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Abstract

A new natural language system, T ina, has been developed for applications involving spoken language
tasks, which integrates key ideas from context free grammars, Augmented Transition Networks (ATN’s) [6],
and Lexical Functional Grammars (LFG?’) [1]. The parser uses a best-first search strategy, with probability
assignments on all arcs obtained automatically from a set of example sentences. An initial context-free
grammar, derived from the example sentences, is first converted to a probabilistic network structure. Control
includes both top-down and bottom-up cycles, and key parameters are passed among nodes to deal with long-
distance movement, agreement, and semantic constraints. The probabilities provide a natural mechanism
for exploring more common grammatical constructions first. One novel feature of Tina is that it provides
an automatic sentence generation capability, which has been very effective for identifying overgeneration

problems. A fully integrated spoken language system using this parser is under development.

1 Introduction

Most parsers have been designed with the assumption that the input word stream is determin-
istic: i.e., at any given point in the parse tree it is known with certainty what the next word is. As
a consequence, these parsers generally cannot be used effectively, if at all, to provide linguistically
directed constraint in the speech recognition component of a speech understanding system. In a
fully integrated speech understanding system, the recognition component should only be allowed
to propose partial word sequences that the natural language component can interpret; any word
sequences that are syntactically or semantically anomalous should probably be pruned prior to the
acoustic match, rather than examined for approval in a verification mode. To operate in such a
fully integrated mode, a parser has to have the capability of considering a multitude of hypotheses
simultaneously. The control strategy should have a sense of which of these hypotheses, considering
both linguistic and acoustic evidence, is most likely to be correct at any given instant in time,
and to pursue that hypothesis only incrementally before reexamining the evidence. The linguistic
evidence should include probability assignments on proposed hypotheses; otherwise the perplexity
of the task becomes too high for practical recognition applications.

This paper describes a natural language system, T ina, Which addresses many of these issues.
The grammar is constructed by converting a set of context-free rewrite rules to a form that merges
common elements on the right-hand side (RHS) of all rules sharing the same left-hand side (LHS).
Elements on the LHS become parent nodes in a family tree. Through example sentences, they
acquire knowledge of who their children are and how they can interconnect. Such a transformation
permits considerable structure sharing among the rules, as is done in typical shift-reduce parsers [5].
Probabilities are established on arcs connecting pairs of right siblings rather than on rule produc-
tions. This has several advantages, which will be discussed later. Context-dependent constraints
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to deal with agreement and gaps are realized through simple logical functions applied to flags or
features passed among immediate relatives.

2 General Description

T ina IS basically a context-free grammar, implemented by expansion at run-time into a network
structure, and augmented with flags/parameters that activate filtering operations. The grammar
is built from a set of training sentences, using a bootstrapping procedure. Im ally, each sentence
is translated by hand into a list of the rules invoked to parse it. After the grammar has built
up a substantial knowledge of the language, many new sentences can be parsed automatically, or
with minimal intervention to add a few new rules incrementally. The arc probabilities can be
incrementally updated after the successful parse of each new sentence.

The process of converting the rules to a network form is straightforward. All rules with the
same LHS are combined to form a structure describing possible interconnections among children of
a parent node associated with the left-hand category. A probability matrix connecting each possible
child with each other child is constructed by counting the number of times a particular sequence of
two siblings occurred in the RHS s of the common rule set, and normalizing by counting all pairs
from the particular left-sibling to any right sibling. Two distinguished nodes, a START node and
an END node, are included among the children of every grammar node. A subset of the grammar
nodes are terminal nodes whose children are a list of vocabulary words.

This process can be illustrated with the use of a simple example. Consider the following three
rules:

NP =$> ARTICLE NOUN
NP => ARTICLE ADJECTIVE NOUN
NP => ARTICLE ADJECTIVE ADJECTIVE NOUN

These would be converted to a network as shown in Figure 1, which would be associated with a
grammar node named NP. Since adjective is followed twice by noun and once by adjective,
the network shows a probability of 1/3 for the self loop and 2/3 for the advance to NOUN. Notice
that the system has now generalized to include any number of adjectives in a row.

.33

33

Figure 1: Probablistic Network Resulting from three Context-Free Rules given in Text.

A functional block diagram of the control strategy is given in Figure 2. At any given time, a
set of active parse nodes are arranged on a priority queue. Each parse node contains a pointer to
a corresponding grammar node, and has access to all the information needed to pursue its partial
theory. The top node is popped from the queue, and it then creates a number of new nodes (either
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children or right siblings depending 01l its state), and inserts them into the queue according to
their probabilities. If the node is an END node, it collects up all subparses from its sequence of
left siblings, back to the START node, and passes the information up to the parent node, giving
that node a completed subparse. The process can terminate on the first successful completion of a
sentence, or the Nth successful completion if more than one hypothesis is desired.

Figure 2: Functional Block Diagram of Control Strategy.

A parse in Tina begins with a single parse node linked to the grammar node SENTENCE, which
is entered on the queue with probability 1.0. This node creates new parse nodes with categories like
STATEMENT, QUESTION, and REQUEST, and places them on the queue, prioritized. If STATEMENT is
the most likely child, it gets popped from the queue, and returns nodes indicating SUBJECT, IT, etc.,
to the queue. When SuBJECT reaches the top of the queue, it activates units such as NOUN-GROUP
(for noun phrases and associated post-modifiers), gerund, and noun-clause. Each node, after
instantiating first-children, becomes inactive, pending the return of a successful subparse from a
sequence of children. Eventually, the cascade of first-children reaches the terminal-node ARTICLE,
which proposes the words “the,” “a,” and “an,” testing these hypotheses against the input stream.
If a match with “the” is found, then the article node fills its subparse slot with the entry (ARTICLE
“the”), and activates all of its possible right-siblings.

Whenever a terminal node has successfully matchcd an input word, the path probability is
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reset to 1.0. Thus the probabilities that are used to prioritize the queue represent not the total
path probability but rather the probability given the partial word sequence. Each path climbs up
from a terminal node and back down to a next terminal node, with each new node adjusting the
path probability by multiplying by a new conditional probability. The resulting conditional path
probability for a next word represents the probability of that word in its syntactic role given all
preceding words in their syntactic roles. With this strategy, a partial sentence does not become
increasingly improbable as more and more words are added. I.

Because of the sharing of common elements on the right hand side of rules, T ina can auto-
matically generate new rules that were not explicitly provided. For instance, having seen the rule
X = A B C and the rule X == B C D, the system would automatically generate two new rules,
X = B C, and X = A B C D. Although this property can potentialy lead to certain problems with
overgeneration, there are a number of reasons why it should be viewed as a feature. First of all, it
permits the system to generalize more quickly to unseen structures. For example, having seen the
rule AUX-QUESTION => AUX subject PREDICATE (as in "May 1 go?”) and the rule AUX-QUESTION
=> have SUBJECT LINK PR.ED-adjECTIVE (as in “Has he been good?”), the system would also
understand the forms aux-question => have subject predicate (as in “Has he left?”) and
AUX-QUESTION => aux subject link pred-adjective (as in “Should 1 be careful?”).2 Secondly
it greatly simplifies the implementation, because rules do not have to be explicitly monitored during
the parse. Given a particular parent and a particular child, the system can generate the allowable
right siblings without having to note who the left siblings (beyond the immediate one) were. Fi-
nally, and perhaps most importantly, probabilities are established on arcs connecting sibling pairs
regardless of which rule is under construction. In this sense the arc probabilities behave like the
familiar word-level bigrams of simple recognition language models, except that they apply to sib-
lings at multiple levels of the hierarchy. This makes the probabilities meaningful as a product of
conditional probabilities as the parse advances to deeper levels of the parse tree and also as it
returns to higher levels of the parse tree. All of the conditionals can be made to sum to one for
any given choice, and everything is mathematically sound.

One negative aspect of such cross fertilization is that the system can potentially generalize to
include forms that are agrammatical. For instance, the forms “Pick the box up” and “Pick up
the box,” if defined by the same LHS name, would allow the system to include rules producing
forms such as “Pick up the box up” and “Pick up the box up the box!” This problem can be
overcome either by giving the two structures different LHS names or by grouping “up the box”
and “the box up” into distinct parent nodes, adding another layer to the hierarchy on the RHS.
A third alternative is to include a particte slot among the features which, once filled, cannot be
refilled. In fact, there were only a few situations where such problems arose, and they were always
correctable.

3 Constraints and Gaps

This section describes how Tina handles several issues that are often considered to be part of
the task of a parser. These include agreement constraints, semantic restrictions, subject-tagging for
verbs, and long distance movement (often referred to as gaps, or the trace, as in “(which article)*

‘Some modification of this scheme will be necessary when the input stream is not deterministic. See [4] for a
discussion of these very important issues regarding scoring in a best-first search.
2The auxiliary verb sets the mode of the main verb to be root, or past participle as appropriate.
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do you think I should read (£,)?”). T ina is particulary effective in handling gaps. Complex cases of
nested or chained gaps are handled correctly, and appropriately ill-formed gaps are rejected. The
mechanism resembles the Hold register idea of ATN’s [6] and the treatment of bounded domination
metavariables in LFG’s ([1], p. 235 ff), but | believe it is more straightforward than both of these.

3.1 Design Philosophy

Our approach to the design of a constraint mechanism is to establish a simple framework that
is general enough to handle syntactic, semantic, and, ultimately, phonological constraints using
identical functional procedures. The grammar is expressed as context-free rewrite rules without
constraints. The constraints reside instead with the individual nodes of the tree that are established
when the grammar is converted to a network structure. In effect, the constraint mechanism is thus
reduced from a two-dimensional to a one-dimensional domain. Thus, for example, it would not be
permitted to write an f-structure [1] equation of the form suBJ~f => NP associated with the rule
Vp => VERB NP INF, to cover, “I told John to go.” Instead, the Np node (regardless of its parent)
would generate a cCURRENT-Focus from its subparse, which would be passed along passively to the
verb “go.” The verb would then simply consult the cURRENT-Focus (regardless of its source) to
establish its subject.

3.2 Constraints

Each parse node comes equipped with a number of slots for holding constraint information that
is relevant to the parse. Included are person and number, case, determiner (definite, INDEFINITE,
proper, etc.), mode (RooOT, finite, etc.), and semantic categories. These features are passed along
from node to node: from parent to child, child to parent, and left-sibling to right-sibling. Certain
nodes have the power to adjust the values of these features. The adjustment may take the form
of an unconditional override, or it may involve a unification with the value for that feature passed
to the node from a parent, sibling, or child. The filters are restricted in power in two important
ways: 1) A filter can only operate on data that are available to the immediate parse node that
instantiates the filter, and 2) A filter must be restricted in action to simple logical operations such
as AND, SET, RESET, etc.

Some specific examples of constraint implementations will help explain how this works. Certain
nodes specify person/number/determiner restrictions which then propagate up to higher levels
and back down to later terminal nodes. Thus, for example, A noun-PL node sets the number to
PLURAL, but only if the left sibling passes to it a description for number that includes PLURAL as
a possibility (otherwise it dies, as in “each boats”). This value then propagates up to the subject
node, across to the PREDICATE node, and down to the verb, which then must agree with PLURAL,
unless its MODE is marked as non-finite. Any non-auxilliary verb node blocks the transfer of any
predecessor person/number information to its right siblings, reflecting the fact that verbs agree in
person/number with their subject but not their object.

A more complex example is a compound noun phrase, as in “Both John and Mary have decided
to go.” Here, each individual noun is singular, but the subject requires the plural form of “have.”
Tina deals with this by making use of a node category and-noun-phrase, which sets the number
constraint to PLURAL for its parents, and blocks the transfer of number information to its children.
Some nodes also have special powers to set the mode of the verb either for their children or for
their right-siblings. Thus, for example, “have” as an auxilliary verb sets mode to PAST-PARTICIPLE
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for its nght-siblings. The category GERUND sets the mode to PRESENT-PARTICIPLE for its children.
Whenever a predicate node is invoked, the verb’s mode has always been set by a predecessor.

SENTENCE

QUESTION

Figure 3: Example of a Parse Tree lllustrating a Gap.

3.3 Gaps

The mechanism to deal with gaps resembles in certain respects the Hold register idea of ATN'’s,
but with an important difference, reflecting the design philosophy that no node can have access
to information outside of its immediate domain. The process of getting into the Hold register (or
the float-object slot, using my terminology) requires two steps, executed independently by two
different nodes. The first node, the generator, fills the cCURRENT-FOcus slot with the subparse
returned to it by its children. The second node, the activator, moves the CURRENT-FOCUS into
the FLOAT-OBJECT position, for its children. It also requires that the float-object be absorbed
somewhere among its descendants by a designated absorber node. The CURRENT-Focus only gets
passed along to siblings and their descendants, and hence is unavailable to activators at higher
levels of the parse tree. Finally, certain (blocker) nodes block the transfer of the FLOAT-OBJECT to
their children.

A simple example will help explain how this works. For the sentence “(How many pies),- did
Mike buy (t,)?n as illustrated by the parse tree in Figure 3, the g-subject “how many pies” is
a generator, so it fills the CURRENT-FOCUS with its subparse. The DO-QUESTION is an activator;
it moves the CURRENT-FOCUS into the float-object position. Finally, the object of “buy,” an
absorber, takes the gq-subject, as its subparse. The po-QUEsTION refuses to accept any solutions
from its children if the FLOAT-0BJECT has not been absorbed. Thus, the sentence “How many pies
did Mike buy the pies?” would be rejected. Furthermore, the same po-QUESTION node deals with
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the yes/no question “Did Mike buy the pies?/ except in this case there is no current-focus and
hence NO gap.

More complicated sentences involving nested or chained traces, are handled staightforwardly
by this scheme. For instance, the phrase, “(the violin), that (these Sonatas); are easy to play
(tj) on (t,)” can be parsed correctly by Tina, identifying “Sonatas” as the object of “play” and
“violin” as the object of "on.” This works because the verb-phrase-p-o, an activator, writes over
the FLOAT-OBJECT “violin” with the new entry "Sonatas,” but only for its children. The original
FLOAT-OBJECT is still available to fill the oBJECT slot in the following prepositional phrase.

The example used to illustrate the power of ATN's [6], Mohn was believed to have been shot,”
also parses correctly, because the oBJECT node following the verb “believed” acts as both an
absorber and a (re)generator. Cases of crossed traces are automatically blocked because the second
CURRENT-FOCUS gets moved into the FLOAT-OBJECT position at the time of the second activator,
overriding the preexisting FLOAT-OBJ ECT set up by the earlier activator. The wrong FLOAT-OBJECT
is available at the position of the first trace, and the parse dies:

*(Which books), did you ask John (where)j Bill bought (t,) (t*)?

The CURRENT-FOCUS slot is not restricted to nodes that represent nouns. Some of the generators
are adverbial or adjectival parts-of-speech (pos). An absorber checks for agreement in POS before
it can accept the FLOAT-OBJECT as its subparse. As an example, the question, “(How oily), do you
like your salad dressing (t,)?” contains a Q-SUBJECT "how oily” that is all adjective. The absorber
PRED-ADJECTIVE accepts the available fioat-object as its subparse, but only after confirming that
POS is ADJECTIVE.

The CURRENT-FOCUS has a number of other uses besides its role in movement. . It always
contains the subject whenever a verb is proposed, including verbs that are predicative objects of
another verb, as in “l want to go to China.” In the case of passive voice, it contains °NIL at the
time of instantiation of the verb. It has also been found to be very effective for passing semantic
information to be constrained by a future node, and it plays an integral role in pronoun-reference.
These issues are addressed more fully in [4]

3.4 Semantic Filtering

In the most recent version of the parser, we implemented a number of semantic constraints using
procedures that were very similar to those used for syntactic constraints. We found it effective
to filter on the ACTIVE-NOUN’s semantic category, as well as to constrain absorbers in the gap
mechanism to require a match on semantics before they could accept a float-object. Semantic
categories were implemented in a hierarchy such that, for example, restaurant automatically
inherits the more general properties building and place. We also introduced semantically-loaded
categories at the low levels of the parse tree. It seems that, as in syntax, there is a trade-off between
the number of unique node-types and the number of constraint filtering operations. At low levels
of the parse tree it seems more efficient to label the categories, whereas information that must pass
through higher levels of the hierarchy is better done through constraint filters.
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4 Practical Issues

Two unique practical aspects of T ina’s design are its generation-mode capability and its ability
to build a grammar automatically from a set of parsable sentences. We have found generation
mode to be an essential tool for identifying overgeneration problems in the grammar. The ability
to automatically provide a subset grammar for a set of sentences makes it easy to design a very
specific, well constrained grammar, leading to improved performance in restricted-domain spoken
language tasks.

Generation mode uses the same low-level routines as those used by the parser, but chooses
only a single path based on the outcome of a random-number generator. Since all of the arcs
have assigned probabilities, the parse tree is traversed by generating a random number at each
node and deciding which arc to take based on the outcome, using the arc probabilities to weight
the alternatives. Occasionally, the generator chooses a path which leads to a dead end, due to
unanticipated constraints. In this case, it can back up and try again. Table 1contains five examples
of consecutively generated sentences. Since these were not selectively drawn from a larger set, they
accurately reflect the current performance level. Because a number of semantic filtering operations
have been applied within this task, most of the generated sentences are semantically as well as
syntactically sound.

It is a two-step procedure to acquire a grammar from a specific set of sentences. The rule set
is first built up gradually, by parsing the sentences one-by-one, adding rules and/or constraints
as needed. Once a full set of sentences has been parsed in this fashion, the parse trees from the
sentences are automatically converted to the set of rules used to parse each sentence. The training
of both the rule set.and the probability assignments is established directly from the provided set
of parsed sentences; i.e. the parsed sentences are the grammar.

Another useful feature of TINA is that, as in LFG’s, all unifications are nondestructive, and as a
consequence explicit back-tracking is never necessary. Every hypothesis on the queue is independent
of every other one, in the sense that activities performed by pursuing one lead do not disturb the
other active nodes. This feature makes T ina an excellent candidate for parallel implementation.
The control strategy would simply ship off the most probable node to an available processor.

Table 1: Sample sentences generated consecutively by the most recent version of Tina.

Do you know the most direct route to Broadway Avenue from here?

Can | get Chinese cuisine at Legal’s?

I would like to walk to the subway stop from any hospital.

Locate a T-stop in Inman Square.

W hat kind of restaurant is located around Mount Auburn in Kendall Square of East Cambridge?

5 Discussion

This paper describes a new grammar formalism that addresses issues of concern in building a
fully integrated speech understanding system. The grammar includes arc probabilities reflecting
the frequency of occurrence of the syntactic structures within the domain. These probabilities are
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used to control the order in which hypotheses are considered, and are trained automatically from
a set of parsed sentences, which makes it straightforward to tailor the grammar to a particular
need. Ultimately, one could imagine the existence of a very large grammar that could parse almost
anything, which would be subsetted for a particular task by simply providing it with a set of
example sentences within that task.

| believe that, at the time a set of word candidates is proposed to the acoustic matcher of a
recognizer, all of the constraint available from the restrictive influence of syntax, semantics, and
phonology should have already been applied. The parse tree of Tina can be used to express
various constraints ranging from acoustic-phonetic to semantic and pragmatic. Each parse node
would contain slots for all kinds of constraint information - syntactic filters such as person, number
and mode, semantic filters such as the permissible semantic categories for the subject/object of
the hypothesized verb, and acoustic-phonetic filters (for instance, restricting the word to begin
with a vowel if the preceding word ended in a flap, as in "Wha/ is”). As the parse tree advances,
it accumulates additional constraint filters that further restrict the number of possible next-word
candidates. Thus the task of the predictive component is formulated as follows: given a sequence
of words that has been interpreted to the fullest capability of the syntactic/semantic/phonological
components, what are the likely words to follow, and what are their associated a priori probabilities?

While TINA’s terminal nodes are lexical words, | believe that the nodes should continue down
below the word level. Prefixes and suffixes alter the meaning/part-of-speech in predictable ways,
and therefore should be represented as separate subword grammar units that can take certain
specified actions. Below this level would be syllabic units, whose children are subsyllabic units such
as onset and rhyme, finally terminating in phoneme-like units. Acoustic evidence would enter at
several stages. Important spectral matches would take place at the terminal nodes, but duration
and intonation patterns would contribute to scores at many higher levels of the hierarchy.

Three different task-specific versions of Tina have been implemented. The first one was designed
to handle the 450 “phonetically rich” sentences of the TIMIT database [2]. The system was then
ported to the DARPA Resource Management domain. A number of evaluation measures have been
applied for these tasks, as described in [3]. Little else will be said here, except to note that perplexity
was reduced nine-fold for the Resource Management task when arc probabilities established from
the training data were incorporated, instead of using the equal-probability scheme. The latest
version has been tailored to the new voyager task, under development at MIT. This task involves
navigational assistance within a geographical region. Our goal is to utilize constraints offered
by both syntax and semantics so as to reduce perplexity as much as possible without sacrificing
coverage. The parser is implemented on the Symbolics Lisp machine and runs quite efficiently. A
sentence, entered in text form, is typically processed in a fraction of a second.

An effort to integrate the Voyager, version of Tina with the summit speech recognition
system [7] is currently underway. Two important issues are 1) how to combine the scores for
the recognition component and the predictive component of the grammar, and 2) how to take
advantage of appropriate pruning strategies to prevent an explosive search problem. The fully
integrated spoken language system will use Tina both to constrain the recognition space and to
provide an input to the back-end. Our current approach is to link together all words and all start-
times that are equivalent within the parse, letting them proceed at a pace in accordance with the
best-scoring word/time for the set. Viterbi pruning can take place within the recognizer, by having
each terminal node initialize the recognizer with all the active phonetic nodes provided by its set
of active hypotheses.
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