The Relevance of Legalization to Parsing*

Yves Schabes and Aravind K. Joshi

Department of Computer and Information Science
University of Pennsylvania, Philadelphia. PA 19104-6389

schabes/joshiQlinc.cis. upenn.edu

Abstract

In this paper, we investigate the processing of the so-called ‘lexicalized’ grammar. In iexicaiized’
grammars (Schabes, Abeille and Joshi, 1988), each elementary structure is systematically associated
with a lexical ‘head’. These structures specify extended domains of locality (as compared to CFGs) over
which constraints can be stated. The ‘grammar’ consists of a lexicon where each lexical item is associated
with a finite number of structures for which that item is the ‘head’. There are no separate grammar
rules. There are, of course, ‘rules’ which tell us how these structures are combined.

A general two-pass parsing strategy for ‘lexicalized’ grammars follows naturally. In the first stage,
the parser selects a set of elementary structures associated with the lexical items in the input sentence,
and in the second stage the sentence is parsed with respect to this set. We evaluate this strategy with
respect to two characteristics. First, the amount of filtering on the entire grammar is evaluated: once
the first pass is performed, the parser uses only a subset of the grammar. Second, we evaluates the use of
non-local information: the structures selected during the first pass encode the morphological value (and
therefore the position in the string) of their ‘head’; this enables the parser to use non-local information
to guide its search.

We take Lexicalized Tree Adjoining Grammars as an instance of lexicalized grammar. We illustrate
the organization of the grammar. Then we show how a general Earley-type TAG parser (Schabes and
Joshi, 1988) can take advantage of lexicalization. Empirical data show that the filtering of the grammar
and the non-local information provided by the two-pass strategy improve the performance of the parser.

We explain how constraints over the elementary structures expressed by unification equations can be
parsed by a simple extension of the Earley-type TAG parser. Lexicalization guarantees termination of
the algorithm without special devices such as restrictors.

1 Lexicalized Grammars

Most current linguistic theories give lexical accounts of several phenomena that used to be considered purely
syntactic. The information put in the lexicon is thereby increased in both amount and complexity: see, for
example, lexical rules in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar, Klein, Pullum and Sag, 1985),
HPSG (Pollard and Sag, 1987), Combinatory Categorial Grammars (Steedman 1985, 1988), Karttunen’s
version of Categorial Grammar (Karttunen 1986, 1988), some versions of GB theory (Chomsky 1981), and
Lexicon-Grammars (Gross 1984).

We say that a grammar is ‘lexicalized’ if it consists of:1

* a finite set of structures associated with each lexical item, which is intended to be the ‘head’ of these
structures; the structures define the domain of locality over which constraints are specified; constraints
are local with respect to their lexical ‘head’;

e an operation or operations for composing the structures.

Notice that Categorial Grammars (as used for example by Ades and Steedman, 1982 and Steedman, 1985

and 1988) are lexicalized according to our definition since each basic category has a lexical item associated
with it.

*This work is partially supported by ARO grant DAA29-84-9-007, DARPA grant N0014-85-K0018, NSF grants MCS-82-

191169 and DCR-84-10413. We have benefited from our discussions with Anne Abeille, Lauri Karttunen, Mitch Marcus and
Stuart Shieber. We would also like to thank Ellen Hays.

By lexicalization we mean that in each structure there is a lexical item that is realized. We do not mean simply adding
feature structures (such as head) and unification equations to the rules of the formalism.

-339- International Parsing Workshop '89

A general two-step parsing strategy for ‘lexicalized’ grammars follows naturally. In the first stage, the
parser selects a set of elementary structures associated with the lexical items in the input sentence, and in
the second stage the sentence is parsed with respect to this set. The strategy is independent of the nature
of the elementary structures in the underlying grammar. In principle, any parsing algorithm can be used in
the second stage.

The first step selects a relevant subset of the entire grammar, since only the structures associated with
the words in the input string are selected for the parser. In the worst case, this filtering wou: . select the
entire grammar. The number of structures filtered during this pass depends on the nature of the input string
and on characteristics of the grammar such as the number of structures, the number of lexical entries, the
degree of lexical ambiguity, and the languages it defines.

Since the structures selected during the first step encode the morphological value of their ‘head’ (and
therefore its position in the input string), the first step also enables the parser to use non-local information to
guide its search. The encoding of the value of the ‘head’ of each structure constrains the way the structures
can be combined. It seems that this information is particularly useful for parsing algorithms that have some
top-down behavior.

This parsing strategy is general and any standard parsing technique can be used in the second step.
Perhaps the advantages of the first step could be captured by some other technique. However this strategy
is extremely simple and is consistent with the linguistic motivations for lexicalization.

2 Lexicalized TAGs

Not every grammar is in a ‘lexicalized’ form.2 In the process of lexicalizing a grammar, we require that
the ‘lexicalized’ grammar produce not only the same language as the original grammar, but also the same
structures (or tree set).

For example, a CFG, in general, will not be in a ‘lexicalized’ form. The domain of locality of CFGs
can be easily extended by using a tree rewriting grammar (Schabes, Abeille and Joshi, 1988) that uses only
substitution as a combining operation. This tree rewriting grammar consists of a set of trees that are not
restricted to be of depth one (as in CFGs). Substitution can take place only on non-terminal nodes of the
frontier of each tree. Substitution replaces a node marked for substitution by a tree rooted by the same label
as the node (see Figure 1; the substitution node is marked by a down arrow j,).

However, in the general case, CFGs cannot be ‘lexicalized’, if only substitution is used. Furthermore, in
general, there is not enough freedom to choose the ‘head’ of each structure. This is important because we
want the choice of the ‘head’ for a given structure to be determined on purely linguistic grounds.

If adjunction is used as an additional operation to combine these structures, CFGs can be lexicalized.
Adjunction builds a new tree from an auxiliary tree 0 and a tree a . It inserts an auxiliary tree in smother
tree (see Figure 1). Adjunction is more powerful than substitution. It can weakly simulate substitution, but
it also generates languages that could not be generated with substitution.3

Substitution and adjunction enable us to lexicalize CFGs. The ‘heads’ can be freely chosen (Schabes,
Abeille and Joshi, 1988). The resulting system now falls in the class of mildly context-sensitive languages
(Joehi, 1985). Elementary structures of extended domain of locality combined with substitution and adjunc-
tion yield Lexicalized TAGs.

TAGs were first introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985). For more details
on the original definition of TAGs, we refer the reader to Joehi (1985), Kroch and Joehi (1985), or Vijay-
Shanker (1987). It is known that Tree Adjoining Languages (TALs) are mildly context sensitive. TALSs
properly contain context-free languages.

2Notice the similarity of the definition of ‘lexicalized’ grammar with the offline parsibility constraint (Kaplan and Bresnan
1983). As consequences of our definition, each structure has at least one lexical item (its ‘head’) attached to it and all sentences
are finitely ambiguous.

31t is also possible to encode a context-free grammar with auxiliary trees using adjunction only. However, although the
languages correspond, the set of trees do not correspond.

-340- International Parsing Workshop '99

TAGs with substitution and adjunction are naturally lexicalized.4 A Lexicalized Tree Adjoining Grammar
is a tree-based system that consists of two finite sets of trees: a set of initial trees, | and a set of auxiliary
trees A (see Figure 2). The trees in IUA are called elementary trees. Each elementary tree is constrained
to have at least one terminal symbol which acts as its ‘head’.

Figure 2. Schcmaiic initial and auxiliary trees

The tree set of a TAG G, T(G) is defined to be the set of all derived trees starting from S-type initial
trees in I. The string language generated by a TAG, C(G), is defined to be the set of all terminal strings
of the trees in T{G).

By lexicalizing TAGs, we have associated lexical information to the ‘production’ system encoded by the
TAG trees. We have therefore kept the computational advantages of ‘production-like’ formalisms (such as
CFGs, TAGs) while allowing the possibility of linking them to lexical information. Formal properties of
TAGs hold for Lexicalized TAGs.

As first shown by Kroch and Joshi (1985), the properties of TAGs permit us to encapsulate diverse syn-
tactic phenomena in a very natural way. TAG’s extended domain of locality and its factoring recursion from
local dependencies lead, among other things, to localizing the so-called unbounded dependencies. Abeille
(1988a) uses the distinction between substitution and adjunction to capture the different extraction prop-
erties between sentential subjects and complements. Abeille (1988c) makes use of the extended domain of
locality and lexicalization to account for NP island constraint violations in light verb constructions; in such
cases, extraction out of NP is to be expected, without the use of reanalysis. The relevance of Lexicalized
TAGs to idioms has been suggested by Abeille and Schabes (1989).

4 In some earlier work of Joshi (1969, 1973), the use of the two operations ‘adjoining* and ‘replacement’ (a restricted case of
substitution) was investigated both mathematically and linguistically. However, these investigations dealt with string rewriting
systems and not tree rewriting systems.

-341- Intemational Parsing Workshop '89

We will now give some examples of structures that appear in a Lexicalized TAG lexicon.
Some examples of initial trees are (for simplicity, we have omitted unification equations associated with
the trees):5

S
S
NP
A NPOi VP NPO1 VP NPol VP NFOA
01 N <> (%) i “3 (04) WX MNPz (a))
boy saw saw put PN NP2A4
Examples of auxiliary, trees (they correspond to predicates taking sentential complements or modifiers):
S S S
NPQL VP NPol VP NPot: VP VP N
v S~ na (01) (1?72 V s~na (02) v ™vWna (oa) a™N*na (0b)
| | | | |
think promise S*wW has PAtty

In this approach, the argument structure is not just a list of arguments. It is the syntactic structure
constructed with the lexical value of the predicate and with all the nodes of its arguments that eliminates
the redundancy often noted between phrase structure rules and subcategorization frames.6

2.1 Organization of the Grammar

A Lexicalized TAG is organized into two major paxts: a lexicon and tree families, which are sets of
trees. Although it is not necessary to separate trees from their realization in the lexicon, we chose to do so
in order to capture some generalities about the structures. TAG’s factoring recursion from dependencies,
the extended domain of locality of TAGs, and lexicalization of elementary trees make Lexicalized TAG an
interesting framework for grammar writing. Abeille (1988b) discusses the writing of a Lexicalized TAG for
French. Bishop, Cote and Abeille (1989) similarly discuss the writing of a Lexicalized TAG grammar for
English.

2.1.1 Tree Families

A tree family is essentially a set of sentential trees sharing the same argument structure abstracted from
the lexical instantiation of the ‘head’ (verb, predicative noun or adjective). Because of the extended domain
of locality of Lexicalized TAG, the argument structure is not stated by a special mechanism but is implicitly
stated in the topology of the trees in a tree family. Each tree in a family can be thought of as all possible
syntactic ‘transformations’ of a given argument structure. Information (in the form of feature structures)
that is valid independent of the value of the ‘head’ is stated on the tree of the tree family. For example, the
agreement between the subject and the main verb or auxiliary verb is stated on each tree of the tree family.
Currently, the trees in a family are explicitly enumerated.

5The trees are simplified and the feature structures on the trees are not displayed. 1is the mark for substitution nodes.
is the mark for the foot node of am auxiliary tree and NA stands for null adjunction constraint. This is the only adjunction
constraint not indirectly stated by feature structures. We put indices on some non-terminals to express syntactic roles (0 for
subject, 1 for first object, etc.). The index shown on the empty string («) and the corresponding filler in the same tree is for
the purpose of indicating the filler-gap dependency.

60ptional arguments are stated in the structure.

The following trees, among others, compose the tree family of verbs taking one object (the family is
named npOVnpl):7

NPO1 VP NPojV/t VP
I/ \
VO NP,1 e, VO NP1 Ei VO NPa
'anpO Vnpl) (3RONpOVNpl) RInpOVnp 1) a WonpO Vnpl) [a W1npOVnpl)

anpOVnpl is an initial tree corresponding to the declarative sentence, /3ROnpOVnpl is an auxiliary tree
corresponding to a relative clause where the subject has been relativized, (3RInpOVnp 1 corresponds to the
relative clause where the object has been relativized, awOnpOVnpl is an initial tree corresponding to a
wh-question on the subject, a WInpOVnpl corresponds to a wh-question on the object.

2.1.2 The Lexicon

The lexicon is the heart of the grammar. It associates a word with tree families or trees. Words are not
associated with basic categories as in a CFG-based grammar, but with tree-structures corresponding to
minimal linguistic structures. Multi-level dependencies can thus be stated in the lexicon.

It also states some word-specific feature structure equations (such as the agreement value of a given verb)
that have to be added to the ones already stated on the trees (such as the equality of the value of the subject
and verb agreements).

An example of a lexical entry follows:

loves, V : npOVnpl {VP.b:<mode>=ind,
VP.t:<agr pars>= 3,
VP.t:<agr nua>= singular,
VP.t :<t«nse>=pr«sent} .

It should be emphasized that in our approach the category of a word is not a non-terminal symbol but a
multi-level structure corresponding to minimal linguistic structures: sentences (for predicative verbs, nouns
and adjectives) or phrases (NP for nouns, AP for adjectives, PP for prepositions yielding adverbial phrases).

2.2 Parsing Lexicalized TAGs

An Earley-type parser for TAGs has been developed by Schabes and Joehi (1988). It is a general TAG parser.
It handles adjunction and substitution. It can take advantage of lexicalization. It uses the structures selected
after the first pass to parse the sentence. The parser is able to use the non-local information given by the first
step to filter out prediction and completion states. It is extended to deal with feature structures for TAGs
as defined by Vijay-Shanker and Joshi (1988). The extended algorithm we propose always terminates when
used on Lexicalized TAGs without special devices such as restrictors. Unification equations are associated
with both extended linguistic structures and lexical information given by the ‘head’. This representation
allows a more natural and more direct statement of unification equations.

7The trees axe simplified, o is the mark for the node under which the ‘head’ word of the tree is attached.

-343- International Parsing Workshop '89

2.2.1 Taking Advantage of Lexicalization

If an offline behavior is adopted, the Earley-type parser for TAGs can be used with no modification for
parsing Lexicalized TAGs. First the trees corresponding to the input string are selected and then the parser
parses the input string with respect to this set of trees.

However, Lexicalized TAGs simplify some cases of the algorithm. For example, since by definition each
tree has at least one lexical item attached to it (its ‘head’), it will not be the case that a tree can be predicted
for substitution and completed in th- same states set. Similarly, it will not be the case that an auxiliary tree
can be left predicted for adjunction and right completed in the same states set.

But most importantly the algorithm can be extended to take advantage of Lexicalized TAGs. Once the
first pass has been performed, a subset of the grammar is selected. Each structure encodes the morphological
value (and therefore the positions in the string) of its ‘head’. ldentical structures with different ‘head’ values
are merged together (by identical structures we mean identical trees and identical information, such as feature
structures, stated on those trees).8 This enables us to use the ‘head’ position information while processing
efficiently the structures. For example, given the sentence

The 1 men 2 who 3 saw 4 th® 5 woman 5 who 7 saw g John ¢ axe m ”“aPP7 u
the following trees (among others) are selected after the first pass:9

NP

S
NP S
I\
B A NP np NPdvp
I\ NPb vp X | I\
D Di N comp I A Di N N \Y A
Co I e v Nox |
th«(i.5) wWho(37) ml(’b womans) John™ are(io> b*ppy(It)

The trees for men and for woman are distinguished since they carry different agreement feature structures
(not shown in the figure).

Notice that there is only one tree for the relative clauses introduced by saw but that its ‘head’ position
can be 4 or 8. Similarly for who and the.

The ‘head’ positions of each structure impose constraints on the way that the structures can be combined
(the ‘head’ positions must appear in increasing order in the combined structure). This helps the parser to
filter out predictions or completions for adjunction or substitution. For example, the tree corresponding to
men will not be predicted for substitution in any of the trees corresponding to saw since the ‘head’ positions
would not be in the right order.

We have been evaluating the influence of the filtering of the grammar and the *head’ position information
on the behavior of the Earley-type parser. We have conducted experiments on a feature structure-based
Lexicalized English TAG whose lexicon defines 200 entries associated with 130 different elementary trees.10
Twenty five sentences of length ranging from 3 to 14 words were used to evaluate the parsing strategy. For
each experiment, the number of trees given to the parser and the number of states were recorded.

In the first experiment (referred to as one pass, OP), no first pass was performed. The entire grammar
(i.e., the 130 trees) wag used to parse each sentence. In the second experiment (referred to as two passes
no ‘headNS), the two-pass strategy was used but the ‘head’ positions were not used in the parser. And
in the third experiment (referred to as two passes wtth ‘head’, H), the two-pass strategy was used and the
information given by the ‘head’ positions was used by the parser.

The average behavior of the parser for each experiment is given in Figure 3. The first pass filtered on
average 85% (always at least 75%) of the trees. The filtering of the grammar by itself decreased by 86% the

8Unlike our previous suggestions (Schabes, Abeiile and Joshi, 1988), we do not distinguish each structure by its ‘head’
position since it increases unnecessarily the number of states of the Earley parser. By factoring recursion, the Earley parser
enables us to process only once parts of a tree that are associated with several lexical items selecting the same tree. However,
if termination is required for a pure top-down parser, it is necessary to distinguish each structure by its ‘head’ position.

9The example is simplified to illustrate our point.

10The trees are differentiated by their topology and their feature structures but not by their ‘head’ value.

-344* International Parsing Workshop '89

number of states ((NH - OP)/OP). The additional use of the information given by the ‘head’ positions
further decreased by 50% ((H - NH)/NH) the number of states. The decrease given by the filtering of the
grammar and by the information of the head positions is even bigger on the number of attempts to add a
state (not reported in the table).11

This set of experiments shows that the two-pass strategy increases the performance of the Earley-type
parser for TAGs. The filtering of the grammar affects the parser the most. The information given by head
p.sition in the first pass allows further improvement of the parser’s performance (- 50% of the number
of states on the set of experiments). The bottom-up non-local information given by the ‘head’ positions
improves the top-down component of the Earley-type parser.

)

(NH-OPJ/OP (H-OP)/OP (H - NH)/NH

(%) (%) (%)
trees -85 -85 0
states -86 -93 -50

Figure 3: Empirical evaluation of the two-pass strategy

We performed our evaluation on a relatively small grammar and we did not evaluate the variations across
grammars. The lexical degree of ambiguity of each word, the number of structures in the grammar, the
number of lexical entries, and the length (and nature) of the input sentences are parameters to be considered.
Although it might appear easy to conjecture the influence of these parameters, the actual experiments are
difficult to perform since statistical data on these parameters are hard to obtain. We hope to perform some
limited experiments along those lines.

2.3 Parsing Feature-Based TAGs

As defined by Vijay-Shanker (1987) and Vijay-Shanker and Joshi (1988), to each adjunction node in an
elementary tree two feature structures are attached: a top and a bottom feature structure.2 When the
derivation is completed, the top and bottom features of all nodes are unified simultaneously. If the top and
bottom features of a node do not unify, then a tree must be adjoined at that node. This definition can be
easily extended to substitution nodes. To each substitution node we attach one feature structure which acts

as a top feature. The updating of feature structures in the cases of adjunction and substitution is shown in
Figure 4.

1A state is effectively added to a states set if it does not exist in the set already.
The top feature structure corresponds to a view to the top of the tree from the node. The bottom feature corresponds to
the view to the bottom.

-345- Intemational Parsing Workshop '89

Figure 5: Examples of unification equations

2.3.1 Unification Equations

As in PATR-II (Shieber, 1984, 1986), we express with unification equations dependencies between DAGs!3
in an elementary tree. The extended domain of locality of TAGs allows us to %ate unification equations
between features of nodes that may not necessarily be at the same level.

The system consists of a TAG and a set of unification equations on the DAGs associated with nodes in
elementary trees.

An example of the use of unification equations in TAGs is given in Figure 5.14

Notice that coindexing may occur between feature structures associated with different nodes in the tree.
Top or bottom features of a node are referred to by a node name (e.g. Sr)I5 followed by A (for top) or
.b (for bottom). The semicolon statesthat the following path specified in angle brackets is relativeto the
specified feature structure. The feature structure of a substitution node isreferred to without A or .b. For
example, VP~rA:<agr num> refers to the path <agr num> in the top feature structure associated with the
adjunction node labeled by VPr and NP-0:<agr> refers to the path <agr> of the substitution node labeled
by N Pg.

Notice that the top and bottom feature structures of all nodes in the tree a6 (Figure 5) cannot be
simultaneously unified: if the top and bottom feature structures of 5 are unified, the mode will be ind which
cannot unify with ppurt (VP node). This forces an adjunction to be performed on 5 (e.g. adjunction of 0$
to derive a sentence like Has John written a book?) or on VP (e.g. adjunction of 07 to derive a sentence like
John has written a book). The sentence John written a book is thus not accepted.

Notice that in the tree q6 agreement is checked across the nodes NPO, S and VP. These equations handle
the two cases of auxiliary : NPqg has written NP\ and has NP g written NP\?. The corresponding derived
trees are shown in Figure 6. 71 derives sentences like John has written a book. It is obtained by adjoining
07 on the VP node in a6. 72 derives sentences like Has John written a book?. It is obtained by adjoining Os
on the S node in a6. The obligatory adjunction imposed by the mode feature structure has disappeared in
the derived trees ji and 72. However, to be completed, ji and y2 need NP -trees to be substituted inthe
nodes labeled by NP (e.g. John and a book).

13Directed Acyclic Graphs which represent the feature structures.
141In these examples we have merged the information stated on the trees and in the lexicon. We write unification equations

above the tree to which they apply. We have also printed to the right of each node the matrix representation of the top and
bottom feature structures.

15We implicitly require that each node have a unique name in an elementary tree. If necessary, subscripts differentiate nodes
of the same category.

-346- Intemational Parsina WorkshoD '89

written

Figure 6: NPqg has written NP\ and Has NPO written N Pi ?

2.3.2 Extension to the Earley-type Parser

The Earley-type algorithm for TAGs (Schabes and Joshi, 1988) can be extended to parse Lexicalized TAG
with unification equations on elementary trees. The extension is similar to the one proposed by Shieber (1985)
in order to parse the PATR-II formalism but it does not require the use of restrictors. For the recognition of
a substituted tree, we choose to check that unification constraints are compatible at the prediction step and
we pass information only at the completion step. For the recognition of an adjunction, we choose to check
only that unification constraints are compatible at the Left Predictor, Left Completor and Right Predictor
steps and we pass information only at the Right Completor step.

What follows is an informal explanation of the extension to the Earley-type parser. A new component D
is added to the states manipulated by the Earley-type parser. D specifies the feature structures associated
with each node of the tree represented by the state. It is a set of feature structures. The manipulation of
the other components of a state remain the same. We will ignore these components of a state and focus our
attention here on the manipulation of the set of feature structures D.

The Scanner, Move-dot-down and Move-dot-up processors behave as before and copy the DAG D to the
new state.16 The Left Predictor predicts all possible adjunctions and also tries to recognize the tree with
no adjunction. In case no adjunction is left predicted, the Left Predictor adds the new state only if the top
and bottom feature structures are compatible (see Figure 7). If they are compatible, a new state is added
but top and bottom feature structures are not unified. They will be unified in the Right Predictor. Then,
if no adjunction has been left predicted, the Right Predictor moves the dot up and unifies top and bottom
feature structures (see Figure 7).

The recognition of an adjunction with features is shown in Figure 7.17 At each step of the recognition of
an adjunction, the compatibility of the feature structures is checked. The information is passed only at the
Right Completor step.

18ldentical states have identical components, identical feature structures D.
17 A substituted tree is recognized in a similar way and is not explained here.

-347- Intemational Parsing Workshop '89

Pradctar
no tofjncton

o+

Sx

Sy

L*ft Pn*dkacx

left ComoMo”

added to Sx

iHUtr
and b UW

added to Sy
Ftutr

andbUDbf

1ft{Jb

added to Sz
Right Predictor

Left Predictor, no adjunction IBY and b’ U bf

D a added to Sw
Right Compimgi

] . . . z L / *'h o = fraMn-
Right Predictor, no \djunction

Figure 7: No Adjunction Recognition of an adjunction

For aon-lexicalized TAGs, this approach does not guarantee termination of the algorithm (for similar
reasons as for CFG-based unification grammar, Shieber, 1985). However for Lexicalized TAGs, even when
recursion occurs, the termination of the algorithm is guaranteed since the recognition of a tree entails the
recognition of at least one input token (its ‘head’) and since information is passed only when a tree is
completely recognized. If information were passed before the Right Completor step (in case of adjunction),
restrictors (as defined by Shieber, 1985) can be used to guarantee termination. However we believe that in
practice (for the Lexicalized TAGs for French and English) passing information at an earlier step than the
Right Completor step does not improve the performance.

3 Conclusion

In ‘lexicalized’ grammars, each elementary structure is systematically associated with a lexical ‘head’. These
structures specify extended domains of locality (as compared to the domain of locality in CFGs) over which
constraints can be stated. The ‘grammar’ consists of a lexicon in which each lexical item is associated with
a finite number of structures for which that item is the ‘head’.

Lexicalized grammars suggest a natural two-step parsing strategy. The first step selects the set of
structures corresponding to each word in the sentence. The second step tries to combine the selected
structures.

We take Lexicalized TAGs as an instance of lexicalized grammar. We illustrate the organization of the
grammar. Then we show how the Earley-type parser can take advantage of the two-step parsing strategy.
Experimental data show that its performance is thereby drastically improved. The first pass not only filters
the grammar used by the parser to produce a relevant subset but also enables the parser to use non-local
bottom-up information to guide its search. Finally, we explain how constraints over these structures expressed
by unification equations can be parsed by a simple extension of this algorithm. Lexicalization guarantees
termination of the algorithm without a special mechanism such as the use of restrictors.

The organization of lexicalized grammars, the simplicity and effectiveness of the two-pass strategy (some
other technique would perhaps achieve similar results) seem attractive from a linguistic point of view and for
processing. We are currently exploring the possibility of extending this approach to Categorial Grammars.

-348- Intemational Parsing Workshop '89

References

Abeille, Anne, August 1988 (a). Parsing French with Tree Adjoining Grammar: some Linguistic Accounts. In
Proceedings of the 12tfl International Conference on Computational Linguistics (COLING 88). Budapest.

Abeille, Anne, 1988 (b). .4 Lexicalized Tree Adjoining Grammar for French: the General Framework. Technical
Report MS-CIS-88-64, Department of Computer and Information Science, University of Pennsylvania.

Abeille, Anne, 1988 (c). Extraction out of NP in Tree Adjoining Grammar. In Papers from the 24th Regional Meeting
of the Chicago Linguistic Society. Chicago.

Abeille, Anne and Schabes, Yves, 1989. Parsing Idioms in Tree Adjoining Grammars. In Fourth Conference of the
European Chapter of the Association for Computational Linguistics (EACL'89). Manchester.

Ades, A. E. and Steedman, M. J., 1982. On the Order of Words. Linguistics and Philosophy 3:517-558.

Bishop, Kathleen M.; Cote, Sharon; and Abeille, Anne, 1989. A Lexicalized Tree Adjoining Grammar for English.
Technical Report, Department of Computer and Information Science, University of Pennsylvania.

Chomsky, N., 1981. Lectures on Government and Binding. Foris, Dordrecht.

Gazdar, G.; Klein, E.; Pullum, G. K.; and Sag, I. A., 1985. Generalized PhraseStructure Grammars.Blackwell
Publishing, Oxford. Also published by Harvard University Press, Cambridge, MA.

Gross, Maurice, 2-6 July 1984. Lexicon-Grammar and the Syntactic Analysis of French. InProceedings of the 10th
International Conference on Computational Linguistics (COLING '84). Stanford.

Joshi, Aravind K., August 1969. Properties of Formal Grammars with Mixed Type of Rules and their Linguistic
Relevance. In Proceedings of the International Conference on Computational Linguistics. Sanga Saby.

Joshi, Aravind K., 1973. A Class of Transformational Grammars. In M. Gross, M. Halle and Schutzenberger, M.P.
(editors), The Formal Analysis of Natural Languages. Mouton, La Hague.

Joshi, Aravind K., 1985. How Much Context-Sensitivity is Necessary for Characterizing Structural Descriptions—
Tree Adjoining Grammars. In Dowty, D.; Karttunen, L.; and Zwicky, A. (editors), Natural Language Processing—
Theoretical, Computational and Psychological Perspectives. Cambridge University Press, New York. Originally
presented in a Workshop on Natural Language Parsing at Ohio State University, Columbus, Ohio, May 1983.

Joshi, A. K.; Levy, L. S.; and Takahashi, M., 1975. Tree Adjunct Grammars. J. Comput. Syst. Sci. 10(1).

Kaplan, R. and Bresnan 1983. Lexical-functional Grammar: A Formal System for Grammatical Representation.
In Bresnan, J. (editor), The Mental Representation of Grammatical Relations. MIT Press, Cambridge MA.
Karttunen, Lauri, 1986. Radical Lexicalism. Technical Report CSLI-86-68, CSLI, Stanford University. To also appear
in New Approaches to Phrase Structures, University of Chicago Press, Baltin, M. and Kroch A., Chicago, 1988.
Kroch, A. and Joshi, A. K., 1985. Linguistic Relevance of Tree Adjoining Grammars. Technical Report MS-CIS-85-18,
Department of Computer and Information Science, University of Pennsylvania.

Pollard, Carl and Sag, Ivan A., 1987. Information-Based Syntax and Semantics. Vol 1: Fundamentals. CSLI.
Schabes, Yves and Joshi, Aravind K., June 1988. An Earley-Type Parsing Algorithm for Tree AdjoiningGrammars.
In 26th Meeting of the Association for Computational Linguistics (AC L 88). Buffalo.

Schabes, Yves; Abeille, Anne; and Joshi, Aravind K., August 1988. Parsing Strategies with ‘Lexicalized’ Grammars:
Application to TVec Adjoining Grammars. In Proceedings of the 12* International Conference on Computational
Linguistics (COLING™88). Budapest.

Shieber, Stuart M., July 1984. The Design of a Computer Language for Linguistic Information. In 22nd Meeting of
the Association for Computational Linguistics (ACL 84)- Stanford.

Shieber, Stuart M., July 1985. Using Restriction to Extend Parsing Algorithms for Complex-feature-based For-
malisms. In 23rd Meeting of the Association for Computational Linguistics (ACL 85). Chicago.

Shieber, Stuart M., 1986. An Introduction to Unification-Based Approaches to Grammar. Center for the Study of
Language and Information, Stanford, CA.

Steedman, M. J., 1985. Dependency and Coordination in the Grammar of Dutch and English. Language 61:523-568.
Steedman, M., 1987. Combinatory Grammars and Parasitic Gaps. Natural Language and Linguistic Theory 5:403—
439.

Vijay-Shanker, K., 1987. A Study of Tree Adjoining Grammars. PhD thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A.K., August 1988. Feature Structure Based Tree Adjoining Grammars. In Proceedings
of the \2th International Conference on Computational Linguistics (COLING 88). Budapest.

-349- Intemational Parsing Workshop '89

