
Parallel Parsing Strategies in Natural Language Processing

Anton Nijholt

Faculty of Computer Science, University of Twente
P.O. Box 217, 7500 A£ Enschede, The Netherlands

ABSTRACT

We present a concise survey of approaches to the context-free parsing prob­
lem of natural languages in parallel environments. The discussion includes parsing
schemes which use more than one traditional parser, schemes where separate
processes are assigned to the ‘non-deterministic’ choices during parsing, schemes
where the number of processes depends on the length of the sentence being parsed,
and schemes where the number of processes depends on the grammar size rather
than on the input length. In addition we discuss a connectionist approach to the
parsing problem.

1. Introduction

In the early 1970’s papers appeared in which ideas on parallel compiling for programming
languages and parallel executing of computer programs were investigated. In these papers parallel
lexical analysis, syntactic analysis (parsing) and code generation were discussed. At that time vari­
ous multi-processor computers were introduced (CDC 6500, 7600, STAR, ELLIAC IV, etc.) and the
first attempts were made to construct compilers which used more than one processor when compil­
ing programs. Slowly, with the advent of new parallel architectures and the ubiquitous application
of VLSI, interest increased and presently research on parallel compiling and executing is
widespread. Although more slowly, a similar change of orientation occurred in the field of natural
language processing. However, unlike the compiler construction environment with its generally
accepted theories, in natural language processing no generally advocated - and accepted - theory of
natural language analysis and understanding is available. Therefore it is not only the desire to
exploit parallelism for the improvement of speed but it is also the assumption that human sentence
processing is of an inherently parallel nature which makes computer linguists and cognitive scien­
tists turn to parallel approaches for their problems.

Parallel parsing methods have been introduced in the areas of theoretical computer science,
compiler construction and natural language processing. In the area of compiler construction these
methods sometimes refer to the properties of programming languages, e.g. the existence of special
keywords, the frequent occurrence of arithmetic expressions, etc. Sometimes the parsing methods
that have been introduced were closely related to existing and well-known serial parsing methods,
such as LL-, LR-, and precedence parsing. Parallel parsing has often been looked upon as deter­
ministic parsing of sentences with more than just a single serial parser. However, with the mas­
sively parallel architectures that have been designed and constructed, together with the possibility to
design special-purpose chips for parsing and compiling in mind, also the well-known methods for
general context-free parsing have been re-investigated in order to see whether they allow parallel
implementations. Typical results in this area are O (n)-time parallel parsing algorithms based on the
Earley or the Cocke-Younger-Kasami parsing methods. In order to study complexity results for
parallel recognition and parsing of context-free languages theoretical computer scientists have intro­
duced parallel machine models and special subclasses of the context-free languages (bracket
languages, input-driven languages). Methods that have been introduced in this area aim at obtaining
lower bounds for time and/or space complexity and are not necessarily useful from a more practical
point of view. A typical result in this area tells us that context-free language recognition can be

-240- Intemational Parsing Workshop '89

done in 0 (lo^n) time using n 6 processors, where n is the length of the input string.
In the area of natural language processing many lands of approaches and results can be dis­

tinguished. While some researchers aim at cognitive simulation, others are satisfied with high per­
formance language systems. The first-mentioned researchers may ultimately ask for numbers of
processors and connections between processors that approximate the number of neurons and inter­
connections in the human brain. They model human language processing with connectionist models
and therefore they are interested in massive parallelism and methods which allow low degradation
in the face of local errors. In connectionist and related approaches to parsing and natural language
analysis the traditional methods of language analysis are often replaced by strongly interactive dis­
tributed processing of word senses, case roles and semantic markers. A more modest use of paral­
lelism may also be useful. For any system which has to understand natural language sentences it is
necessary to distinguish different levels of analysis (see e.g. Nijholt[1988], where we distinguish
the morphological, the lexical, the syntactic, the semantic, the referential and the behavioral level)
and at each level a different kind of knowledge has to be invoked. Therefore we can distinguish dif­
ferent tasks: the application of morphological knowledge, the application of lexical knowledge, etc.
It is not necessarily the case that the application of one type of knowledge is under control of the
application of any other type of knowledge. These tasks may interact and at times they can be per­
formed simultaneously. Therefore processors which can work in parallel and which can communi­
cate with each other may be assigned to these tasks in order to perform this interplay of multiple
sources of knowledge. Finally, and independent of a parallel nature that can be recognized in the
domain of language processing, since operating in parallel with a collection of processors can
achieve substantial speed-ups, designers and implementers of natural language processing systems
will consider the application of available parallel processing power for any task or subtask which
allows that application.

In this paper various approaches to the problem of parallel parsing will be surveyed. We will
discuss examples of parsing schemes which use more than one traditional parser, schemes where
‘non-deterministic’ choices during parsing lead to separate processes, schemes where the number of
processes depends on the length of the sentence being parsed, and schemes where the number of
processes depends on the grammar size rather than on the input length. Our aim is not to give a
complete survey of methods that have been introduced in the area of parallel parsing. Rather we
present some approaches that use ideas that seem to be characteristic for many of the parallel pars­
ing methods that have been introduced.

2. From One to Many Traditional Serial Parsers

Introduction
As mentioned in the introduction, many algorithms for parallel parsing have been proposed. Con­
centrating on the ideas that underlie these methods, some of them will be discussed here. For an
annotated bibliography containing references to other methods see Nijholt et al[1989]. Since we
will frequently refer to LR-parsing a few words will be spent on this algorithm. The class of LR-
grammars is a subclass of the class of context-free grammars. Each LR-grammar generates a deter­
ministic context-free languages and each deterministic context-free language can be generated by an
LR-grammar. From an LR-grammar an LR-parser can be constructed. The LR-parser consists of
an LR-table and an LR-routine which consults the table to decide the actions that have to be per­
formed on a pushdown stack and on the input The pushdown stack will contain symbols denoting
the state of the parser. As an example, consider the following context-free grammar.

1. S —» NP VP 4. PP -> *prep NP
2. S -> S PP 5. VP -> *v NP
3. NP *det *n

With the LR-construction method the LR-table of Fig. 1 will be obtained from this grammar. It is
assumed that each input string to be parsed will have an endmarker which consists of the $-sign.

An entry in the table of the form ‘shn’ indicates the action ‘shift state n on the stack and
advance the input pointer’; entry ‘ren’ indicates the action ‘reduce the stack using rule n \ The

-241- International Parsina Workshop '89

state •det *n *v •prep $ NP PP VP S
0 sh3 2 1
1 sh5 acc 4
2 sh6 7
3 sh8
4 re 2 re 2
5 sh3 9
6 sh3 10
7 re 1 re 1
8 re3 re3 re3
9 re4 re4

10 re5 re5

Fig. 1 LR-parsmg table for the example grammar.

entry ‘acc’ indicates that the input string is accepted. The right part of the table is used to decide the
state the parser has to enter after a reduce action. In a reduce action states are popped from the
stack. The number of states that are popped is equal to the length of the right hand side of the rule
that has to be used in the reduction. With the state which becomes the topmost symbol of the stack
(0- 10) and with the nonterminal of the left hand side of the rule which is used in the reduction (5 ,
NP, VP, or PP) the right part of the table tells the parser what state to push next on the stack. In Fig.
2 the usual configuration of an LR-parser is shown.

LR-
routine

LR-
table

Fig. 2 LR-parser.

More than One Serial Parser
Having more than one processor, why not use two parsers? One of them can be used to process the
input from left to right, the other can be used to process the input from right to left. Each parser can
be assigned part of the input When the parsers meet the complete parse tree has to be constructed
from the partial parse trees delivered by the two parsers. Obviously, this idea is not new. We can
find it in Tseytlin and Yushchenko! 1977] and it appears again in Loka[1984]. Let G = (jV, I ,P, S)
be a context-free grammar. For any string a e V* let a* denote the reversal of a. Let
G* = (N ,L ,P \S) be the context-free grammar which is obtained from G by defining
PR = {/. A -*a* | i. A ->ae P }. It is not difficult to see that, when we start a left-to-right top-down
construction of a parse tree with respect to G at the leftmost symbol of a string w and a bottom-up
right-to-left construction of a parse tree with respect to G* at the rightmost symbol of w, then -
assuming the grammar is unambiguous - the resulting partial parse trees can be tied together and a
parse tree of w with respect to G is obtained. If the grammar is ambiguous all partial trees have to
be produced before the correct combinations can be made. Similarly, we can start with a bottom-up
parser at the left end of the string and combine it with a top-down parser starting from the right end
of the string. Especially when the grammar G allows a combination of a deterministic top-down (or
LL-) parser and a deterministic bottom-up (or LR-) parser this might be a useful idea. However, in
general we can not expect that if G is an LL-gram mar, then G* is an LR-grammar and conversely.

Rather than having one or two parsers operating at the far left or the far right of the input, we
would like to see a number of parsers, where the number depends on the ‘parallelism’ the input
string allows, working along the length of the input string. If there is a natural way to segment a

-242- Intemational Parsing Workshop '89

string, then each segment can have its own parser. Examples of this strategy are the methods
described in Lincoln[1970], Mickunas and Schellf 1975], Fischer[1975], Carlisle and Friesen[1985]
and Lozinskii and Nirenburg[1986]. Here we confine ourselves to an explanation of Fischer’s
method. Fischer introduces ‘synchronous parsing machines’ (SPM) that LR-parse part of the input
string. Each of the SPM’s is a serial LR-parser which is able to parse any sentence of the grammar
in the usual way from left to right. However, at least in theory, Fischer’s method allows any symbol
in the input string as the starting point of each SPM. For practical applications one may think of
starting at keywords denoting the start of a procedure, a block, or even a statement. One obvious
problem that emerges is, when we let a serial LR-parser start somewhere in the input string, in what
state should it start? The solution is to let each SPM carry a set of states, guaranteed to include the
correct one. In addition, fey each of these states the SPM carries a pushdown stack on which the
next actions are to be performed. An outline of the parsing algorithm follows.

For convenience we assume that the LR-parser is an LR(0) parser. No look-ahead is neces­
sary to decide a shift or a reduce action. In the algorithm M denotes the LR-parsing table and for
any state s,R(s) denotes the set consisting of the rule which has to be used in making a reduction in
state s. By definition, R (s) = {0} if no reduction has to be made in state s.
(1) Initialization.

Start one SPM at the far left of the input string. This SPM has a single stack and it only con­
tains Jo. ^ e initial state. Start a number of other SPM’s. Suppose we want to start an SPM
immediately to the left of some symbol a. In the LR-parse table M we can find which states
have a non-empty entry for symbol a. For each of these states the SPM which will be started,
possesses a stack containing this state only. Hence, the SPM is started with just those states
that can validly scan the next symbol in the string.

(2) Scan the next symbol.
Let a be the symbol to be scanned. For each stack of the SPM, if state s is on top, then
(a) if M (s, a) = sh s ', then push s ' on the stack;
(b) if M (s, a) = 0 , then delete this stack from the set of stacks this SPM carries.
In the latter case the stack has been shown to be invalid. While scanning the next input sym­
bols the number of stacks that an SPM carries will decrease.

(3) R e d u c e ?
Let Q = [si, • • • ,J„) be the set of top states of the stacks of the SPM under consideration.
Define

R (Q) = U R (s) .
**Q

(a) if R(Q) = (0), then go to step (2); in this case the top states of the stacks agree that no
reduction is indicated;
(b) if R (2) = [i}, < * 0, and i = A ->y4, then, if the stacks of the SPM are deep enough to pop
off | t; | states and not be empty, then do reduction i;
(c) otherwise, if we have insufficient stack depth or not all top states agree on the same reduc­
tion, we stop this SPM (for the time being) and, if possible, we start a new SPM to the immedi­
ate right.

An SPM which has been stopped can be restarted- If an SPM is about to scan a symbol already
scanned by an SPM to its immediate right, then a merge of the two SPM’s will be attempted. The
following two situations have to be distinguished;
• If the left SPM contains a single stack with top state s, then s is the correct state to be in and we

can select from the stacks of the right SPM the stack with bottom state s. Pop s from the left
stack and then concatenate the two. All other stacks can be discarded and the newly obtained
SPM can continue parsing.

• If the left SPM contains more than one stack, then it is stopped. It has to wait until it is res­
tarted by an SPM to its left. Notice that the leftmost SPM always has one stack and it will
always have sufficient stack depth. Therefore there will always be an SPM coming from the
left which can restart a waiting SPM.

-243- Intemational Parsing Workshop '89

In step (3c) we started a new SPM immediate to the right of the stopped SPM. What set of states
and associated stacks should it be started in? We cannot, as was done in the initialization, simply
take those states which allow a scan of the next input symbol. To the left of this new SPM reduc­
tions may have been done (or will be done) and therefore other states should be considered in order
to guarantee that the correct state is included. Hence, if in step (3) (Q) | > 1, then for each 5 in Q,
provided R (5) = (0), we add s to the set of states of the new SPM and in case R{s) = [i) we add to
the set of states that have to be earned by the new SPM also the states that can become topmost
after a reduction using production rule i (perhaps followed by other reductions).

This concludes our explanation of Fischer’s method. For more details and extensions of these
ideas the reader is referred to Fischer[1975].

‘Solving’ Parsing Conflicts by Parallelism?
To allow more efficient parsing methods restrictions on the class of general context-free grammars
have been introduced. These restrictions have led to, among others, the classes of LL-, LR- and
precedence grammars and associated LL-, LR- and precedence parsing techniques. The LR-
technique uses, as discussed in the previous section, an LR-parsing table which is constructed from
the LR-grammar.

If the grammar from which the table is constructed is not an LR-grammar, then the table will
contain conflict entries. In case of a conflict entry the parser has to choose. One decision may turn
out to be wrong or both (or more) possibilities may be correct but only one may be chosen. The
entry may allow reduction of a production rule but at the same time it may allow shifting of the next
input symbol onto the stack. A conflict entry may also allow reductions according to different pro­
duction rules. Consider the following example grammar G:

1. S —» NP VP 5. NP —► NP PP
2. S —> S PP 6. PP —» *prep NP
3. NP —» *n 7. V P—>*vNP
4. NP —> *det *n

The parsing table for this grammar, taken from Tomita[19851, is shown in Fig. 3.
state *det *n *v *prep S NP PP VP S

0 sh3 sh4 2 1
1 sh6 acc 5
2 sh7 sh6 9 8
3 shlO
4 re3 re3 re3
5 re2 re2
6 sh3 sh4 11
7 sh3 sh4 12
8 re 1 re 1
9 re 5 re5 re 5

10 re 4 re4 re 4
11 re6 re6,sh6 re6 9
12 re7,sh6 re7 9

Fig. 3 LR-parsing table for grammar G.

Tomita’s answer to the problem of LR-parsing of general context-free grammars is ‘pseudo-
parallelism’. Each time during parsing the parser encounters a multiple entry, the parsing process is
split into as many processes as there are entries. Splitting is done by replicating the stack as many
times as necessary and then continue parsing with the actions of the entry separately. The processes
are ‘synchronized’ on the shift action. Any process that encounters a shift action waits until the
other processes also encounter a shift action. Therefore all processes look at the same input word of
the sentence.

Obviously, this LR-directed breadth-first parsing may lead to a large number of non­
interacting stacks. So it may occur that during parts of a sentence all processes behave in exactly
the same way. Both the amount of computation and the amount of space can be reduced

-244- International Parsing Workshop '99

considerably by unifying processes by combining their stacks into a so-called ‘graph-structured’
stack. Tomita does not suggest a parallel implementation of the algorithm. Rather his techniques
for improving efficiency are aimed at efficient serial processing of sentences. Nevertheless, we can
ask whether a parallel implementation might be useful. Obviously, Tomita’s method is not a
‘parallel-designed’ algorithm. There is a master routine (the LR-parser) which maintains a data
structure (the graph-structured stack) and each word that is read by the LR-parser is required for
each process (or stack). In a parallel implementation nothing is gained when we weave a list of
stacks into a graph-structured stack In tact, when this is done, Tomita’s method becomes closely
related to Earley’s method (see section 4) and it seems more natural - although the number of
processes may become too large - to consider parallel versions of this algorithm since it is not res­
tricted in advance by the use of a stack. When we want to stay close to Tomita’s ideas, then we
rather think of a more straightforward parallel implementation in which each LR conflict causes the
creation of a new LR-parser which receives a copy of the stack and a copy of the remaining input (if
it is already available) and then continues parsing without ever communicating with the other LR-
parsers that work on the same string. On a transputer network, for example, each transputer may act
as an LR-parser. However, due to its restrictions on interconnection patterns, sending stacks and
strings through the network may become a time-consuming process. When a parser encounters a
conflict the network should be searched for a free transputer whereas the stack and the remainder of
the input should be passed through the network to this transputer. This will cause other processes to
slow down and one may expect that only a limited ‘degree of non-LR-ness’ will allow an appropri­
ate application of these ideas. Moreover, one may expect serious problems when on-line parsing of
the input is required.

3. Translating Grammar Rules into Process Configurations
A simple ‘object-oriented’ parallel parsing method for e-free and cycle-free context-free grammars
has been introduced by Yonezawa and Ohsawa[1988]. The method resembles the well-known
Cocke-Younger-Kasami parsing method, but does not require that the grammars are in Chomsky
Normal Form (CNF). Consider again our example grammar G:

1. S -» NP VP 5. NP —» NP PP
2. S -> S PP 6. PP -» *prep NP
3. NP -» *n 7. VP -> *v NP
4. NP *det *n

The parsing table for this grammar, taken from Tomita[1985], is shown in This set of rules will be
viewed as a network of computing agents working concurrently. Each occurrence of a (pre-
)terminal or a nonterminal symbol in the grammar rules corresponds with an agent with modest pro­
cessing power and internal memory. The agents communicate with one another by passing subtrees
of possible parse trees. The topology of the network is obtained as follows. Rule 1 yields the net­
work fragment depicted in Fig. 4.

In the figure we have three agents, one for NP, one for VP and a ‘double’ agent for 5. Suppose the
jVP-agent has received a subtree 1t . It passes t { to the VP-agem. Suppose this agent has received a
subtree t 2. It checks whether they can be put together (the ‘boundary adjacency test’) and, if this
test succeeds, it passes (f { t2) to the 5-agent This agent constructs the parse tree (5 (f { t2)) and dis­
tributes the result to all computing agents in the network which correspond with an occurrence of 5
in a right hand side of a rule. The complete network for the rules of G is shown in Fig. 5. As can be
seen in the network, there is only one of these 5-agents. For this agent (5 (rt t 2)) plays the same
role as t x did for the NP-agent If the boundary adjacency test is not successful, then the VT-agent
stores the trees until it has a pair of trees which satisfies the tesL

Fig. 4 From rules to configuration.

-245- Intemational Parsing Workshop '89

Fig. 5 Computing agents for grammar G.

As an example, consider the sentence The man saw a girl with a telescope. For this particular
sentence we do not want to construct from a subtree 1 1 for a telescope and from a subtree t j for saw
the girl a subtree for a telescope saw a girl, although the rule S NP VP permits this construction.
Therefore, words to be sent into the network are provided with tags representing positional informa­
tion and during construction of a subtree this information is inherited from its constituents. For our
example sentence the input should look as

(0 1 the)(l 2 man)(2 3 saw)(3 4 aX4 5 girl)(5 6 withX6 7 aX7 8 telescope).
Combination of tokens and trees according to the grammar rules and the positional information can
yield a subtree (3 5 (NP ((*det a)(*n girl)))) but not a subtree in which (0 1 the) and (4 5 girl) are
combined. Each word accompanied with its tags is distributed to the agents for its (pre-)terminal(s)
by a manager agent which has this information available.

If the context-free grammar which underlies the network is ambiguous, then all possible parse
trees for a given input sentence will be constructed. It is possible to pipe-line constructed subtrees
to semantic processing agents which filter the trees so that only semantically valid subtrees are dis­
tributed to other agents. Another useful extension is the capability to unparse a sentence when the
user of a system based on this method erases (‘backspaces to’) previously typed words. This can be
realized by letting the agents send anti-messages that cancel the effects of earlier messages. It
should be noted that the parsing of a sentence does not have to be finished before a next sentence is
fed into the network. By attaching another tag to the words it becomes possible to distinguish the
subtrees from one sentence from those of an other sentence. The method as explained here has been
implemented in the object-oriented concurrent language ABCIV1. For the experiment a context-
free English grammar which gave rise to 1124 computing agents has been used. Sentences with a
length between 10 and 30 words and a parse tree height between . 0 and 20 were used for input.
Parallelism was simulated by time-slicing. From this simulation it followed that a parse tree is pro­
duced from the network in O (n x h) time, where n is the length of the input string and h is the
height of the parse tree. Obviously, simple examples of grammars and their sentences can be given
which cause an explosion in the number of adjacency tests and also in the number of subtrees that
will be stored without ever being used. Constructs which lead to such explosions do not usually
occur in context-free descriptions of natural language.

There are several ways in which the number of computing agents can be reduced. For exam­
ple, instead of the three double NP-agents of Fig. 5 it is possible to use one double iVf-agent with
the same function but with an increase of parse trees that have to be constructed and distributed.
The same can be done for the two 5-agents. A next step is to eliminate all double agents and give
their tasks to the agents which correspond with the rightmost symbol of a grammar rule. It is also
possible to have one computing agent for each grammar rule. In this way we obtain the
configuration of Fig. 6. It will be clear what has to be done by the different agents.

246- International Parsing Workshop '89

Fig. 6 Agents for grammar rules.

Another configuration with a reduced number of computing agents is obtained if we have an
agent for each nonterminal symbol of the grammar. For our example grammar we have four agents,
the 5-, the NP-, the VP-, and the PP-agent. We may also introduce agents for the pre-terminals or
even for each word which can occur in an input sentence. We confine ourselves to agents for the
nonterminal symbols and discuss their roles. In Fig. 7 we have displayed the configuration of com­
puting agents which will be obtained from the example grammar.

The communication between the agents of this network is as follows.
(1) The 5-agent sends subtrees with root 5 to itself; it receives subtrees from itself, the PP-agent,

the NP-agent, and the VT-agent.
(2) The jVP-agent sends subtrees with root NP to itself, the 5-agent, the VP-agent and the PP-

agent; it receives subtrees from itself and from the PP-agent; moreover, input comes from the
manager agent.

(3) The VP-agent sends subtrees with root VP to the 5-agent; it receives subtrees from the NP-
agent; moreover, input comes from the manager agent.

(4) The PP-agent sends subtrees with root PP to the 5-agent and to the WP-agent; it receives sub­
trees from the NP-agent; moreover, it receives input from the manager agent.

Fig. 7 Agents for nonterminal symbols.

The task of each of these nonterminal agents is to check whether the subtrees it receives can be put
together according to the grammar rules with the nonterminal as left-hand side and according to
positional information that is carried along with the subtrees. If possible, a tree with the nontermi­
nal as root is constructed, otherwise the agent checks other trees or waits until trees are available.

4. From Sentence Words to Processes

Cocke-Younger-Kasami’s Algorithm
Traditional parsing methods for context-free grammars have been re-investigated in order to see
whether they can be adapted to a parallel processing view. In Chu and Fu[1982] parallel aspects of
the tabular Cocke-Younger-Kasami algorithm have been discussed. The input grammar should be

-247- Intemational Parsing Workshop '89

in CNF, hence, each rule is of the form A -» BC or A a. This normal form allows the following
bottom-up parsing method. For any string x = a \ a 2 ' - - a n to be parsed an upper-triangular
(/i + l)x(n + l) recognition table T is constructed. Each table entry t i%J with i<j will contain a subset
of N (the set of nonterminal symbols) such that A e tt J if and only if A =>*ai+l • ■ ■ ar Assume that
the input string, if desired terminated with an endmarker, is available on the matrix diagonal. Suing
x belongs to L{G) if and only if 5 € t 0 n when the construction of the table is completed.
(1) Compute as i ranges from 0 to n-1 , by placing A in rI (+1 exactly when there is a produc­

tion A —> a.+i in P.
(2) Set d = 1. Assuming /t>, w has been formed for 0 < i < n -d, increase d with 1 and compute r, }

for 0 <i <n- d and j = i +d where A is placed in when, for any k such that i <k < j, there is
a production A —>BC e P with B e ti k and C e

In a similar form the algorithm is usually presented (see e.g. Graham and Harrison [1976]). Fig. 8
may be helpful in understanding a parallel implementation.

0.1 0.2 0.3 0.4 0.5

1.2 1.3 1.4 1.5

2.3 2.4 2.5

3.4 3.5

4.5

Fig. 8 The upper-triangular CYK-table.

Notice that after step (1) the computation of the entries is done diagonal by diagonal until entry r0>/,
has been completed. For each entry of a diagonal only elements of preceding diagonals are used to
compute its value. More specifically, in order to see whether a nonterminal should be included in
an element ; it is necessary to compare (t k and with k between i and j. The amount of storage
that is required by this method is proportional to n2 and the number of elementary operations is pro­
portional to n 3. Unlike Yonezawa and Oshawa’s algorithm where positional information needs an
explicit representation, here it is in fact available (due to the CNF of the grammar) in the indices of
the table elements. For example, in r14 we can find the nonterminals which generate the substring
of the input between positions 1 and 4. The algorithm can be extended in order to produce parse
trees.

From the recognition table we can conclude a two-dimensional configuration of processes.
For each entry ; of the upper-triangular table there is a process PLj which receives table elements
(i.e., sets of nonterminals) from processes P ij-\ and Pl+\ j . Process PltJ transmits the table ele­
ments it receives from / \ y_i to Pij+\ and the elements it receives from Pt+ \j to Pi~\j. Process Pi%i
transmits the table element it has constructed to processes P i- \ j and P i j+\. Fig. 9 shows the inter­
connection structure for n = 5. As soon as a table element has been computed, it is sent to its right
and upstairs neighbor. Each process should be provided with a coding of the production rules of the
grammar. Clearly, each process requires 0 (n) time. It is not difficult to see that like similar algo­
rithms suitable for VLSI-implementation, e.g. systolic algorithms for matrix multiplication or transi­
tive closure computation (see Guibas et al[1979] and many others) the required parsing time is also
0 (n). In Chu and Fu[1982] a VLSI design for this algorithm is presented (see also Tan[1983]).

Earley’s Algorithm
The second algorithm we discuss in this section is the well-known Earley’s method. It is not essen­
tially different from the CYK algorithm. Since the method maintains information in the table
entries about the righthand sides of the productions that are being recognized, the condition that the
grammar should be in CNF is not necessary. For general context-free grammars Earley parsing
takes 0 (n 3) time. This time can be reduced to 0 (n2) or 0 (n) for special subclasses of context-free

-248- International Parsing Workshop '89

Fig. 9 Process configuration for C Y K ’s algorithm.

grammars. Many versions of Earley’s method exist In Graham and Harrison[1976] the following
tabular version can be found. For any string x = a {a 2 ' " aH to be parsed an upper-triangular
(n + l)x(/i + l) recognition table T is constructed. Each table entry titJ will contain a set of items, i.e.,
a set of elements of the form A —>a-p (a dotted rule), where A —»a{3 is a production rule from the
grammar and the dot • is a symbol not in N uE. The computation of the table entries goes column
by column. The following two functions will be useful. Function PREDICTiiV—>2° , where
D = {A —>ot*(31 A -» a p € P }, is defined as

PREDICT(A) = (£->a-|31 P, a=>*e and 3 y e V* withA=>*flY).
Function PRED:2W—>2D is defined as

PRED(X) = U PREDICTS).
A e X

Initially, r0.0 = PRED({S}) and all other table entries are empty. Suppose we want to compute the
elements of column j, j > 0. In order to compute titJ with i * j assume that all elements of the
columns of the upper-triangular table to the left of column j have already been computed and in
column j the elements tKj for i <k < j have been computed.
(1) Addfl -xM p-Yto ti j if B -xx-affye t i j - \ ,a - cl, andf3=>*£.
(2) Add B -» o 4 p 7 to t i j , if, for any k such that i <k < j, B -> a-A $ye titk, A —xo-e t^j and

3=**e.
(3) Add B ->aA p7 to titj if B ->a*Aftye fltl, {3=** e and there exists C e N such that A =>*C and

C -> a y e titj.
After all elements ti } with of column j have been computed then it is possible to com-
pute t j j .
(4) L e t X j = [A e N \ B- > a - A $ e t i j , 0 < , i Z j - \) . Then t j j = PRED(Xy).
It is not difficult to see that A-xj-fJer,-,; if and only if there exists y e V* such that
5=>*aj • • • diAy and a=>*al+l • • • ar Hence, in r0>)* we can read whether the sentence was correct.
The algorithm can be extended in order to produce parse trees, t

Various parallel implementations of Earley’s algorithm have been suggested in the literature
(see e.g. Chiang and Fu[1982], Tan[1983] and Sijstermans[1986]). The algorithms differ mainly in
details on the handling of e-rules, preprocessing, the representation of data and circuit and layout
design. The main problem in a parallel implementation of the previous algorithm is the computation
of the diagonal elements f, t, for 0 £ i <,n. The solution is simple. Initially all elements tlti, 0<i<>ny

t When Earley’s algorithm was introduced, it was compared with the exponential time methods in which successively every
path was followed whenever a non-deterministic choice occurred. Since in Earley’s algorithm a 'simultaneous’ following of
paths can be recognized, it was sometimes considered as a parallel implementation of the earlier depth-first algorithms (see
e.g. Langl 1971 J).

-249- Intemational Parsing Workshop ’89

are set equal to PREDICIXjV), where N is the set of nonterminal symbols. The other entries are
defined according to the steps (1), (2) and (3). As a consequence, we now have A -»ct-p € t, y if and
only if a=>*al+i • • • aj. In spite of weakening the conditions on the contents of the table entries the
completed table can still be used to determine whether an input sentence was correct Moreover,
computation of the elements can be done diagonal by diagonal, similar to the CYK algorithm.
(1) Set tu equal to PREDICT(N), 0<z <n.
(2) Set d = 0. Assuming has been formed for 0</ < n -d, increase d with 1 and compute t, s

for 0 < i < n -d and j = i +d according to:
(2.1) Add# ->atfp7 to ti%J if B -xx-apyG tt ,_i, a = a, and (3=>*e.
(2.2) Add B ->cx4p-y to tt , if, for any lc such that i <k <j ,B —»a\4(3yG it k, A -»co- e tk , and

P=>*e.
(2.3) Add B —>oA(3 y to (tj if B — r) (, (3=s>*e and there exists C e N such that A =o*C

and C —»(D* € titj.
VLSI designs or process configurations which implement this algorithm in such a way that it takes
0 (n) time (with 0 (n 2) cells or processes can be found in Chiang and Fu[1982], Tan[1983] and Sij-
stermans[1986] (see also Fig. 9 and its explanation).

5. Connectionist Parsing Algorithms
Only few authors have considered parsing in connectionist networks. It is possible to distinguish a
dynamic programming approach based on the CYK algorithm (Fanty[1985]), a Boltzmann machine
approach (Selman and Hirst[1985,1987]) and an interactive relaxation approach (Howells[1980]).
We confine ourselves to an explanation of Fanty’s method since it fits rather naturally in the frame­
work of parsing strategies we have considered in the previous sections. A connectionist Earley
parsing algorithm can be found in the full version of the present paper.

Fanty’s strategy is that of the CYK parser. The nodes that will be part of the connectionist
network are organized according to the positions of the entries of the upper-triangular recognition
table. For convenience we first assume that the grammar is in CNF. The table’s diagonal will be
used for representing the input symbols. This representation will be explained later. For each non­
terminal symbol each entry in the table which is not on the diagonal will represent a configuration of
nodes. These nodes allow top-down and bottom-up passing of activity. We first explain the
bottom-up pass. Consider a particular entry, say with j - i >2, of the upper-triangular matnx. In
the traditional algorithm a nonterminal symbol X is added to the set of nonterminal symbols associ­
ated with the entry if there are symbols Y e r, * and Z e such that X —»YZ is in P. In the connec­
tionist adaptation of the algorithm we already have a node for each nonterminal symbol in entry r,j.
Therefore, rather than adding a symbol, here node X at position t^j is made active if node Y at posi­
tion tik and node Z at position t̂ j are active. In general there will be more ways to have a realiza­
tion of the production X -+YZ at position For example, a node for X at entry 3 can be made
active for a production X->YZ if there is an active node for Y at /12 and for Z at t 2 ,5 , or for Y at 1 1>3
and for Z at /3 j , or for Y at /1>4 and for Z at r4i5. This separation is realized with the help of match
nodes in the configuration of each entry of the table. The use of match nodes is illustrated in Fig. 10
for a node forX at position f 15 of a CYK-table. Here we have shown the three match nodes, one for
each possible realization of X —>YZ, for this node at this particular position. For these match nodes
to become active all of their inputs must be on. The node for X becomes active when at least one of
its inputs (coming from its match nodes) is on. In the figure only match nodes for separate realiza­
tions of the same production are included. Obviously, match nodes should also be included at this
position for all possible realizations of the other productions with lefthand side X. In this way all
the inputs that can make the node for X at this particular position active can be received in a proper
way. Observe that if during the recognition of a sentence in an entry more than one match node for
a nonterminal is active then the sentence is ambiguous.

In our explanation the assumption j - i >2 for entry tij was made. Since the grammar is in
CNF we have realizations of productions of the form X — in the entries with j - i - 1. In these
entries no match nodes are needed since in each entry there can be only one realization of a produc­
tion with a given lefthand side. We assume that there is a node for each terminal symbol in each

-250- International Parsing Workshop '89

Y <ij> Z<23> <13>, Z<35> 1̂<14> Z<43>
Fig. 10 Botrom-up passing of activity.

position at the diagonal of the matrix. Parsing starts by activating the nodes which correspond with
the input symbols. Then activation passes bottom-up through the network, first with realizations of
productions of the form X —>a, next with realizations of productions of the form X-+YZ. The input
is accepted as soon as the node for the start symbol in the topmost entry of the column of the last
input symbol becomes active.

Until now we have discussed a network which accepts (or rejects) an input string. In order to
obtain a representation of the parse tree or parse trees a second, top-down, pass of activity is neces­
sary. To perform this top-down pass we assume that each node mentioned so far consists of a
bottom-up and a top-down unit. The bottom-up units are used as explained above. In Fig. 11 both
bottom-up and top-down passing of activity is illustrated in a configuration of nodes for an entry titj
with j - i > 2. Each node is represented as consisting of a leftmost or bottom-up and a rightmost or
top-down unit.

A top-down unit becomes active when it receives input from its bottom-up counterpart and at least
one external source. In order to activate the top-down unit of the node for the start symbol in the
upper right comer of the table we assume that it receives input from its bottom-up counterpart and
from the node at position t where n is the length of the input, which is used to represent end-
marker $ of the input and which is made active when parsing starts. Hence, when the input is
recognized this unit becomes active and it passes activity top-down. All top-down units which
receive this activation and which receive activation from their bottom-up counterparts become
active. In this way activity is passed down to the terminal nodes and the active top-down nodes of
the network represent the parse tree(s). The parse in the connectionist network completes in 0 (n)
time.

Above our assumption was that grammars are in CNF. This is not a necessary condition, but
it facilitates the present discussion. See Fanty[19851 or the full version of this paper for possible
relaxations of this condition and the consequences for the lime complexity.

-251- Intemational Parsing Workshop '89

6. Conclusions
A survey of some ideas in parallel parsing has been presented. In the field of natural language pro­
cessing the Earley and CYK method are well known. Sometimes closely related methods such as
(active) chart parsing are used. Because of this close relationship a parallel implementation along
the lines sketched above is possible. Chan parsing (and Earley parsing) can be done with a more
modest number of processors if an agenda approach is followed (see e.g. Grisham and Chi-
traof 1988]). Earley’s algorithm can be modified to transition networks and extended to ATN’s (see
e.g. Chou and Fu[1975]). Therefore it is worthwhile to investigate a similar parallel approach to the
parsing of ATN’s. No attention has been paid to ideas aimed at improving upper bounds for the
recognition and parsing of general context-free languages. An introduction to that area can be
found in Chapter 4 of Gibbons and Rytterf 1988]. Neither have we been looking here at the connec-
tionist approaches in parsing and natural language processing as they are discussed in the papers of
Cottrell and Small[1984], Waltz and Pollackf 1985], McClelland and Kawamoto[1986] and
Small[1987]. More references to papers on parallel parsing can be found in Nijholt et al[1989].

Acknowledgements.
I am grateful to P.RJ. Asveld for his comments on an earlier version of this paper and to Theo
Vosse for drawing my attention to some papers on connectionist parsing. Some discussions with
Bart Van Acker and Bart De Wolf have improved my understanding of parallel parsing methods.

7. References

Carlisle, W.H. and D.K. Friesen [1985]. Parallel parsing using Ada. Proceedings 3rd Annual
National Conference on Ada Technology, March 1985,103-106.

Chiang, Y.T. and K.S. Fu [1982]. A VLSI architecture for fast context-free language recognition
(Earley’s algorithm). Proceedings Third International Conf. on Distributed Comp. Systems,
1982, 864-869.

Chou, S.M. and K.S. Fu [1975]. Transition networks for pattern recognition. School for Electrical
Engineering, Purdue University, West Lafayette, Indiana, TR-EE 75-39, 1975.

Chu, K.-H. and K.S. Fu [1982]. VLSI architectures for high-speed recognition of context-free
languages and finite-state languages. Proceedings of the Ninth Annual Symposium on Com­
puter Architectures, SIGARCH Newsletter 10 (1982), No.3, 43-49.

Cottrell, G.W. and SL . Small [1984]. Viewing parsing as word sense discrimination: A connec­
tionist approach. In: Computational Models of Natural Language Processing, B.G. Bara and
G. Guida (eds.), Elsevier Science Publishers, North-Holland, 1984,91-119.

Fischer, C.N. [1975]. Parsing context-free languages in parallel environments. Ph.D. Thesis, Tech.
Report 75-237, Dept, of Computer Science, Cornell University, 1975.

Gibbons, A. and W. Rytter [1988]. Parallel recognition and parsing of context-free languages.
Chapter 4 in Efficient Parallel Algorithms. Cambridge University Press, Cambridge, 1988.

Graham, S.L. and M.A. Harrison [1976]. Parsing of general context-free languages. Advances in
Computers, Vol. 14, M. Yovits and M. Rubinoff (eds.). Academic Press, New York, 1976,
76-185.

Grisham, R. and M. Chitrao [1988]. Evaluation of a parallel chart parser. In: Proceedings of the
Second Conference on Applied Natural Language Processing, Association for Computational
Linguistics, 1988, 71-76.

Guibas, L J., H.T. Kung and C.D. Thompson [1979]. Direct VLSI implementation of combinatorial
algorithms. Proc. Conf. on VLSI, Caltech, January 1979, 509-526.

Lang, B. [1971]. Parallel non-deterministic bottom-up parsing. In: Proc. Int. Symposium on Exten­
sible Languages. Grenoble, 1971, SIGPLAN Notices 6, Nr. 12, December 1971.

Lincoln, N. [1970]. Parallel programming techniques for compilers. SIGPLAN Notices 5 (1970),
No. 10, 18-31.

-252- International Parsing Workshop '89

Loka, R.R. [1984]. A note on parallel parsing. SIGPLAN Notices 19 (1984), No.l, 57-59.
Lozinskii, E.L. and S. Nirenburg [1986]. Parsing in parallel. Computer Languages 11 (1986),

39-51.
McClelland J.L. and A.H. Kawamoto [1986]. Mechanism of sentence processing: assigning roles to

constituents of sentences. Chapter 19 in Parallel Distributed Processing. Vol.2: Psychologi­
cal and Biological Models, D.E. Rumelhart, J.L. McClelland and the PDP Research Group,
The MIT Press, Cambridge, Mass., 1986,272-325.

Mickunas, M.D. and R.M. Schell [1978]. Parallel compilation in a multiprocessor environment.
Proceedings ACM Annual Conf., 1978, 241-246.

Nijholt, A. [1988]. Computers and Languages: Theory and Practice. Studies in Computer Science
and Artificial Intelligence. North-Holland, Elsevier Science Publishers, Amsterdam, 1988.

Nijholt, A. et al [1989]. An annotated bibliography on parallel parsing. Twente University, Internal
Memorandum, in preparation, 1989.

Selman, B. and G. Hirst [1987]. Parsing as an energy minimization problem. Chapter 11 in Genetic
Algorithms and Simulated Annealing. Research Notes in A.I., Morgan Kaufmann Publishers,
Los Altos, California, 1987.

Small, S.L. [1987]. A distributed word-based approach to parsing. In: Natural Language Parsing
Systems. L. Bole (ed.), Springer-Verlag, Berlin, 1987, 161-201.

Srikant, Y.N. and P. Shankar [1987]. Parallel parsing of programming languages. Information Sci­
ences A3 (mi), 55-83.

Sijstermans, F.W. [1986]. Parallel parsing of context-free languages. Doc. No. 202, Esprit Project
415, Subproject A: Object-oriented language approach, Philips Research Laboratories, Ein­
dhoven, 1986.

Tan, H.D.A. [1983]. VLSI-algoritmen voor herkenning van context-vrije talen in lineaire tijd. Rap­
port IN 24/83, Sdchting Mathematisch Centrum, Amsterdam, Juni 1983.

Tomita, M. [1985]. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Boston,
Dordrecht, 1985.

Tseytlin, G.E. and E.L. Yushchenko [1977]. Several aspects of theory of parametric models of
languages and parallel syntactic analysis. In: Methods of Algorithmic Language Implementa­
tion. A. Ershov and C.H.A. Koster (eds.), Lect. Notes Comp. Sci. 47, Springer-Verlag, Ber­
lin, 1977,231-245.

Waltz, D.L. and J.B. Pollack [1985]. Massively parallel parsing: A strongly interactive model of
natural language interpretation. Cognitive Science 9 (1985), 51-74.

Yonezawa, A. and I. Ohsawa [1988]. Object-oriented parallel parsing for context-free grammars.
In: Proceedings of the 12th International Conference on Computational Linguistics (COL-
ING'8 8), Budapest, 1988, 773-778.

-253- International Parsing Workshop '89

