
COMPLEXITY AND DECIDABILITY
IN LEFT-ASSOCIATIVE GRAMMAR1

ROLAND HAUSSER

1. Formal Rule Schemata of Generative Grammar
Left-associative grammar (LA-grammar) is a comparatively new formalism. By way of introduction, let
us compare it with more widely known systems, namely phrase structure grammar (PS-grammar) and
categorial grammar (C-grammar).

The formalism of PS-grammar is based on the rewriting systems of Post (1936). Rewriting rules have
the following form:
(1.1) The Schema of a Phrase-Structure Rewriting Rule

By replacing (rewriting) the symbol A with B and C, this rule generates a tree structure with A dominaung
B and C. Conceptually, the derivation order of rewriting rules is top-down.

The formalism of C-gram mar is based on the categorial-canceling rules of LeSnieswki (1929) and
Ajdukiewicz (1935). Categorial-canceling rules have the following form:
(1.2) The Schema of a Categorial Canceling Rule

“ (yix) • Pen =* a %)
This rule schema combines a and 0 into a0 by canceling the Y in the category of a with the corresponding
category of 0. The result is a tree structure with a 0 of category X dominating a and 0. Conceptually, the
derivation order of categorial-canceling rules is bottom-up.
(1.3) The Schema of a Left-Associative Rule

r,: [CAT-1 CAT-2] => [rp,- CAT-3]

A left-associative rule r, maps a sentence start (represented by its category CAT-1) and a next word
(represented by its category CAT-2) into the rule package rp,- and a new sentence start (represented by its
category CAT-3). A state in LA-grammar is defined as an ordered pair, consisting of a rule package and
a sentence start. In the next composition, the rules in the rule package are applied to the sentence start
resulting from the last composition and a new next word.

The different rule schemata result in three different conceptual derivation orders.
(1.4) Three Grammatical Derivation Orders

LA-grammar C-grammar PS-grammar

LA-grammars are input-output equivalent to their parsers and generators in that (i) they take the same
input (i.e., an unanalyzed surface string), (ii) generate the same output (a left-associative syntactic analysis),

1The results reported in this paper are published in Hausser, R. (1989) Computation o f Language, Springer-Verlag Berlin-New
York (Symbolic Computation - Artificial Intelligence), June 1989.

A — B C

/ \

/ \

/ \
X \

bottom-up left-assoc. bottom-up amalgamating top-down expanding

-254- Intemational Parsing Workshop '89

and (iii) use the sam e rules in the sam e derivation order. In other words, LA-gram m ar achieves “absolute
type transparency”2 because it is strongly input-output equivalent to its parsers and generators.

PS-grammar and C-grammar, on the other hand, are unsuitable for direct parsing. Parsers for context-
free PS-grammars, for example, cannot possibly apply the rules of the grammar directly because the rules
rewrite an initial start symbol, while the parser takes sentences as input The standard solution to this
dilemma consists in computional routines which reconstruct the grammatical analysis in an indirect way
by building large intermediate structures (e.g., “state sets”, “charts”, “tables”) which are not part of the
grammar.

2. Syntax and Semantics
The tree structures generated by PS-grammar and C-grammar are semantically motivated constituent

structures. Constituent structures are based on substitution and movement tests which are intended to reveal
which parts of the sentence belong most closely together. The completely regular tree structure of LA-
grammar, on the other hand, is based on the notion of possible continuations and reflects the time-linear
nature of language.

As an example of a left-associative parse consider (2.1).
(2.1) A Sample Derivation
NEWCAT> (z Fido found a bone.)
Elapsed real time * 779 milliseconds
User cpu time * 660 milliseconds
System cpu time « 20 milliseconds
Total cpu time - 680 milliseconds

Linear Analysis:

*START_0
1

(NA) FIDO
(N SC V) FOUND

*NOM+FVERB_3
2

(SC V) FIDO FOUND
(SQ) A

*FVER3+MAIN_4
3

(SQ V) FIDO FOUND A
(SN) BONE

*DET+NOUN_2
4

(V) FIDO FOUND A BONE
(V DECL) .

*CMPLT_13
5

(DECL) FIDO FOUND A BONE .

Hierarchical Analysis:
(PROPOSITION-5_6_13

(MOOD (DECLARATIVE-5_6_13))
(PROP-CONTENT

((SENT-2_6_13 (SUBJ ((NP-1_6_13 (NAME (FIDO-l_6_13)))))
(VERB (FIND—2_6_13))
(DIR-OBJ
((NP-3_6_13 (REF (A-3_6_13 SG-4_6_13))

(NOUN ((BONE-4_6_13))))))))))

2 Berwick A. Weinberg (1984), p. 41.

-255- International Parsing Workshop '89

NAME REF NOUN
I I I

I I I I
FIDO A SG BONE

The algorithm of left-associative grammar (LA-grammar) always combines a sentence start and a next
word into a new sentence start. In a semantically interpreted LA-grammar, a homomorphic semantic hier­
archy is constructed simultaneously with the linear syntactic parse. The semantic hierarchy expresses many
of the intuitions central to constituent structure and may be displayed as a structured list or, equivalently,
as a tree structure. The following discussion of LA-grammar is limited to the formal properties of the
linear syntax.

3. The Mathematical Definition
(3.1) Formal Definition of Left-Associative Grammar5
An LA-grammar is defined as a 7-tuple <W, C, LX, CO, RP, STs, ST^ >, where

1. W is a finite set of word surfaces.

2. C is a finite set of category segments.

3. LX C (W x C) is a finite set comprising the lexicon.

4. CO = (coo ... co«_!) is a finite sequence of total recursive functions from (C* x C) into C- u {J,}.
called categorial operations.

5. RP = (rpo ... rp„_i) is an equally long sequence of subsets of n called rule packages.

6. STs = {(rp* ca t,) ,...} is a finite set of initial states, where each rp, is a subset of n called a start rule
package and each cat, e C .

7. ST/r = {(rp/ catf), ...} is a finite set of final states, where each rp/ e RP and each cat/- e C*.

For theoretical reasons, the categorial operations are defined as total functions. In practice, the categorial
operations are defined on easily-recognizable subsets of (C* x C+), where anything outside these subsets
is mapped into the arbitrary “don’t care” value {JL}, making the categorial operations total.

3 Let us recall some notation from set theory needed in this definition. If X if a set, then X+ is the “positive closure." i.e., the
set of all concatenations of elements of X. X* is the Kleene closure of X, defined u X * U « , where t is the “empty sequence.” The
power set of X is denoted by 2X . If X and Y are sets, then (X x Y) is the Cartesian product of X and Y, i.e., the set of ordered pairs
consisting of an element of X and an element of Y. For convenience, we also identify integers with sets, i.e., n = {i | 0 < i < n}.

-256- International Parsing Workshop '89

An LA-gram m ar is specified by (i) a lex icon L X , (ii) a set o f start states ST s, (iii) a sequence o f
rules, each defined as an ordered pair (co, rp,), and (iv) a set o f final states ST F. This general format o f
L A-gram m ars is illustrated below with the context-sensitive language atbkck.

(3.2) The Definition of a.kl /c k

LX -dtf { [a (be)], [b (b)]. [c (c)]}
S T { ({ r - 1 , r-2} (b e))}
r-1: [(X) (be)] => [{r-1 , r-2} (bX c)],
r-2: [(bX c) (b)] => [{r-2 , r-3} (X c)],
r-3: [(cX) (c)] => [{r-3 } (X)]
ST/r { [rp-3 €]}.

L A -gram m ar is equally suitable for parsing and generation. The only difference is that in parsing the
next w ord is provided by the input string, w hile in generation the next word is chosen from the lex icon . The
gram m atical analysis provided by LA-parsers and LA-generators is sim ply a trace o f the com putation. The
declarative lingu istic analysis and the com putation are m erely different aspects o f the sam e left-associative

structure.

(3.3) Parsing aaabbbccc with Active Rule Counter
NEWCAT> (z a a a b b b c c c)
; 1: Applying rules (RULE-1 RULE-2)
; 2: Applying rules (RULE-1 RULE-2)
; 3: Applying rules (RULE-1 RULE-2)
; 4: Applying rules (RULE-2 RULE-3)
; 5: Applying rules (RULE-2 RULE-3)
; 6: Applying rules (RULE-2 RULE-3)
; 7: Applying rules (RULE-3)
; 8: Applying rules (RULE-3)
; Number of rule applications: 14.

* START-0
1

(B C) A
(B C) A

•RULE-1
2

(B 3 C C) A A
(B O A

"RULE-1
3

(B 3 B C C C) A A A
(B) B

'RULE-2
4

(B B C C C) A A A B
(B) B

•RULE-2
5

(B C C C) A A A B B
(B) B

•RULE-2
6

(C C C) A A A B B B
(C) C

•RULE-3
7

(CC) A A A B B B C
(C) C

•RULE-3
8

(C) A A A B B B C C

-257- Intemational Parsing Workshop '89

(C) c
*RULE-3
9

(NIL) A A A 3 3 3 C C C

The parse is called with the function “(z N ote that categories precede the surfaces in (3 .3). Each
le ft-associative com position is characterized by a word number (e .g ., 4), a sentence start consisting o f a
category and a surface (e .g ., (B B C C) A A A B), a next word (e .g ., (B) B), and a rule (e .g ., *R U L E -2).
The result o f the com position is show n in the first line o f the next “history section ” (e .g ., (B C C C) A A
A B B) .

A s an illustration o f the relation betw een an LA-gram m ar and its generator, consider the fo llow ing
derivation o f w ell-form ed expressions up to length 12 using the grammar for a*b*c* defined in (3.2).

(3.4) Generating the Representative Sample of a*b*c*
NEWCAT> (gram-gen 3 ' (a b c))

Parses of length 2:
A 3

2 (C)
A A

1 (B 3 C C)

Parses of length 3:
ABC

2 3 (NIL)
A A B

1 2 (B C C)
AAA

1 1 (B B 3 C C C)

Parses of length 9:
A A A B 3 3 C C C

1 1 2 2 2 3 3 3 (NIL)
A A A A B 3 B B C

1 1 1 2 2 2 2 3 (C C C)

Parses of length 10:
A A A A B B B B C C

1 1 1 2 2 2 2 3 3 (CC)

Parses of length 11:
A A A A B B 3 3 C C C

1 1 1 2 2 2 2 3 3 3 (C)

Parses of length 12:
A A A A B B B B C C C C

1 1 1 2 2 2 2 3 3 3 3 (NIL)

A fter loading the sam e gramm ar as used for parsing, the function ‘gram -gen ’ is ca lled w ith tw o
argum ents: the “recursion factor” o f the grammar (cf. Section 6), and a list o f the words to be used .4
T he output is a system atic generation, starting with w ell-form ed expressions o f length 2. Each derivation
consists o f a surface, a sequence o f rules, and a result category. A s an exam ple o f a s in g le derivation,
consider (3 .5).

4In another version, ’gram-gen’ is called with the maximal surface length rather than the recursion factor.

-258- International Parsing Workshop '89

(3.5) A Complete Well-Formed Expression in a*b*c*

A A A 3 3 3 C C C
1 1 2 2 2 3 3 3 (NIL)

The surface and the rule sequence are lined up so that it is apparent which word was added by which rule.
Derivation (3.5) characterizes a complete well-formed expression because it represents the rule state (rp-3
e), which is element of the set of complete well-formed expressions of the LA-grammar for a*b*c* defined
in (3.2).

4. Generative Capacity and the Chomsky Hierarchy
The most basic formal result in LA-grammar is that it generates all—and only—the recursive languages.
That LA-grammar generates all recursive languages follows from the fact that a categorial operation can
be any total recursive function.5 That LA-grammar generates only the recursive languages, on the other
hand, is due to the linear structure of the derivation: at each left-associative composition there is only a
finite number of sentence starts, each with a finite rule package, and a finite number of next word readings,
resulting in a finite number of new sentence starts.6

Furthermore, we may show that the automata-theoretic hierarchy of regular, context-free, and context-
sensitive languages is clearly reflected in the formalism of LA-grammar. Specifically, regular languages
are generated by LA-Grammars with rules using only empty categorial operations, e.g.,
(4.1) LA-Rule with Empty Categorial Operation

Tr. [c CAT-2] => [rp,- e]
The proof is based on a systematic translation procedure from Finite State Automata into LA-grammars
with rules like (4.1).7

Context-free languages are generated by LA-grammars with categorial operations which work only
on the first segment of CAT-1 or CAT-3, e.g.,

r,: [(a X)(a)] => [rp, (X)]
or

r«: [(X)(a)] => [rp, (a X)]
where X is a variable for sequences of category segments. The proof is based on the corresponding
restrictions on pushdown automata. In particular, the automaton may look only at the top of the stack,
represented in the rule by CAT-1, and the automaton may only push or pop one element at a time from
the stack (with the corresponding result represented by CAT-3).

Context-sensitive languages are generated by LA-grammars where the length of the categories is
bounded by C • n, where C is a finite constant and n is the length of a complete well-formed input
expression. The proof is based ori the corresponding restrictions on linearly bounded automata.

(5) The Hierarchy o f A-LAGs, B-LAGs, and C-LAGs
A more natural way of dividing possible languages in LA-grammar than the Chomsky hierarchy is the
hierarchy of A-LAGs, B-LAGs, and C-LAGs. This new hierarchy is based on the properties of the
categorial operations of the rules of LA-grammar. The crucial formal property of a categorial operation—
from a complexity point of view—is whether or not it has to search through indefinitely-long sentence-start
categories.

3 For a detailed proof see Hausser (1989), Theorem 2, p. 135.
6For t detailed proof see Hausser (1989), Theorem 1, p. 134.
7 For a detailed discussion see Hausser (1989). Section 8.2. A more general characterization of the regular language* i* given in

Theorem 3, p. 138.

-259- Intemational Parsing Workshop '89

(5.1) Definition of the Class of C-LAGs
The class of constant LA-grammars, or C-LAGs, consists of grammars where no categorial
operation co, looks at more than k segments in the sentence-start categories, for a finite constant
k} A language is called a C-language iff it is recognized by a C-LAG.

LA-granmars for regular and context-free languages are all C-LAGs because in regular languages the
length of the sentence-start category is restricted by a finite constant, and in context-free languages the
categorial operation may only look at a finite number of segments at the beginning of the sentence-start
category. But the LA-grammars for many context-sensitive languages, e.g., a*b*c* (cf. (3.2)), a*b*c*d*e*,
WW, and WWW, are also C-LAGs.

Generally speaking, an LA-grammar is a C-LAG if its rules conform to the following schemas:
r,: [(seg-l...seg-k X) CAT-2] => [rp,- CAT-3]

r,: [(X seg-l...seg-k) CAT-2] => [rp, CAT-3]

r,: [(seg-l...seg-i X seg-i+l...seg-k) CAT-2] => [rp, CAT-3]
Thereby, CAT-3 may contain at most one sequence variable (e.g., X).

On the other hand, if an LA-grammar has rules of the form
r,: [(X seg-l...seg-k Y) CAT-2] => [rp, CAT-3]

the grammar is not a constant LA-grammar. In non-constant LA-grammars CAT-3 may contain more than
one sequence variable (e.g., X and Y).

Non-constant LA-grammars are divided into the B-LAGs and A-LAGs.
(5.2) Definition of the Class of B-LAGs

The class of bounded LA-grammars or B-LAGs consists of grammars where for any complete
well-formed expression E the length of intermediate sentence-start categories is bounded by
C • n, where n is the length of E and C is a constant. A language is called a B-language if it
is recognized by a B-LAG, but not by a C-LAG.

(5.3) Definition of the Class of A-LAGs
The class of A-LAGs consists of all LA-grammars because there is no limit on the length of
the categories, or on the number of category segments read by the categorial operations. A
language is called an A-language if it is recognized by an A-LAG, but not by a B-LAG.

The three classes of LA-grammars defined above are related in the following hierarchy:
(5.4) The Hierarchy of A-LAGs, B-LAGs, and C-LAGs

The class of A-LAGs recognizes all recursive languages, the class of B-LAGs recognizes
all context-sensitive languages, and the class of C-LAGs recognizes many context-sensitive
languages, all context-free languages, and all regular languages.

(6) Decidability
For arbitrary context-free grammars it is undecidable whether the languages generated are ambiguous, in
an inclusion relation, or equivalent In LA-grammar, on the other hand, questions of ambiguity, emptiness,
inclusion, and equivalence are decidable for a large subset of the C-LAGs which includes context-sensitive
languages. These results are based on the fact that the derivational structure of LA-grammar clearly exhibits
the occurrence of grammatical recursions.

The following definition is based on the notion of “abstract derivations”. Two derivations are represented
by the same abstract derivation if they differ only in the choice of words, but exhibit the same sequence of
rules and the same sequence of categories. In an abstract derivation different words of the same category,
e.g., (table (sn)) and (chair (sn)), are represented by one abstract word, e.g., (A (sn)).

8Thii finite constant will vary between different grammars.

-260- International Parsing Workshop '89

(6.1) Definition of a Grammatical Recursion
An abstract derivation exhibits a grammatical recursion if and only if

1. the surface exhibits two or more identical subsequences which are directly adjacent,

2. the rule sequence exhibits two or more identical subsequences which correspond to the surface, and

3. each instance of the recursion affects the sentence-start category in a regular way.

How sentence-start categories are affected by a recursion depends on the type of the recursion. LA-grammar
distinguishes between (i) constant, (ii) increasing, (iii) decreasing, and (iv) simultaneously increasing and
decreasing grammatical recursions. A recursion is constant if the sentence start categories at the beginning
of two adjacent loops are identical. A recursion is increasing if the sentence start category at the beginning
of the second loop is longer than the sentence start category at the beginning of the first loop. And
correspondingly for the other cases.

Here is how the algorithm recognizes and types recursions: Assume the generator has derived a string
of length n, and is in the process of adding the n+lst word—e.g., A—by means of a certain rule, e.g. 1.
(6.2) Example of a Grammatical Recursion

....... ABCABC A

....... 123123 1 (cat)

The algorithm for recognizing recursions checks whether the current rule, i.e., rule 1, has two predecessors.
If so, it checks whether the (abstract) surfaces added by the occurrences of rule 1 are all the same. If
so, it checks whether the rule sequences and the surface sequences between the occurrences of rule 1 are
identical. If all these conditions are satisfied, a recursion has been recognized. Finally, the recursion is
typed by comparing the categories of the expression in question with its shorter predecessors ending in
surface A and rule 1.

The crucial problem for proving decidability in LA-grammar is to determine how often grammatical
recursions have to be applied in order for the set of completions to be a “representative sample”. In the
class of C-LAGs, the grammatical structure provides a “recursion factor” which specifies how often the
increasing recursions of the grammar have to be applied in order to arrive at a representative sample.
During the generation of longer and longer expressions, the system keeps track of increasing recursions
and stops the recursion as soon as the number specified by the recursion factor has been reached.

In most C-LAGs this procedure results in a finite set of derivations which is representative in the
sense that all sentence types generated by the grammar are exemplified in iL Such a representative sample
provides the basis for deciding ambiguity, inclusion, equivalence, and (non-)emptiness of C-LAGs.

Not all C-LAGs are decidable, however. In C-LAGs with simultaneously increasing and decreasing
recursions such that the increase is greater than the decrease the recursion factor does not guarantee
the derivation of a representative sample. Those C-LAGs where the process of a systematic derivation,
controlled by a grammar-dependent recursion factor, results in finite sets of representative samples are
called D-LAGs (“Decidable C-LAGs”). An example of a D-LAG is a*b*c*, for which a representative
sample is derived in (3.4).

Can the technique of proving the subset and the equality relationship, as well as ambiguity and (non-)-
emptiness for a large class of context-free and context-sensitive languages be used for PS-grammars as well?
Because PS-grammars have a different derivational structure, the method of deriving longer and longer
sentence starts cannot be applied directly in PS-grammar. The only possibility would be a systematic
translation of PS-grammars into C-LAGs, and proving the properties in question indirecdy by way of the
weakly equivalent C-LAGs.

However, this approach requires that there is a general algorithm for translating PS-grammars into
LA-grammars. No such algorithm has been found. Furthermore, experience writing LA-grammars for

-261- International Parsing Workshop '89

languages described originally as PS-grammars has shown that the construction of the LA-grammar is
never based on the PS-grammar for the language, but proceeds from the language directly. Thus, it is
unlikely that such an algorithm exists.

(7) The Com plexity of Sound C-LAGs
Earley (1970) showed that the Earley algorithm recognizes unambiguous context-free grammars in

|G|2 ■ n2, but ambiguous context-free grammars in |G|2 • n2 (where |G| is the size of the grammar and n the
length of the input string). Thus, computational complexity in PS-grammar depends not only on the class
of the grammar, e.g., regular, context-free, or context-sensitive, but also on whether or not the grammar is
ambiguous.

It is similar in LA-grammar: computational complexity depends not only on whether the grammar
is a C-LAG, B-LAG, or A-LAG, but also on whether or not the grammar is ambiguous. LA-grammar
distinguishes three levels of ambiguity:
(7.1) Three Levels of Ambiguity in LA-Grammar

1. unambiguous grammars

2. syntactically-ambiguous grammars

3. lexically-ambiguous grammars

Syntactic ambiguity is defined in terms of the input-compatibility of rules.
(7.2) Three Types of Input Conditions

1. Incompatible input conditions: Two rules have incompatible input conditions if there exist no input
pairs which are accepted by both rules.

2. Compatible input conditions: Two rules have compatible input conditions if there exists at least
one input pair accepted by both rules, and there exists at least one input pair accepted by one rule,
but not the other.

3. Identical input conditions: Two rules have identical input conditions if it holds for all input pairs
that they are either accepted by both rules, or rejected by both rules.

(7J) Definition of Unambiguous LA-Grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules
have incompatible input conditions, and (ii) there are no lexical ambiguities.

Examples of incompatible input conditions are [(a X)(b)] and [(c X)(b)], as well as [(a X)(b)] and [(a
X)(c)].
(7.4) Definition of Syntactically-Ambiguous LA-Grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package
containing at least two rules with compatible input conditions, and (ii) there are no lexical
ambiguities.

For example, [(a X)(b)] and [(X a)(b)] represent compatible input conditions.
(7.5) Definition of Lexically-Ambiguous LA-Grammars

An LA-grammar is lexically ambiguous if its lexicon contains at least two analyzed words
with identical surfaces.

-262- International Parsing Workshop '89

Because the categorial operations of C-LAGs look at no more than k sentence-start category segments,
for some constant k, the application of a rule may be taken as the “primitive operation” for purposes of
complexity analysis. Unambiguous C-LAGs are proven to parse in linear time. This result follows from
definition (7.3), and is significant insofar as it applies not only to the (non-deterministic) context-free but
also to many context-sensititive languages (e.g., akbkck as defined in (3.2)).

In the case of syntactically ambiguous LA-grammars, the crucial source of computational complexity
are recursive ambiguities. In sound LA-grammars recursive ambiguities are restricted by the single return
principle.
(7.6) The Single Return Principle (SRP)

If a syntactic ambiguity arises inside a recursion, then only one of the branches resulting from
the ambiguity may feed back into the recursion.

As a consequence of the SRP, sound LA-grammars have—at most—(C • n) readings.^ Furthermore, the
SRP does not decrease the generative capacity of an LA-grammar.10 Because for any LA-grammar there
exists a weakly equivalent sound LA-grammar, any syntactically ambiguous C-language can be parsed in
n2.

In the case of systematic lexical ambiguity, finally, there are two choices. One is to eliminate the lexical
ambiguities by means of neutral categories. The other is to “pack” the readings, which may be exponential
in number, into a single representation. It may be shown that these strategies are always possible within
the class of C-LAGs.11 In summary, if a language can be generated or recognized by a C-LAG then there
exists a C-LAG which will parse it in n2.

R eferences

Ajdukiewicz, K. (1935) "Die syntaktische Konnexiidt,” Studia Philosophica, 1:1-27.

Berwick, R.C., and A.S. Weinberg (1984) The Grammatical Basis of Linguistic Performance: Language Use and
Aquisition. The MIT-Press, Cambridge, Massachusetts.

Earley, J. (1970) "An Efficient Context-Free Parsing Algorithm, ” CACM 13(2):94-102.

Hausser, R. (1989) Computation of Language, Springer-Verlag Berlin-New York (Symbolic Computation - Artificial
Intelligence), June 1989.

Hopcroft, J.E., and Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley Publishing Company, Reading, Massachusetts.

Leiniewski, S. (1929) "Grundzuge ernes neuen Systems der Grundlage der Mathematik," Fundamenta Mathemancae,
Wan aw.

Post, E. (1936) "Finite Combinatory Processes — Formulation I,” Journal of Symbolic Logic, I.

9C is some finite, grammar dependent constant reflecting the number of rules introducing recursive ambiguities and n is the length
of the input.

10See Hausser (1989), Theorem 11, p. 224.
u Noie that the problem of Boolean satisfiability (cf. Hopcroft & Ullman (1979), p. 325) exceeds not only the power cf context-free

grammars, but also of C-LAGs. An LA-grammar would not only have to build longer and longer categories in order to keep track cf
the different value assignments, but it would also have to check through the category each time it encounters another proportional
variable. It is this second requirement which violates the definition of C-LAGs.

-263- Intemational Parsing Workshop '89

