen [26, 27], Cohen et al. [7]).

E x a m p l e 1 (Joshi et al. [11]). As an example of
a cooperative response consider the following
exchange between student and student-advisor sys-
tem. The plan of the student is to avoid failing the

course by dropping it.

User: Can I drop numerical analysis?
System: Yes, however you will still fail the course

since your mark will be recorded as with-
drawal while failing.

If the system just gives the direct answer, "Yes" the
student will remain unaware tha t the plan is faulty.
The more cooperative answer warns the student.

An important weakness of this work in response
generation, however, is the reliance on a plan recog-
nition component being able to uniquely determine
the plan of the user. This is clearly too strong an
assumption as the user's actions often will be con-
sistent with more than one plan, especially after only
one or a few utterances when there is insufficient
context to help decide the plan of the user. In
Example 1 there are many reasons why a student
may want to drop a course, such as resolving a
scheduling conflict, avoiding failing the course, or
finding the material uninteresting. There may be no
reason to prefer one alternative over the other, yet
we may still want to generate a response tha t does
more than just give a direct answer to the user's
query.

In this paper, we address the problem of what the
system should do when the user's actions are ambi-
guous as they are consistent with more than one
plan. To the extent tha t this problem has been con-
sidered by researchers in plan recognition, it is gen-
erally assumed that the plan recognition system
overcomes the ambiguity problem by inferring the
most likely interpretat ion, given its assessment of the
context and dialogue so far and knowledge of typical
plans of action. Thus there is a dependence on sali-
ence heuristics to solve the ambiguity problem [e.g.
1, 2, 17, and see the final section]. Existing propo-
sals for resolving ambiguity beyond heuristics are
underspecified and what usually underlies these pro-
posals is the assumption that we a lways want to
determine one unique plan [2, 15, 19, 25].

We show how to relax the assumption that the
plan recognition component returns a single plan.
Tha t is, given that the result of the plan recognition
phase will usually be a disjunction of possible plans,
we show how to design a response component to
generate cooperative responses given the disjunction.
We show tha t it is not always necessary to resolve
ambiguity, and provide a procedure tha t allows the

144

response component to estimate whether the ambi-
guity matters to the task of formulating a response.
If the ambiguity does not matter, the response com-
ponent can continue to answer the user's queries and
ignore the ambiguity in the underlying goals and
plan until fur ther queries help clarify which plan the
user is pursuing. If the ambiguity does matter, the
system should take advantage of the interactive and
collaborative nature of dialogue in recognizing plans
and resolving ambiguity. A key contribution of this
work therefore is providing a clear criterion for
when to respond to a question with a question that
will differentiate between some of the possibilities.
We also propose a specific solution to what questions
should then be asked of the user. Moreover, these
questions are asked only to resolve the ambiguity to
the point where it no longer matters (this is not
necessarily to a unique plan).

E x a m p l e 2. Here are two different examples to
give a flavor of what we are proposing. There are
two agents: a cook and an expert who is cooperative,
helpful, and adept at recognizing plans. The expert
observes the cook making marinara sauce and recog-
nizes the cook could be pursuing three possible
plans, all with the same top level goal of preparing a
meal: make fettucini marinara or spaghetti marinara
(both a pasta dish) or chicken marinara (a meat
dish).

a. Suppose the cook then asks the expert: "Is a red
wine a good choice?" The expert has the criteria for
wine selection that red wine should be served if the
meal is chicken, fettucini marinara, or spaghetti
marinara and white if fettucini alfredo. There is
enough information for the expert to decide that red
wine should be bought and the ambiguity does not
need to be resolved to cooperatively answer the
question.

b. Now suppose the expert also knows that the
guest of honor is allergic to gluten and so would not
be able to eat if a pasta dish was served. Here the
ambiguity is important as the expert has recognized
that the cook's prepare-a-meal goal may conflict
with the cook's entertain-important-guest goal. The
expert will want to resolve the ambiguity enough to
he assured that the proposed meal does not include a
pasta dish and so clarifies this with the cook.

E s t i m a t i n g W h e t h e r the
A m b i g u i t y M a t t e r s

Example 2, above, showed that sometimes it is
necessary to resolve ambiguity and sometimes it is
not. Here we give criteria for judging which is the
case. The result is a procedure that allows the
response component to estimate whether the ambi-
guity matters to the task of formulating a response.

Assuming we can answer the user's query, deciding
when we want to give more than just a direct
answer to the user's query depends on the plan of
the user. Previous work has identified several kinds

of faults in a plan that a cooperative response should
warn a user about. We generalize this work in iden-
tifying faults and call it plan critiquing. Our propo-
sal therefore is to first apply a plan critiquing pro-
cedure to determine possible faults.

Plan Critiquing
A plan may be labeled as faulty if it will fail to
achieve its high level goal (e.g. Allen [1]) or if there
are simply be t te r alternatives for reaching that goal
(e.g. Pollack [20]). Joshi et al. [10, 11] formalize the
above and identify additional cases (such as warning
the user tha t a certain plan is the only way to
achieve a goal).

In [26, 27], we make some extensions to Joshi et al.
[10, 11] and give a procedure to determine faults in
plans and to address these faults through coopera-
tive responses. Faults include both plans which fail
and plans which can be replaced by bet ter alterna-
tives. In [26, 27], we also include the critical exten-
sion of domain goals. T o explain, the system needs
to not only respond to goals inferred from the
current discourse but also to the domain goals a user
is likely to have or known to have even though they
are not stated in, or derivable from, the discourse.

Example 3.
User: I 'm not interested in the material and so

would like to drop the course. Can I?
The ideal response should say more than just "Yes",
but also warn the s tudent tha t the domain goal of
achieving a degree conflicts with the immediate goal
of dropping the course. This example shows how
competing goals may exist and need to be addressed
in a response.

To determine whether the ambiguity matters, we
propose to apply an extension of the procedure of
[26, 27], which will be sensitive to complementary
goals as well. The standard assumption in coopera-
tive response work is tha t the user is pursuing only a
single chain of goals; we allow actions to be used to
achieve more than one complementary goal. For
example, in the course-advising domain we can
assume that all users have the goal to avoid failing a
course. If a user then asks "I 'm not interested in the
course and so would like to drop it. Can I?" the
response should address not just the goal of avoiding
uninteresting courses but also the complementary
goal of avoiding failing courses. For example, the
response should warn the user if he will fail the
course because of withdrawal while failing (as in
Example I).

The algorithm to estimate whether the ambiguity
matters is below. The deciding criterion is whether
the critiques for all plans are the same. By same cri-
tique or same fault (Case 1. b. in the algorithm) we
mean, for example, same bet ter way or same conflict
with competing domain goal.

145

Input: A set of possible plans (the output from a
plan recognition algorithm).

Output: The set of possible plans with critiques
a t tached to each plan.

Algorithm Critique:
begin

for each plan in the set of possible plans do
critique the plan and, if there is a fault, anno-
ta te the plan with the fault

Input: A set of critiqued possible plans.
Output: "Yes", the ambigui ty mat ters , or " N o "

the ambigui ty does not mat te r .

Algorithm Ambiguity_matters:
We are in one of the following two cases:

Case 1. "No", the ambiguity does not matter.
The critiques are the same for all the plans. T h a t
is, either
a. every plan is faultless, or
b. every plan is annota ted with the same fault.

Case 2. "Yes", the ambiguity does matter .
The critiques are different for some or all of the
plans. T h a t is, either
a. some, but not all, of the plans are faultless (the

faults may or may not be the same), or
b. every plan is annota ted with a fault and the

faults are not all the same.
end

A n E x a m p l e t o I l l u s t r a t e t h e P r o p o s a l
Suppose the user asks "Can I drop numerical
analysis?". First, a plan recognition algorithm is
called to determine the possible plans of the user.
They are found to be:

end ~ resolve schedule conflict --~ drop course
end ~ avoid uninterest ing prof --~ drop course

Second, algori thm Critique is called to critique the
plans. As a result, both plans are labeled with the
same fault tha t there is a be t ter plan for achieving
the goal. Third, Mgorithm Ambiguity_matter8 is
called to determine whether the ambigui ty regarding
the plan of the user mat te rs to the task of formulat-
ing a response. I t is found tha t the ambigui ty does
not ma t t e r as both plans are annota ted with the
same fault (Case 1.b of the algorithm). Finally, the
critiqued plans are passed to a response generation
procedure. The answer then given in this example
is, "Yes, but a be t te r way is to switch to another
section."

In general, in (Case 1.a) a response generation pro-
cedure can just give a direct answer to the user 's
query, and in (Case 1.b) can give a direct answer
plus any war ran ted additional information, such as
telling the user about the fault.

In the above example it was found tha t the ambi-
guity did not ma t t e r as there was enough informa-
tion to generate a cooperative response. If instead it
was found tha t the ambigui ty did ma t t e r (Case 2 of
the algorithm) we propose tha t we we enter into a
clarification dialogue with the user to resolve the
ambiguity to the point where it no longer does
mat ter . T h a t is, until we are in Case 1. A response
generation procedure would then be called.

C l a r i f i c a t i o n D i a l o g u e s :
Q u e s t i o n s in R e s p o n s e t o Q u e s t i o n s

What should we ask the user when a clarification is
necessary? Clearly, we do not want to simply list
the set of possible plans and ask which is being pur-
sued. Below is an algori thm tha t determines what to
say. Our algori thm for est imating whether the
ambigui ty mat te rs is not dependent on the method
of plan recognition used. Now our proposal for cla-
rification dialogues is tied to a hierarchical plan
l ibrary in the style of Kau tz [12]. The input to the
algorithm is a set of possible plans where the user 's
action is related to top-level or end goals through
chMns of goals. Each plan in the set is annota ted
with a a critique. The key idea is to ask about the
highest level possible, check whether the ambiguity
still needs to be fur ther resolved, and if so, ask at
the next level down, iteratively, through the hierar-
chy of goals.

Input: A set of critiqued possible plans (the out-
put f rom Mgorithm Critique).

Output: The pruned set of possible plans such tha t
the ambigui ty no longer matters .

Algorithm Clarify:
begin

initiMize the current level to be the first branch
point f rom the top in the set of possible plans

while Ambiguity_matter8 = "Yes" do

separate out the distinct goals in the set of
remaining possible plans tha t are one level
below the current level and are annota ted with
a fault

list the goals (perhaps with their accompanying
annotat ions as justification for why we are ask-
ing) and ask the user whether one of them is
pa r t of the plan being pursued

according to the answer, remove the plans tha t
are not being pursued f rom the set of possible
plans and update the current level in the hierar-
chy tha t is being looked at to be the next
branch point

end whi l e
end

146

next query

. ~
- I f" 1

I I I

'l' H res°lve H4" generate ' i 1. generate 2. resolve i
i candidate ambiguity w. ' I I ambiguity response I

"i---'i with user i plans heuristics i
I I

I Plan Recognition Component i i Response Generat ion Component i
L J L. J

Fig. 1. Major modules of our proposed query-answering system

E x a m p l e 2b (Revisited). In our story in the
introduction about cooking for our allergic guest the
expert has recognized the following three plans:

1. end ~ prepare meal ~ make meat dish ~ make
chicken marinara ~ make marinara

2. end ~ prepare meal ~ make pasta dish ~ make
fettucini marinara ~ make marinara

3. end ~ prepare meal ~ make pasta dish ~ make
spaghetti marinara ~ make marinara

Using the algorithm of the previous section, the
three plans are critiqued and it is found that the
ambiguity matters. The plan involving a meat dish
is found to be faultless but the two plans involving a
pasta dish are found to conflict with another goal of
the cook: to entertain the guest. Using the algo-
r i thm of this section, the question asked to resolve
the ambiguity would be "Are you making a pasta
dish (perhaps with justification of why we are ask-
ing)?" After either answer of yes or no we know
enough that the ambiguity no longer matters. Note
that if we just ask the more general "What are you
making?" this allows such uninformative responses as
"dinner" or just "you'll see".

When asking a question we propose to ask about
as high a level of goal as possible tha t still helps to
resolve the ambiguity and to work top down. A top
down approach is bet ter as it provides a useful con-
text for any later queries and makes users give us an
answer at a higher level than they may otherwise do.
Moreover, the user may be mistaken about decompo-
sitions or have some other wrong view of the domain
and by stepping downward through the paths of pos-
sible plans these misconceptions may be detected.
Here is an example. Suppose the user asks "Can I
take numerical analysis?". The system recognizes
two plans.

end ~ get_degree ~ B.A. ~ electives ~ course
end ~ get_degree ~ B.Sc. ~ required ~ course

a. System: Are you pursuing a B.Sc.?
b. System: Are you trying to fulfill your elected or

required courses?

Question (a) is what our algorithm would ask. Ques-
tion (b) is what a procedure which uses a bot tom up

approach would ask. But (b) allows potential confu-
sion to go undetected. The user could answer
"required", believing that the course is required for
a B.A., for example. Thus, we advocate Kautz style
plan recognition [12], as other plan recognition
methods [2, 15, 25] would stop after branch points
points and thus could only propose electives and
required as the two possible plans. Question (b) is
the only question this previous work could ask the
user.

Starting with the top most goals and working
down may sometimes give as many questions as bot-
tom up approaches. However, others have noted
that bot tom up dialogues are difficult to assimilate
without misinterpretation [2, p. 54]. Therefore, we
maintain that the top down approach is more desir-
able. Moreover, some higher level questions, such as
question (a), above, can be eliminated using goals
known from the previous discourse or background
knowledge about the user.

Current extensions we are examining include
allowing the user to have multiple goals so that more
than one path from top level goals to action may be
correct. This requires resolving ambiguity in multi-
ple paths through the set of possible plans. This
could be done in a depth-first manner, using clue or
redirection words to guide the user when we return
to resolve the ambiguity in the other branches. We
are also investigating selecting the minimal subset of
the possible plans from those with faults and those
without faults (at the moment the algorithm always
takes the subset with faults).

D i s c u s s i o n a n d C o n c l u s i o n
In this section we summarize our proposals and
defend our position that this straightforward way of
doing things is a good way. With reference to Fig.
1, we discuss the design of boxes 2, 3, and 4 and the
tradeoffs involved between boxes 2 and 3.

B o x 2: Resolve the ambiguity with heuris-
tics. As mentioned earlier, many researchers have
proposed heuristics to prefer one plan over another
[1, 2, 17, 8, 18, 12, 23, 14]. Some of these heuristics
can be incompatible with cooperative response

147

generation. For example, Allen's [1] preference
heuristics are generally incompatible with recogniz-
ing and responding to faulty plans (such as the
response in Example 1). Because we are using plan
recognition for response generation, this should
affect the design of Box 2 and therefore what gets
passed to Box 3.

B o x 3: R e s o l v e t h e a m b i g u i t y w i t h t h e user .
Previous work in response generation makes the
assumption tha t what gets passed to the RG com-
ponent is a single plan the PR 'component proposes
the user is pursuing. We argue that , unless we are
willing to sometimes arbitrarily commit to one plan
instead of another, there will be times when one plan
cannot be chosen over another and therefore there
will be ambiguity about which plan the user is pur-
suing. Result: we need a method to resolve the
ambiguity. In plan recognition in a discourse setting
(as opposed to key-hole recognition), the goals and
plan the user holds are knowable simply by asking
the user. But we do not want to always just ask if it
is not necessary so we need to know when to s tar t a
clarification dialogue and what to say. And when we
do ask, we want to ask the minimal number of ques-
tions necessary to resolve the ambiguity until it no
longer matters. To this end, box 3 contains a pro-
cedure tha t estimates by plan critiquing whether the
ambiguity matters to the task of formulating a
response. If the ambiguity does not mat ter the
result is passed to box 4. If the ambiguity does
matter , a procedure is called that starts a clarifica-
tion dialogue, responding to the user's question with
questions tha t i teratively differentiate between the
possibilities.

B o x 2 vs . B o x 3: T h e t r a d e o f f s . Much previ-
ous work in plan recognition makes the assumption
that we want the PR component to commit to and
re turn a single plan. Carberry and McKeown, for
example, use a strong heuristic to commit to a single
plan [2, 17]. However, this means the system will at
times commit to the wrong plan. Doing it this way
requires the ability to handle natural language
debugging dialogues. Why we do not want to com-
mit to a single plan and then, if we are wrong, repair
using a debugging dialogue? Carberry [5, p.4] argues
that a system will appear "unintelligent, obtuse, and
uncooperat ive" if it engages in lengthy clarification
dialogues. However, a procedure to perform a
debugging dialogue is not specified and is, we specu-
late, a difficult problem. We argue for not commit-
ting early. Our hypothesis is tha t a clarification
dialogue is bet ter than a debugging dialogue. The
questions in the clarification dialogues are simple to
answer, whereas determining that the system has
misunderstood your goals and plan requires users to
engage in plan recognition. Tha t is, users must
recognize the plan the RG component is using from
its responses and note tha t it differs from their
plans. Moreover, the user may not recognize we are
wrong and be mislead. Finally, we argue that , if the

questions are carefully chosen, the clarification dialo-
gues need not be lengthy or too frequent. Note that
preference heuristics can still be used in our
approach. These would best be applied when too
many top level goals give an unwieldy clarification
question.

B o x 4: G e n e r a t e t h e r e s p o n s e . Once Box 3 has
estimated tha t any remaining ambiguity does not
mat ter to generating a cooperative response, the dis-
junction of possible plans is passed to Box 4. There
are two cases; both can now be handled as in previ-
ous work except tha t there is now the additional
complication tha t we allow one action to contribute
to more than one chain of goals. The response com-
ponent must then generate a conjunctive response
that addresses each of the goals.
1 .Every plan is faultless, so we just give a direct

answer to the user's query but ignore the underly-
ing goals and plan until fur ther queries help clarify
which plan the user is pursuing, and

2. Every plan has the same fault, so we give a direct
answer plus some additional information that
warns the user about the deficiency and perhaps
suggests some alternatives (see [10], [26]).
S o a p Box : This paper offers an important con-

tr ibution to natural language generation. It
discusses a clear criterion for when to initiate a cla-
rification dialogue and proposes a specific solution to
what questions should be asked of the user to
achieve clarification. We believe tha t natural
language response generation systems should be
designed to involve the user more directly and this is
sometimes achieved quite successfully with our pro-
posals.

There may be tradeoffs between overcommitt ing
in the plan recognition process and engaging in
lengthy clarification dialogue, particularly with a
large set of complex candidate plans. This may sug-
gest applying pruning heuristics more actively in the
plan recognition process (Box 2) to reduce the
number of questions asked in the clarification dialo-
gue (Box 3). For future work, these tradeoffs will be
examined more closely as we test the algorithms
more extensively.

A c k n o w l e d g e m e n t s . We thank Fei Song and
Bruce Spencer for comments on an earlier version of
this paper and for many discussions about plan
recognition. Financial assistance was received from
the Natural Sciences and Engineering Research
Council of Canada (NSERC).

R e f e r e n c e s

[1] Allen, J . F . 1983. Recognizing Intentions from
Natural Language Utterances. In Computa-
tional Models of Discourse, M. Brady and R.
C. Berwick (eds.). MIT Press.

[2] Carberry, S. 1985. Pragmatic Modeling in
Information System Interfaces. Ph.D. thesis
available as University of Delaware Technical

148

Report 86-07, Newark, Del.
[3] Carberry, S. 1988. Modeling the User's Plans

and Goals. Computational Linguistics 14,
23-27.

[4] Carberry, S. 1989. A Pragmatics-Based
Approach to Ellipsis Resolution. Computational
Linguistics 15, 75-96.

[5] Carberry, S. 1989. A New Look at Plan
Recognition in Natural Language Dialogue.
University of Delaware Technical Report 90-08,
Newark, Del.

[6] Charniak, E., and D. V. McDermott. 1985.
Introduction to Artificial Intelligence. Addison
Wesley.

[71 Cohen, R., M. Jones, h. Sanmugasunderam, B.
Spencer, and L. Dent. 1989. Providing
Responses Specific to a User's Goals and Back-
ground. International Journal of Expert Sys-
tems: Research and Applications 2, 135-162.

[8] Goldman, R., and E. Charniak. 1988. A Proba-
bilistic Assumption-Based Truth Maintenance
System for Plan Recognition. Pros. of the
AAAI-88 Workshop on Plan Recognition, St.
Paul, Minn.

[9] Huff, K., and V. R. Lesser. 1982. Knowledge-
Based Command Understanding: An Example
for the Software Development Environment.
Computer and Information Sciences Technical
Report 82-6, University of Massachusetts at
Amherst, Amherst, Mass. Cited in [13].

[10] Joshi, A., B. Webber, and R. Weischedel. 1984.
Living up to Expectations: Computing Expert
Responses. Pros. of the Third National
Conference on Artificial Intelligence, Austin,
Tex., 169-175.

[11] Joshi, A., B. Webber, and R. Weischedel. 1984.
Preventing False Inferences. Proc. of lOth
International Conference on Computational
Linguistics (COLING), Stanford, Calif., 134-
138.

[12] Kantz, H. A. 1987. A Formal Theory of Plan
Recognition. Ph.D. thesis available as Univer-
sity of Rochester Technical Report 215, Roches-
ter, N.Y.

[13] Kautz, H. A., and J. F. Allen. 1986. General-
ized Plan Recognition. Proc. of the Fifth
National Conference on Artificial Intelligence,
Phil., Penn., 32-37.

[14] Konolige, K., and M. E. Pollack. 1989. Ascrib-
ing Plans to Agents. Pros. of the Eleventh
International Joint Conference on Artificial
Intelligence, Detroit, Mich., 924-930.

[15] Litman, D. J., and J. F. Allen. 1987. A Plan
Recognition Model for Subdialogue in Conversa-
tions. Cognitive Science 11, 163-200.

[16] Luria, M. 1987. Expressing Concern. Proc. of
the 25th Conference of the Association for
Computational Linguistics, Stanford, Calif.,

221-227.
[17] McKeown, K. R., M. Wish, and K. Matthews.

1985. Tailoring Explanations for the User.
Pros. of the Ninth International Joint Confer-
ence on Artificial Intelligence, Los Angeles,
Calif., 794-798.

[18] Neufeld, E. 1989. Defaults and Probabilities;
Extensions and Coherence. Pros. of the First
International Conference on Principles of
Knowledge Representation and Reasoning,
Toronto, Ont., 312-323.

[19] Perrault, C. R., J. F. Allen, and P. R. Cohen.
1978. Speech Acts as a Basis for Understanding
Dialogue Coherence. Proc. of the Pad Confer-
ence on Theoretical lssues in Natural
Language Processing (TINLAP), Urbana-
Champaign, Ill., 125-132.

[20] Pollack, M. E. 1984. Good Answers to Bad
Questions: Goal Inference in Expert Advice-
Giving. Proc. of the Fifth Canadian Confer-
ence on Artificial Intelligence
(CSCS//SCEIO}, London, Ont.

[21] Pollack, M. E. 1986. Inferring Domain Plans in
Question-Answering. Ph.D. thesis (Univ. of
Penn.) available as SRI International Technical
Note 403, Menlo Park, Calif.

[22] Pollack, M. E. 1986. A Model of Plan Infer-
ence that Distinguishes Between the Beliefs of
Actors and Observers. Pros. of the Pith
Conference of the Association for Computa-
tional Linguistics, New York, N.Y., 207-214.

[23] Pools, D. L. 1985. On the Comparison of
Theories: Preferring the Most Specific Explana-
tion. Proc. of the Ninth International Joint
Conference on Artificial Intelligence, Los
Angeles, Calif., 144-147.

[24] Poole, D. L. 1989. Explanation and Prediction:
An Architecture for Default and Abductive Rea-
soning. Computational Intelligence 5, 97-110.

[25] Sidner, C. L. 1985. Plan Parsing for Intended
Response Recognition in Discourse. Computa-
tional Intelligence 1, 1-10.

[26] van Beek, P. 1987. A Model For Generating
Better Explanations. Proc. of the P5th Confer-
ence of the Association for Computational
Linguistics, Stanford, Calif., 215-220.

[27] van Beck, P., and R. Cohen. 1986. Towards
User-Specific Explanations from Expert Sys-
tems. Pros. of the Sixth Canadian Conference
on Artificial Intelligence (CSCSI/SCEIO),
Montreal, Que., 194-198.

149

