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1. Introduction

Constructing a grammar which can parse sentences selected from a natural language corpus is a
difficult task. One of the most serious problems is the unmanageably large number of ambiguities.
Pure syntactic analysis based only on syntactic knowledge will sometimes result in hundreds of
ambiguous parses. Martin [15] reported that his parser generated 455 ambiguous parses for the
sentence:

List the sales ofproducts produced in 1973 with the products produced in 1972.

Through the long history of work in natural language understanding, semantic and pragmatic con-
straints have been known to be indispensable for parsing. These should be represented in some
formal way and be referred to during or after the syntactic analysis process. Al researchers have
been exploring the use of semantic networks, frame theory, etc. to describe both factual and intui-
tive knowledge for the purpose of filtering out meaningless parses and to aid in choosing the most
likely interpretation. The SHRDLU system [22] by Winograd successfully demonstrated the pos-
sibility of sophisticated language understanding and problem solving in this direction. However,
to represent semantic and pragmatic constraints, which are usually domain sensitive, in a well-
formed way is a very difficult and expensive task. To the best of our knowledge, no one has ever
succeeded in doing so except in relatively small restricted domains.

Furthermore, there remains a basic question as to whether it is possible to formally encode all of
the syntactic, semantic and pragmatic information needed for disambiguation in a definite and
deterministic way. For example, the sentence

Printfor me the sales of stair carpets.

seems to be unambiguous; however, in the ROBOT system pure syntactic analysis of this sentence
resulted in two ambiguous parses, because the “ME” can be interpreted as an abbreviation of the
state of Maine[9]. Thus, this simple example reveals the necessity of pragmatic constraints for the
disambiguation task. Readers may claim that the system which would generate the second inter-
pretation is too lax and that a human would never be perplexed by the case. However, a reader s
view would change if he were told that the the sentence below had been issued previous to the
sentence above.

Printfor ca the sales of stair carpets.

Knowing that the speaker inquired about the business in California in the previous queries, it is
quite natural to interpret “me” as the state of Maine in this context. A problem of this sort usually
calls for the introduction of an appropriate discourse model to guide the parsing. Even with a so-
phisticated discourse model beyond anything available today, it would be impossible to take ac-
count all previous sentences: The critical previous sentence may always be just beyond the capacity
of the discourse stack.

Thus it is quite reasonable to think of a parser which disambiguates sentences by referring to sta-

tistics which encode various characteristics of the past discourse, the task domain, and the speaker.
For instance, the probability that the speaker is referring to states and the probability that the
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speaker is abbreviating a name, are useful in disambiguating the example. If the probabilities of the
above are both statistically low, one could simply neglect the interpretation of the state of “Maine"
for “me”. Faced with such a situation, we propose, in this paper, to employ probability as a device
to quantify language ambiguities. In other words, we will propose a hybrid model for natural lan-
guage processing which comprises linguistic expertise, i.e. grammar knowledge, and its probabilistic
augmentation for approximating natural language. With this framework, semantic and pragmatic
constraints are expected to be captured implicitly in the probabilistic augmentation.

Section 2 introduces the basic idea of the probabilistic parsing modeling method and Section 3
presents the experimental results when this modeling method is applied to parsing problems of
English sentences and of Japanese noun compound words. Detailed description of the method are
given elsewhere.

2. Probabilistic Context-free Grammar

2.1 Extension to Context-free Grammar

A probabilistic context-free grammar is an augmentation of a context-free grammar [5]. Each of
the grammar and lexical rules (r) , having a form of a -* /2, is associated with a conditional proba-
bility Pr\r) = Pr{f} |a) . This conditional probability denotes the probability that a non-terminal
symbol a , having appeared in the sentential form during the sentence derivation process, will be
replaced with a sequence of terminal and non-terminal symbols /2. Obviously la) = 1 holds.

Processes of sentence generation from a sentence symbol 5 by a probabilistic context-free grammar
will be carried out in an identical manner to the usual non-probabilistic context-free grammar. But
the advantage of the probabilistic grammar is that the probability can be computed for each of the
derivation trees, which enables us to quantify sentence ambiguities as described below.

The probability of a derivation tree t can be computed as a product of conditional probabilities of
the rules which are employed for deriving that tree t.

Pr(€®= n Prin)
r*m

Here r denotes a rule of the form «w-* | and D(t) denotes an ordered set of the rules which are
employed for deriving the tree t. The next figure explains how the probability of a derivation tree
t can be computed as a product of rule probabilities.

Pr{t) = Pr{NP. VP.ENDM \S) x
Pr{DET.N | NP) x
~the |det) x
Pr{boy | N) x
Pr{V.NP | VP)x
NNikes | V) x
Pr{DET.N | NP) x
/V(that | det) x
Pr(giri | N) x
Pr{. | ENDM)

Fig. 1 Probability of a Derivation Tree

An ambiguous grammar allows many different derivation trees to coexist for sentences. From the
viewpoint of sentence parsing, we say that a sentence is ambiguous when more than two parsed
trees, say f,, t2 .. are derived from the parsing process. Having a device to compute probability for
a derivation tree as shown above, we can handle sentence ambiguity in a quantitative way. Namely,
when a sentence s is parsed ambiguously into derivation trees  t2 .. and a probability Pr[tj) is
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computed for each derivation tree  the sum of the probabilities V can be regarded as the
probability that a particular sentence s will happen to be generated among other infinite possibil-
ities. More interesting is the ratio denoting relative probabilities among ambiguous derivation trees:

Pritj)

k

We can assume that it should denote the “likelihood” of each derivation tree. For example, con-
sider the following English sentence “Reply envelopes are enclosed for your convenience.” The sen-
tence is ambiguous because it can be parsed in two different ways; the first being in the imperative
mode, and the second in the declarative.

r,, “Reply (that) envelopes are enclosed for your convenience.”
[Pr{ty + Pr{t2)

tv. “Reply envelopes (A kind of envelopes) are enclosed for your convenience.” =» ---—-—- P~ -

(Pr(ti) + Pritj)

These correspond to two different parsed trees, and t2 By computing Pr\t)) + Pr{td, we can es-
timate the probability that the specific sentence “Reply envelopes are ... ” is generated from among
an infinite number of possible sentences. On the other hand, + PriQ) and
Fit)I(P,i ti) + P'ih)) £ve measures of likelihood for interpretations and t2

2.2 Estimation of Rule Probabilities from Data

The Forward / Backward algorithm, described in [11], popularly used for estimating transition
probabilities for a given hidden-Markov-model, can be extended so as to estimate rule probabilities
of a probabilistic context free grammar in the following manner.

Assume a Markov model, whose states correspond to possible sentential forms which appear in a
sentence parsing process of a context free grammar. Then each transition between two states of the
Markov model corresponds to an application of a context-free rule that maps one sentential form
into another. For example, the state NP. VP can be reached from the state 5 by applying the rule
5 =*hP.VP to a start symbol 5, the state ART.NOUN.VP can be reached from the state NP.VP
by applving the rule NP -* ART.NOUN to the first NP of the sentential form NP.VP, and so on.
Since ea*.h rule corresponds to a state transition between two states, parsing a set of sentences given
as training data will enable us to count how many times each transition is traversed. In other words,
it tells how many times each rule is fired when the given set of sentences is generated. For example,
the transition from the state 5 to the state NP.VP may happen most frequently because the rule
S “mNP.VP is commonly used in almost every declarative sentence; while the transition from the
state ART.NOUN.VP to the state every.NOUN. VP may happen 103 times; etc. In a context-free-
grammar, each replacement of a non-terminal symbol occurs independently of the context. There-
fore, counts of all transitions between states a.A.fi to a.B.C.p, with arbitrary a and /?, should be tied
together.

Counting the transitions in such a way for thousands of sentences will enable us to estimate the rule
probabilities {Pr{{3| a)} which are the probabilities that left hand side non-terminal symbols a will
be replaced with right hand side patterns /2. The actual iteration procedure to estimate these
probabilities from N sentences {B'} is shown below.

1 Make an initial guess of {Pr{fi | @)} such that PAP la) = 1holds.

2. Parse each output sentence B*. Assume that grammar is ambiguous and that more than one
derivation path exists which generate the given sentence B'. In such cases, we denote D'; as the
j-th derivation path for the ith-sentence.

3. Compute the probability of each derivation path D'j in the following way:
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P*DJ) = f] Pr{n
‘. D*

This computes Pr[Dj) as a product of the probabilities of the rules {r} which are employed to
generate that derivation path D* .

4. Compute the Bayes aposteriori estimate of the count (?,(/?) which represents how many times
the rule a —/? was used for generatmg the sentence BI .

]
Here, n‘(a, (3 denotes the number of times the rule a —*fi is used on the derivation path D’; .

5. Normalize the count so that the total count for rules with same left hand side non-terminal
symbol a becomes 1

6. Replace (Pr(p | &)} with [E(/?)} and repeat from step 2.

Through this process, the {Pr(P |a)} will approach the real transition probability[2,10]. This al-
gorithm has been proven to converge [3].

2.3 Parsing Procedure which computes Probabilities

To find the most-likely parse, that is, the parse tree which has the highest probability from among
all the candidate parses, requires a lot of time if we calculate probabilities separately for each am-
biguous parse. The following is a parsing procedure based on the Cocke-Kasami-Young [1]
bottom-up parsing algorithm which can accomplish this task very efficiently. By using it, the
most-likely parse tree for a sentence will be obtained while the normal bottom-up parsing process
is performed. It gives the maximum probability Max,/*”-) as well as the total probability of all
parses at the same time.

The Cocke-Kasami-Young parsing algorithm maintains a two-dimensional table called the Well-
Formed-Substring-Table (WFST). An entry in the table, WFST(i,j) , corresponds to a
substring”,j), j words in length, starting at the i-th word, of an input sentence [1]. The entry
contains a list of triplets. An application of a rule a * fly will add an entry (a, /?, y) to the list. This
triplet shows that a sequence of fi.y which spans substring(i,j) is replaced with a non-terminal
symbol a. (/% is the pointer to another WFST entry that corresponds to the left subordinate
structure of a and y :is the pointer to the right subordinate structure of a.)

In order to compute probabilities of parse trees in parallel to this bottom-up parsing process, the
structure of this WFST entry is modified as follows. Instead of having an one-level flat list of
triplets, each entry of WFST was changed to hold a two-level list. The top-level of the two-level list
corresponds to a left hand side non-terminal symbol, called as LHS symbol hereinafter. All com-
binations of left and right subordinate structures are kept in the sub-list of the LHS symbol. For
instance, an application of a rule a -* py will add (/?, y) to the sub-list of a.

In addition to the sub-list, a LHS symbol is associated with two variables - MaxP and SumP. These
two variables keep the maximum and the total probabilities of the LHS symbol of all possible right
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hand side combinations. MaxP and SumP can be computed in the process of bottom-up chart
parsing. When a rule a -* fly is applied, MaxP and SumP are computed as:

MaxP ) = Hiel!X(Prob(a -» 0y) x MaxP{$) x MaxP(y))
y

SumP(a) = y*(Prob{a -* (3y) x SumP(p) x SumP(y))
y

This procedure is similar to that of Viterbi algorithm[4] and maintains the maximum probability
and the total probability in MaxP and SumP respectively. MaxP/SumP gives the maximum relative
probability of the most-likely parse.

3. Experiments

To demonstrate the capability of the modeling method, a few trials were made to disambiguate
corpora of highly ambiguous phrases. Two of these experiments will be briefly described below.
Details can be found elsewhere.

3.1 Disambiguation of English Sentence Parsing

As the basis of this experiment, the grammar developed by Prof. S. Kuno in the 1960's for the
machine translation project at Harvard University [13,14,18] was used with some modification.
The set of grammar specifications in the Kuno grammar, which are in Greibach Normal form, were
translated into a form which is more favorable to our method. The 2118 original rules were refor-
mulated into 7550 rules in Chomsky normal formf[l].

Training sentences were chosen from two corpora. One corpus is composed of articles from
Datamation and Reader's Digest (average sentence length in words 10.85, average number of am-
biguities per sentence 48.5) and the other from business correspondence (average sentence length
in words 12.65, average number of ambiguities per sentence 13.5). A typical sentence from the latter
corpus is shown below:

It was advised that there are limited opportunities at this time.

The 3582 sentences from the first corpus, and 624 sentences from the second corpus that were
successfully parsed were used to train the 7550 grammar rules besides some lexical rules in each
corpus.

Once the probabilities for rules are thus obtained, they can be used to disambiguate sentences by
the procedure described in section 2.3.

SENTENCE
PRONOUN (we)
PREDICATE
AUXILIARY (do)
INFINITE VERB PHRASE
ADVERB TYPE1 ( not)
(A) 0.356 INFINITE VERB PHRASE
VERB TYPE IT 1( utilize )

OBJECT
NOUN ( outside )
ADJ CLAUSE
NOUN (art)

PRED. WITH NO OBIECT
VERB TYPE VTL ( services )
(B) 0.003 INFINITE VERB PHRASE
VERB TYPE IT 1( uukze )
OBIJECT
PREPOSITION ( outside )
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NOUN OBIJECT

NOUN (art)
OBJECT
NOUN ( services )

(C)0.641 INFINITE VERB PHRASE
VERB TYPE IT1( utilize )
OBJECT

NOUN ( outside )
OBJECT MASTER
NOUN (art)
OBJECT MASTER
NOUN ( services )
PERIOD
ADVERB TYPE1l (directly )
PRD ()

Fig. 2 Parse Tree for “We do not utilize

Figure 2 shows the parsing result for the sentence Ve do not utilize outside art services directly.
which turned out to have three ambiguities.

As shown in the figure, ambiguities come from the three distinct substructures, (A), (B) and (C),
for the phrase “utilize outside art services.". The derivation (C) corresponds to the most common
interpretation while in (A) "art” and "outside” are regarded respectively as subject and object of
the verb "services”. In (B), "art service” is regarded as an object of the verb "utilize”” and "outside”
is inserted as a preposition. The numbers 0.356, 0.003 and 0.641 signify the relative probabilities
of the three interpretations. As shown in this case, the correct parse (the third one) gets the highest
relative probability, as was expected.

Some of the resultant probabilities obtained through the iteration process for each of the grammar
rules and the lexical rules are shown below.

Rules for “1T6”1 Rules for “SE™ 3

(0.11054) IT6 - BELIEVE -(a) (0.21602) SE - AAA 4X VX PD —(c)
(0.10685) IT6 - KNOW -(b) (0.15296) SE -* PRN VX PD —(d)
(0.08562) IT6 - FIND (0.15229) SE - NNN VX PD
(0.07628) IT6 - THINK (0.11965) SE - AVISE

(0.03525) IT6 - CALL (0.04730) SE - PRE NQ SE

(0.03280) IT6 - REALIZE (0.04457) SE - NNN AC VX PD

(0.02616) SE - AV2 SE
Rules for “1T372

(0.16055) IT3 - GET Rules for “VX”4

(0.12447) IT3 -* MAKE (0.19809) VX -* VT1 N2

(0.1 1988) IT3 - HAVE (0.10704) VX - PRE NQ VX
(0.08132) IT3 - SEE (0.08790) VX - VII
(0.06477) IT3 - KEEP (0.07500) VX - AUX BV
(0.06363) IT3 - BELIEVE (0.05455) VX - AVI VX

Fig. 3 Rule probabilities estimated by iteration

Numbers in the parentheses on the left of each rules denote probabilities estimated from the iter-
ation process described in the section 3.3. For example, the probabilities that the words believe,
and know have the part of speech IT6 are shown as 11.11% and 10.7\% on lines (a) and (b) re-
spectively. Line (c) shows that a sequence AAA (article and other adjective etc.) 4X (subject noun
phrase), VX(predicate) and PD (period or post sentential modifiers followed by period) forms a
sentence (SE) with probability 21.6\%. Line (d), on the other hand, shows that a sequence PRN

Infinite form of a mono-transitive verb which takes a noun-clause object

infinite form of a complex-transitive verb which takes an object and an objective compliment
sentence

predicate
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(pronoun), VX and PD forms a sentence (SE) with probability 15.3 %. In such ways, the proba-
bility findings convey useful information for language analysis.

Table 1summarizes the experiments. Test 1corresponds to the corpus of articles from Datamation
and Reader's Digest, while Test 2 derived from the business correspondence. In both cases, the
base Kuno grammars were successfully augmented by probabilities.

a. Corpus test | test2
b. Number of sentences used for training 3582 624
C. Number of sentences checked manually 63 pl
d. Number of sentences with no correct parse 4 2
e. Number of sentences where highest prob.

was given to the most natural parse 54 18
f. Number of sentences where highest prob.

was not given to the right one 5 1

Table 1L Summary of English sentence parsing

3.2 Disambiguation of Japanese Noun Compound Word Parsing

Analyzing structures of noun compound words is difficult because noun compound words usually
do not have enough structural clues for syntactic parsing[17]. Particularly in the Japanese language,
noun compound words consist only of a few types of components, and pure syntactic analysis will
result in many ambiguous parses. Some kind of mechanism which can handle inter-word analysis
of constituent words is needed to disambiguate them.

We applied our probabilistic modeling method for disambiguating parsing of Japanese noun com-
pound words. It was done by associating rule probabilities to basic construction rules of noun
compound words. In order to make rule probabilities sensitive to inter-word relationship of com-
ponent words, words were grouped into finer categories (jV,, N2 M3 .. Sm). The base rules were
replicated for each combination of right hand side word categories. Since we assumed that the
right-most word of the right hand side inherits the category from the left hand side parent, a single
m/-¢ MV rule was replicated to m x m rules. For these mx m rules, separate probabilities were
prepared and estimated. The method described in the section 2.2 was used to estimate these
probabilities from noun compound words actually observed in text.

Once probabilities for rules were estimated, the parsing procedure described in the section 2.3 was
used to compute relative probability of each parse tree i.e. the likelihood of the parse tree among
others.

In this experiment, we categorized words by a conventional clustering technique which groups
words according to neighboring word patterns. For example, 'oil" and 'coal’ belong to the same
category in our method because they frequently appear in similar word patterns such as “ ~
burner”, “ ~ consumption”, “ ~ resources”. 31,900 noun compound words picked from abstracts
of technical papers [12] were used for this categorization process. Twenty eight categories were
obtained through this process for 1000 high-frequency 2-character kanji primitive words, 8 catego-
ries for 200 prefix single-character words, and 10 categories for 400 suffix single-character
words[16]. Base rules deriving from different combination of these 46 word categories resulted in

5582 separate rules. These base rules are displayed below.

<word > ~* <2 character kanji primitive word >

<word> —»<word> <word >
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<word > —* <prefix single character word > <word>

<word > -* <word > <suffix single character word >

5582 conditional probabilities of these rules were estimated from 28,568 noun compound words.

After training  was successfully done, 153 noun compound wordswere randomlychosen, parsed b\
the procedure shown in the section 3.3 and the parse trees wereexamined by hand. The check was
made whether the correct parse is given the highest probabilities. Among the 153testwords, 22
was uniquely parsed and 131 test wordswere parsed with more than two alternativeparse trees.
Among 131, in 92 cases, the right parses were given the highest probabilities.

Show below are parsing results for two noun compound words.

word 1 ~(medium) #1$|(scale) (integrated) [0]5& (ci rcui t)
word 2. /J'(small) #ifE(scale> \\Ifj (olectr icity) (company)

(Word order is the same both in English and in Japanese).

For both of these cases, 5 alternative parse trees were given. Obtained parse treeswere computed
with relative probabilities, the likelihood, among other alternative parses. Ln thefirstsentence, the
5-th parse tree, which is the most natural, got the highest probability 0.43. In the second case, the
3rd parse tree, which is the most natural, got the highest probability 1.0.

word 1 "medium scale integrated circuit"

structure of parsed tree shown in meaning implied from structure prob.
bracket notation
1 medium [ [ scale integrated ] circuit] a medium-size 0.17
"scale-integrated-circuit"
2 medium [ scale [ integrated circuit] ] a medium-sized integrated 0.04
circuit which is scale (?)
3 [medium scale ] [ integrated circuit] an integrated-circuit 0.19
of medium-scale
4 [ medium [ scale integrated ] ] circuit a medium-size circuit which 0.17
is scale-integrated
5 [ [ medium scale ] integrated ] circuit a circuit which is 0.43

medium-scale integrated

case 2 'small scale electricity company"

1 small [ [ scale electricity ] company] a small company which 0.0
serves scale-electricity

2 small [ scale [ electricity company] ] a company which is small, 0.0
serves electricity, and is
something to do with scale

3 [ small scale ] [ electricity company] a company which serves electricity 1.0
and which is small scale

4 [ small [ scale electricity ] ] company a company which services 0.0

small scale-electricity
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5 [ [ small scale ] electricity ] company a company which services 0.0
small scale electricity
(micro electronics?)

4. Concluding Remarks

N-gram modeling technique [20] has been proven to be a powerful and effective method for lan-
guage modeling. It has successfully been used in several applications such as speech recognition,
text segmentations, character recognition and others.[11,6,7,19,21] At the same time, however, it
has proved to be difficult to approximate language phenomena precisely enough when context de-
pendencies expand over a long distance. A direct means to remedy the situation is (a) to increase
Vof N-gram or (b) to increase the length of basic units from a character to a word or to a phrase.
If the vocabulary size is M, however, the statistics needed for maintaining the equivalent precision
in the N-gram model increase in proportion to MN. The situation is simitar m (b). Increasing the
length of the basic unit causes an exponential increase in vocabulary size. Hence an exponential
increase of the required statistics volume follows in (b) as well. This shows that the N-gram model
faces a serious data gathering problem when a task has a long-context dependency. Obviously, the
parsing of sentences creates this sort of problem.

On the other hand, the method introduced here aims to remedy this problem by combining a
probabilistic modeling procedure with linguistic expertise. In this hybrid approach [7,8], linguistic
expertise provides the framework of a grammar, and the probabilistic modeling method augments
the grammar quantitatively.

Since the probabilistic augmentation process is completely automatic, it is not necessary to rely on
human endeavor which tends to be expensive, inconsistent, and subjective. Also the probabilistic
augmentation of a grammar is adaptable for any set of sentences.

These two important features make the method useful for various problems of natural language
processing. Besides its use for sentence disambiguation demonstrated in the section 3.4, the method
can be used to customize a given grammar to a particular sub-language corpus. Namely, when a
grammar designed for a general-corpus is applied to this method, the rules and the lexical entries
which are used less frequently in the corpus will automatically be given low or zero probabilities.
Alternately, the rules and the lexical entries which require more refinement will be given high
probabilities, thus the method helps us to tune a grammar in a top-down manner. The method is
also useful for improving performance of top-down parsing when used for obtaining hints for re-
ordering rules according to the rule probabilities.

In this way, although all possible uses have not been explored the method proposed in this paper
has enormous potential application, and the author hopes that a new natural language processing
paradigm may emerge from it.

Use of probability in natural language analysis may seem strange, but it is in effect a only simple
generalization of common practice: Namely, the usual top-down parsing strategy forces a true or
false (1 or 0) decision, i.e. to choose one alternatives from others on every non-deterministic choice
point.

And most importantly, by use of the proposed method a grammar can be probabilistically aug-
mented objectively and automatically from a set of sentences picked from an arbitrary corpus. On
the other hand, the representation of semantic and pragmatic constraints in the form of usual se-
mantic networks, frame theory, etc., requires a huge amount of subjective human effort.
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