
Parsing 2-Dimensional Language
Masaru Tomita

Computer Science Department
and

Center for Machine Translation
Carnegie-Mellon University

Pittsburgh, PA 152131

Abstract

2-Dimensional Context-Free Grammar (2D-CFG) for 2-dimensional input text is introduced and efficient
parsing algorithms for 2D-CFG are presented. In 2D-CFG, a grammar rule's right hand side symbols can
be placed not only horizontally but also vertically. Terminal symbols in a 2-dimensional input text are
combined to form a rectangular region, and regions are combined to form a larger region using a 2-
dimensional phrase structure rule. The parsing algorithms presented in this paper are the 2D-Ear1ey
algorithm and 2D-LR algorithm, which are 2-dimensionally extended versions of Earley’s algorithm and
the LR(O) algorithm, respectively.

1. In troduction
Existing grammar formalisms and formal language theories, as well as parsing algorithms, deal only

with one-dimensional strings. However, 2-dimensional layout information plays an important role In
understanding a text. It is especially crucial for such texts as title pages of artldes, business cards,
announcements and formal letters to be read by an optical character reader (OCR). A number of projects
[1 1 ,6 ,7 ,2], most notably by Fujisawa et al. [4], try to analyze and utilize the 2-dimensional layout

information. Fujisawa et al., unlike others, uses a procedural language called Form Definition Language
(FDL) [5, 12] to specify layout rules. On the other hand, in the area of image understanding, several
attempts have been also made to define a language to describe 2 -dimensional images [3 , 10].

This paper presents a formalism called 2-Dimensional Context-Free Grammar (2D-CFG), and two
parsing algorithms to parse 2-dimensional language with 2D-CFG. Unlike all the previous attempts
mentioned above, our approach is to extend existing well-studied (one dimensional) grammar formalisms
and parsing techniques to handle 2-dimensional language. In the rest of this section, we informally
describe the 2-dimensional context-free grammar (2D-CFG) in comparison with the 1-dimensional
traditional context-free grammar.

Input to the traditional context-free grammar is a string, or sentence; namely a one-dimensional array of
terminal symbols. Input to the 2-dimensional context-free grammar, on the other hand, is a rectangular
block of symbols, or text, namely, a 2-dimensional array of terminal symbols.

In the traditional context-free grammar, a non-terminal symbol represents a phrase, which is a
substring of the original input string. A grammar rule is applied to combine adjoining phrases to form a
larger phrase. In the 2 -dimensional context-free grammar, on the other hand, a non-terminal represents a
region, which is a rectangular sub-block of the input text. A grammar rule is applied to combine two
adjoining regions to form a larger region. Rules like

1Th» research was supported by the National Science Foundation under contract IRI-8858085.

-414- International Parsing Workshop ’89

A — > B C (1)
are used to combine horizontally adjacent regions. In addition, rules like

B
A --> (2)

C
can be used in the 2-dimensional context-free grammar to combine vertically adjacent regions.

A region can be represented with a non-terminal symbol and 4 positional parameters: x, y, X and Y,
which determine the upper-left position and the lower-right position of the rectangle (assuming that the
coordinate origin is the upper-left corner of the input text).

Horizontally adjacent regions, (B, x8, yB, x B, Ys) and (C, x,., yc , Xc , Yc), can be combined only if
• yB - yc.
• YB = Yc , and

• X B = Xq .

The first two conditions say that B and C must have the same vertical position and the same height, and
the last condition says that B and C are horizontally adjoining.

Similarly, vertically adjacent regions, B and C, can be combined only if
• x0 = xc ,

• Xg 3 Xq, and

• yb = /c-
A new region, (A, xB, yB, Xc , Yc), is then formed. Figure 1-1 shows examples of adjacent regions, and
figure 1-2 shows the results of combining them using rules (2) and (1).

B

C

Figure 1-1: Examples of Adjacent Regions

Let Q be a 2D-CFG (N, I , PH> Pv, S), where

N: a set of non-terminal symbols
I : is a set of terminal symbols
PH: a set of horizontal production rules
Pv : a set of vertical production rules
S: start symbol

Let LEFT(p) be the left hand side symbol of p. Let RIGHT(p, i) be the i-th right hand side symbol of p.
Without loss of generality, we assume each rule in PH is either in the form of

A — > B C or A — > b

-415- Intemational Parsing Workshop '89

Figure 1-2: After applying rule (2) and (1), respectively

and each rule in Pv is in the form of

a — > B
c

Where A,B,C € N and b € I . This form of grammar is called 2-dimensional Chomsky Normal Form
(2D-CNF), and an arbitrary 2D-CFG can be converted into 2D-CNF. The conversion algorithm is very
similar to the standard CNF conversion algorithm, and we do not describe the algorithm in this paper.

The subsequent two sections present two efficient 2D parsing algorithms: 2D-Ear1ey and 2D-LR.

2. The 2D -E arley Parsing A lgorithm

Input:
2D-CFQ G = (N, I , PH, Pv , S) and an input text

a n * 21 *nl
*12 *22 *n2

*lm *2» *nm
where a ̂ e I .

O utput:
A parse table

ôo îo n̂O

/,j is a set of items and each item is (p, d, x, y, X, Y), where p is a rule in PH or Pv, d is an integer to
represent its dot position (0 < d < |p|, where |p| represents the length of p’s left hand side). The integers
x and y represent the item’s origin (x,y) or the upper-left comer of the region being constructed by the
item. The integers X and Y represent its perspective lower-right comer, and the parser’s horizontal
(vertical) position should never exceed X (Y) until the item is completed.

-416- Intemational Parsing Workshop '89

Method:
For each p € PHu P v such that LEFT(p) = S, add an item (p, 0, 0, 0, n, m) to /00.

For each item (p, d, x, y, X, Y) in lY],
If d = |p|, do COMPLETOR
If RIGHT(p, d+1) e N, do PREDICTOR
If RIGHT(p, d+1) e I , do SHIFTER

PREDICTOR: For all q € P h a P v such that LEFT(q) = RIGHT(p, d+1), add an item (q, 0, i, j, X, Y) to

V
SHIFTER: If a j+1 j+1 = RIGHT(p, d+1), and if i<X a j<Y, then add an item (p, d+1, i, j, X, j+ 1) to /|+1 y

COMPLETOR: For all items (p\ d \ x’, y', X’, Y’) in such that RIGHT(p’, d’+1) = LEFT(p), do the
following:

• Case 1.- pe PHAp’e PH — Add an item (p\ d’+1, x’, y’ X’, Y) to /jjt if Y’-Y v d’=0.

• Case 2. p e Pva p ’ g Ph —- Add an item (p\ d’+1, x’, y’ X’, Y) to /Xy, if Y’-Y v d'-O.

• Case 3. pe PHAp’ e Pv —- Add an item (p\ d’+1, x’, y’ X, Y’) to /xY, if X’-X v d’-O.

• Case 4. p € PVAp’ e Pv Add an item (p\ d’+1, x\ y’ X, Y) to /ij(H X’-X v d’-O.

(1) S — > A A (3) B — > b b b
c d

(2) A — > B (4) C - - > c
C

(5) C - - > d

Figure 2-1: Example Grammar and Text

-417- Intemational Parsing Workshop '89

3 - - > A A 0, 0, 2, 2 |

A — > B 0, 0, 2, 2
C

B — > b 0, 0, 2, 2

B — > b 0, 0, 2, 1

S - - > A A 0 , 0 , 2, 2

A - - > B 1 , 0 , 2 , 2
C

B — > b 1 , 0 , 2 , 2

B - - > b 1 , 0 , 2 , 1

S — > A A 0 , 0 , 2 , 2

A —

C

C

> .B
C

0, 0, 1, 2 I C — > c

■> c 0 , 1 , 1 , 2 |
I

•> d 0 , 1 , 1 , 2 |

■> . B
C

■> c

■> d

0,1,1,2
1 , 0 , 2 , 2

1,1,2,2
1 , 1 ,2,2

C — > d 1 , 1 , 2 , 2

------------ c-----------
I

0, 0, 1, 2 | A — > B
I .c

A — > B
.C

1 , 0 , 2 , 2

Figure 2-2: An Example of 2D-Ear1ey Parsing

-418- International Parsing Workshop '89

3. The 2D-LR Parsing Algorithm
A 2D-LR(0) parsing table consists of three parts: ACTION, G O TO -R IG HT and G OTO -DOW N. Figure

3-1 is a 2D-LR(0) table obtained from the grammar in Figure 2-1.

ST ACTION GOTO-RIGHT GOTO-DOWN

b c d $ s A B C S A B C

0 sh3 8 1 4
1 sh3 2 4
2 rel rel rel rel
3 r«3 re3 re3 re3
4 sh6 sh7 5
5 re2 re2 re2 re2
6 re4 re4 re4 re4
7 ro5 re5 ro5 re5
8 acc

Figure 3-1: A 2D-LR Parsing Table

As in Standard LR parsing, the runtime parser performs shift-reduce parsing with a stack guided by this

2D-LR table. Unlike standard LR(0), however, each item in the stack is represented as (s, x, y, X, Y),
where s is an LR state number, and (x,y) represents the current position in the input text. X and Y
represent right and lower limits, respectively, and no positions beyond these limits should ever be
explored until this state is popped off the stack.

Initially the stack has an item (0, 0, 0, n, m), where n and m are the number of columns and rows in the

input text, respectively.

Now let the current elements in the stack be

... (S31 Ygi Xg, Y^) B2 (^2» * 2’ y2' ^ 2’ ^ 2) (®1 » * 1» y v ^ 1 '
where the right most element is the top of the stack. Also assume that the current input symbol aij is b,
where i » x ^ 1 and j = y ,+ 1 . According to the parsing table, we perform SHIFT, R EDUCE or ACCEPT.

SHIFT:
If A C TIO N (s1, b) = sh s0, then if x1 < X 1 a y 1 < Y v push b and (s0, x ^ l , y1t X v y ^ l) onto the stack.

REDUCE:
If A C TIO N (s1, b) * re p, then let k be |p|+1 and do the following:

• Case 1. p e PH and G O T O -R IG H T ^ , LEFT(p)) = s0 — If YM * Y 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, xv yv X^ Y t).

• Case 2. p e PH and G O TO -D O W N(sk, LEFT(p)) = s0] — If YM * Y 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, x ,̂ Y 1f xv Yk).

• Case 3. p e Pv and G O TO -R IG H T(sk, LEFT(p)) = s0 — It Xk_t * X 1 then pop 2#|p| elements
from the stack, and push LEFT(p) and (s0, X v yk, X^ y ^ .

• Case 4. p e Pv and G O TO -D O W N (sk, LEFT(p)) - s0 — If Xk.1 - X 1 then pop 2*|p| elements
from the stack, and push LEFT(p) and (s0, xv y v X v Yk).

Figure 3-2 shows an example trace of 2D-LR parsing with the grammar in Figure 2-1.

-419- International Parsing Workshop ’89

(0,0,0,2,2)
(0,0,0,2,2) b (3,0,1,2,1)
(0,0,0,2,2) B (4,0,1,1,2)
(0,0,0,2,2) B (4,0,1,1,2) c (6, 1, 1, 1, 2)
(0,0,0,2,2) B (4,0,1,1,2) C (5, 0, 2, 2, 2)
(0,0,0,2,2) A (1,1,0,2,2)
(0,0,0,2,2) A (1, 1,0,2,2) b (3,2,0,2, 1)
(0, 0, 0, 2, 2) A (1, 1, 0, 2, 2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1.,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) B (4,1,1,2, 2)
(0,0,0,2,2) A (1,1,0,2,2) A (2,2,0,2,2)
(0,0,0,2,2) S (8,2,0,2,2)

Figure 3-2: Example Trace of 2D-LR Parsing

4. More Interesting 2D Grammars
This section presents a couple of more interesting example grammars and texts. Example Grammar I

generates nested rectangles of b’s and c’s, one after the other. In the grammar, B1 represents vertical
bars (sequences) of b’s, and B2 represents horizontal bars of b’s. Similarly, C1 and C2 represent vertical
and horizontal bars of c’s, respectively. A1 then represents rectangles surrounded by c’s. A2 represents
rectangles surrounded by c’s which are sandwiched by two vertical bars of b’s. A3 further sandwiches A2
with two horizontal b bars, representing rectangles surrounded by b’s. Similarly, A4 sandwiches A3 with
two vertical c bars, and A1 further sandwiches A4 with two horizontal c bars, representing rectangles

surrounded by c’s.

A similar analysis can be made for Grammar II, which generates triangles of b’s and c’s.

Grammar III generates all rectangles of a's which have exactly 2 b’s somewhere in them. Xn
represents horizontal lines of a s with n b’s. Thus, XO, X1 and X2 represent lines of a ’s, keeping track of
how many b’s are inside. Yn then combines those lines vertically, keeping track of how many a’s have
been seen thus far (n being the number of b’s). Therefore, Y2 contains exactly two b’s.

The example given in this section is totally deterministic. In general, however, a 2D-LR table may have
multiple entries, or both G O TO -D O W N and G O TO -R IG H T may be defined from an identical state with an

identical symbol. Such nondeterminism can also be handled efficiently using a graph-structured stack as

in Generalized LR Parsing [8 , 9].

-420- Intemational Parsing Workshop '89

A 1 --> c
A2 — > BI A1 BI

A3 -
B2

-> A2
B2

A4 — > Cl A3 Cl

A1 -
C2

-> A4
C2

ccccc
bbb cbbbc

c bcb cbcbc
bbb cbbbc

ccccc

bbbbbbb
bcccccb
bcbbbcb
bcbcbcb
bcbbbcb
bcccccb
bbbbbbb

BI — > b

Bl — > BI
b

B2 — > b
B2 — > b B2 b

START — > A1

ccccccccc
cbbbbbbbc
cbcccccbc
cbcbbbcbc
cbcbcbcbc
cbcbbbcbc
cbcccccbc
cbbbbbbbc
ccccccccc

Cl - - > Cl
c

C2 --> c
C2 — > c C2 c

ccccccccccccc
cbbbbbbbbbbbc
cbcccccccccbc
cbcbbbbbbbcbc
cbcbcccccbcbc
cbcbcbbbcbcbc
cbcbcbcbcbcbc
cbcbcbbbcbcbc
cbcbcccccbcbc
cbcbbbbbbbcbc
cbcccccccccbc
cbbbbbbbbbbbc
ccccccccccccc

Figure 4-1: Example Grammar I

> M 1 1 V c Bl — > b Cl — > c
A2 — > Al Bl b

Bl — > Bl Cl -->
c
Cl

A3 — >
B2
A2 B2 — > b C2 — > c

A4 — > Cl A3 B2 — > b B2 C2 — > c
Al — > A4 START — > Al

C2

cbbbb
ebb ccbbb

c ccb cccbb
ccc ccccb

ccccc

cbbbbbb
ccbbbbb
cccbbbb
ccccbbb
cccccbb
ccccccb
ccccccc

cbbbbbbbb
ccbbbbbbb
cccbbbbbb
ccccbbbbb
cccccbbbb
ccccccbbb
cccccccbb
ccccccccb
ccccccccc

cbbbbbbbbbbbb
ccbbbbbbbbbbb
cccbbbbbbbbbb
ccccbbbbbbbbb
cccccbbbbbbbb
ccccccbbbbbbb
cccccccbbbbbb
ccccccccbbbbb
cccccccccbbbb
ccccccccccbbb
cccccccccccbb
ccccccccccccb
ccccccccccccc

Figure 4-2: Example Grammar II

-421- Intemational Parsing Workshop '89

XO — > [ampty] YO — > [empty] Y2 — > YO
X2

xo — > XO a YO — > YO
xo Y2 — >

XI — > xo b
YI — > YO

XI --> XI a XI Y2 — >

X2 — > XI b YI --> YI
XO START -

X2 — > X2 a
a aa aaaaaaaa aaa aaaaaaa
a ab aaaaaaaa aaa aaaabaa
a aa aaaaaaaa bba aabaaaa
a aa aaaaaaab aaa

aaa
aia
aaa

XI

XO

Figure 4-3: Example Grammar III

-422- Intemational Parsing Workshop '89

5. Concluding Remarks
In this paper, 2D-CFG, 2-dimensional context-free grammar, has been introduced, and two efficient

parsing algorithms for 2D-CFG have been presented. Traditional one-dimensional context-free grammars
are well studied and well understood (e.g. [1]), and many of their theorems and techniques might be
extended and adopted for 2D-CFG, as we have done in this paper for Earley’s algorithm and LR parsing.

-423- Intemational Parsing Workshop '89

References

[1] Aho, A. V. and Ullman, J. D.
The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, N. J., 1972.

[2] Akiyama, T. and Masuda, I.
A Method of Document-Image Segmentation Based on Projection Profiles, Stroke Density and

Circumscribed Rectangles.
Trans. IECE J69-D (8):1187-1196, 1986.

[3] K. S. Fu.
Syntactic Pattern Recognition.
Springer-Verlag, 1977.

[4] Fujisawa, H. et al.
Document Analysis and Decomposition Method for Multimedia Contents Retrieval.

. Proc. 2nd International Symposium on Interoperable Information Systems :231, 1988.

[5] Hlgashino, J., Fujisawa, H., Nakano, Y. and Ejiri, M.
A Knowledge-Based Segmentation Method for Document Understanding.
Proc. 8th Int. Conf. Pattern Recognition :745-748, Oct., 1986.

[6] Inagaki, K., Kato, T., Hiroshima, T. and Sakai, T.
MACSYM: A Hierarchical Image Processing System for Event-Driven Pattern Understanding of

Documents.
Pattern Recognition 17(1):85-108, 1984.

[7] Kubota, K. et al.
Document Understanding System.
In Proc. 7th Int. Conf. Pattern Recognition, pages 612-614. , 1984.

[8] Tomita, M.
Efficient Parsing for Natural Language.
Kluwer Academic Publishers, Boston, MA, 1985.

[91 Tomita, M.
An Efficient Augmented-Context-Free Parsing Algorithm.
Computational Linguistics 13(1 -2):31 -46, January-June, 1987.

[10] Watanabe, S. (ed.).
Frontiers o f Pattern Recognition.
Academic Press, 1972.

[11] Wong, K., Casey, R. and Wahl, F.
Document Analysis System.
IBM J. Research and Development 26(6):647-656, 1982.

[12] Yashiro, H. et.al.
A New Method of Document Structure Extraction.
In International Workshop on Industrial Applications of Machine Intelligence and Vision (MIV-89),

pages 282. , April, 1989.

-424- Intemational Parsing Workshop '89

