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1. Introduction
Constructing a grammar which can parse sentences selected from a natural language corpus is a 
difficult task. One of the most serious problems is the unmanageably large number of ambiguities. 
Pure syntactic analysis based only on syntactic knowledge will sometimes result in hundreds of 
ambiguous parses. Martin [15] reported that his parser generated 455 ambiguous parses for the 
sentence:

List the sales o f products produced in 1973 with the products produced in 1972.

Through the long history of work in natural language understanding, semantic and pragmatic con­
straints have been known to be indispensable for parsing. These should be represented in some 
formal way and be referred to during or after the syntactic analysis process. AI researchers have 
been exploring the use of semantic networks, frame theory, etc. to describe both factual and intui­
tive knowledge for the purpose of filtering out meaningless parses and to aid in choosing the most 
likely interpretation. The SHRDLU system [22] by Winograd successfully demonstrated the pos­
sibility of sophisticated language understanding and problem solving in this direction. However, 
to represent semantic and pragmatic constraints, which are usually domain sensitive, in a well- 
formed way is a very difficult and expensive task. To the best of our knowledge, no one has ever 
succeeded in doing so except in relatively small restricted domains.

Furthermore, there remains a basic question as to whether it is possible to formally encode all of 
the syntactic, semantic and pragmatic information needed for disambiguation in a definite and 
deterministic way. For example, the sentence

Print for  me the sales o f stair carpets.

seems to be unambiguous; however, in the ROBOT system pure syntactic analysis of this sentence 
resulted in two ambiguous parses, because the “M E” can be interpreted as an abbreviation of the 
state of Maine[9]. Thus, this simple example reveals the necessity of pragmatic constraints for the 
disambiguation task. Readers may claim that the system which would generate the second inter­
pretation is too lax and that a human would never be perplexed by the case. However, a reader s 
view would change if he were told that the the sentence below had been issued previous to the 
sentence above.

Print fo r  ca the sales o f stair carpets.

Knowing that the speaker inquired about the business in California in the previous queries, it is 
quite natural to interpret “m e” as the state of Maine in this context. A problem of this sort usually 
calls for the introduction of an appropriate discourse model to guide the parsing. Even with a so­
phisticated discourse model beyond anything available today, it would be impossible to take ac­
count all previous sentences: The critical previous sentence may always be just beyond the capacity 
of the discourse stack.

Thus it is quite reasonable to think of a parser which disambiguates sentences by referring to sta­
tistics which encode various characteristics of the past discourse, the task domain, and the speaker. 
For instance, the probability that the speaker is referring to states and the probability that the
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speaker is abbreviating a name, are useful in disambiguating the example. If the probabilities of the 
above are both statistically low, one could simply neglect the interpretation of the state of “Maine" 
for “me”. Faced with such a situation, we propose, in this paper, to employ probability as a device 
to quantify language ambiguities. In other words, we will propose a hybrid model for natural lan­
guage processing which comprises linguistic expertise, i.e. grammar knowledge, and its probabilistic 
augmentation for approximating natural language. With this framework, semantic and pragmatic 
constraints are expected to be captured implicitly in the probabilistic augmentation.

Section 2 introduces the basic idea of the probabilistic parsing modeling method and Section 3 
presents the experimental results when this modeling method is applied to parsing problems of 
English sentences and of Japanese noun compound words. Detailed description of the method are 
given elsewhere.

2. Probabilistic Context-free Grammar

2.1 Extension to Context-free Grammar
A probabilistic context-free grammar is an augmentation of a context-free grammar [5]. Each of 
the grammar and lexical rules (r) , having a form of a -* /?, is associated with a conditional proba­
bility Pr\r) =  Pr{f} | a) . This conditional probability denotes the probability that a non-terminal 
symbol a , having appeared in the sentential form during the sentence derivation process, will be 
replaced with a sequence of terminal and non-terminal symbols /? . Obviously I a) =  I holds.

p
Processes of sentence generation from a sentence symbol 5 by a probabilistic context-free grammar 
will be carried out in an identical manner to the usual non-probabilistic context-free grammar. But 
the advantage of the probabilistic grammar is that the probability can be computed for each of the 
derivation trees, which enables us to quantify sentence ambiguities as described below.
The probability of a derivation tree t can be computed as a product of conditional probabilities of 
the rules which are employed for deriving that tree t.

Pr(t) = n  Prir) 
r * m

Here r denotes a rule of the form <x -* , and D(t) denotes an ordered set of the rules which are
employed for deriving the tree t. The next figure explains how the probability of a derivation tree 
t can be computed as a product of rule probabilities.

Pr{t) = Pr{NP. VP.ENDM \ S) x 
Pr{DET.N | NP) x 
^ t h e  | det) x  

Pr{boy | N) x  
Pr{V.NP | VP)x 
/V l̂ikes | V) x  

Pr{DET.N | NP) x  
/V(that | det) x  

Pr(gi ri  | N )  x  
Pr{. | ENDM)

Fig. 1 Probability of a Derivation Tree

An ambiguous grammar allows many different derivation trees to coexist for sentences. From the 
viewpoint of sentence parsing, we say that a sentence is ambiguous when more than two parsed 
trees, say f„ t2, ... are derived from the parsing process. Having a device to compute probability for 
a derivation tree as shown above, we can handle sentence ambiguity in a quantitative way. Namely, 
when a sentence s is parsed ambiguously into derivation trees t2, ... and a probability Pr[tj) is
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computed for each derivation tree the sum of the probabilities V can be regarded as the
probability that a particular sentence s will happen to be generated among other infinite possibil­
ities. More interesting is the ratio denoting relative probabilities among ambiguous derivation trees:

Pritj)

k

We can assume that it should denote the “likelihood” of each derivation tree. For example, con­
sider the following English sentence “Reply envelopes are enclosed for your convenience.” The sen­
tence is ambiguous because it can be parsed in two different ways; the first being in the imperative 
mode, and the second in the declarative.

r,: “ Reply (that) envelopes are enclosed for your convenience.”
[Pr{tx) +  Pr{t2))

tv. “ Reply envelopes (A kind o f  envelopes) are enclosed for your convenience.” = » ------- P ^ h )-------
(Pr(t i) +  P r it j )

These correspond to two different parsed trees, and t2. By computing Pr\t,) +  Pr{t2), we can es­
timate the probability that the specific sentence “Reply envelopes are ... ” is generated from among 
an infinite number of possible sentences. On the other hand, + PriQ) and
F>ri t2)l(P,i ti) +  P'ih)) £ ve measures of likelihood for interpretations and t2.

2.2 Estimation of Rule Probabilities from Data
The Forward / Backward algorithm, described in [11], popularly used for estimating transition 
probabilities for a given hidden-Markov-model, can be extended so as to estimate rule probabilities 
of a probabilistic context free gra m m ar in the following m a n n er.

Assume a Markov model, whose states correspond to possible sentential forms which appear in a 
sentence parsing process of a context free grammar. Then each transition between two states of the 
Markov model corresponds to an application of a context-free rule that maps one sentential form 
into another. For example, the state NP. VP can be reached from the state 5 by applying the rule 
5  —* hP.VP to a start symbol 5, the state ART.NOUN.VP can be reached from the state NP.VP 
by applving the rule NP -* ART.NOUN to the first NP of the sentential form NP.VP, and so on. 
Since ea*.h rule corresponds to a state transition between two states, parsing a set of sentences given 
as training data will enable us to count how many times each transition is traversed. In other words, 
it tells how many times each rule is fired when the given set of sentences is generated. For example, 
the transition from the state 5  to the state NP.VP may happen most frequently because the rule 
S -*■ NP.VP is commonly used in almost every declarative sentence; while the transition from the 
state ART.NOUN.VP to the state every.NOUN. VP may happen 103 times; etc. In a context-free- 
grammar, each replacement of a non-terminal symbol occurs independently of the context. There­
fore, counts of all transitions between states a.A.fi to a.B.C.p, with arbitrary a and /?, should be tied 
together.

Counting the transitions in such a way for thousands of sentences will enable us to estimate the rule 
probabilities {Pr{{3 | a)} which are the probabilities that left hand side non-terminal symbols a will 
be replaced with right hand side patterns /?. The actual iteration procedure to estimate these 
probabilities from N  sentences {B '} is shown below.

1. Make an initial guess of {Pr{fi | a)} such that P^P  I a) =  1 holds.

2. Parse each output sentence B‘ . Assume that grammar is ambiguous and that more than one 
derivation path exists which generate the given sentence B'. In such cases, we denote D'; as the 
j-th derivation path for the ith-sentence.

3. Compute the probability of each derivation path D'j in the following way:
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P*D ‘j) = f ]  Pr{r) 

'•  D‘,

This computes Pr[D‘j) as a product of the probabilities of the rules {r} which are employed to 
generate that derivation path D‘, .

4. Compute the Bayes a posteriori estimate of the count (?,(/?) which represents how many times 
the rule a — /? was used for generatmg the sentence Bl .

Here, n‘,(a, (3) denotes the number of times the rule a —* fi is used on the derivation path D'; .

5. Normalize the count so that the total count for rules with same left hand side non-terminal 
symbol a becomes 1.

6. Replace (Pr(p | a)} with [£(/?)} and repeat from step 2.

Through this process, the {Pr(P | a)} will approach the real transition probability[2,10]. This al­
gorithm has been proven to converge [3].

2.3 Parsing Procedure which computes Probabilities
To find the most-likely parse, that is, the parse tree which has the highest probability from among 
all the candidate parses, requires a lot of time if we calculate probabilities separately for each am­
biguous parse. The following is a parsing procedure based on the Cocke-Kasami-Young [1] 
bottom -up parsing algorithm which can accomplish this task very efficiently. By using it, the 
most-likely parse tree for a sentence will be obtained while the normal bottom -up parsing process 
is performed. It gives the maximum probability Max,/*^-) as well as the total probability of all 
parses at the same time.

The Cocke-Kasami-Young parsing algorithm maintains a two-dimensional table called the Well- 
Formed-Substring-Table (WFST). An entry in the table, W FST(i,j) , corresponds to a 
substring^, j), j words in length, starting at the i-th word, of an input sentence [1]. The entry 
contains a list of triplets. An application of a rule a -*• fly will add an entry (a, /?, y) to the list. This 
triplet shows that a sequence of fi.y which spans substring(i,j) is replaced with a non-terminal 
symbol a. (/?: is the pointer to another W FST  entry that corresponds to the left subordinate 
structure of a and y : is the pointer to the right subordinate structure of a.)

In order to compute probabilities of parse trees in parallel to this bottom -up parsing process, the 
structure of this W FST entry is modified as follows. Instead of having an one-level flat list of 
triplets, each entry of W FST was changed to hold a two-level list. The top-level of the two-level list 
corresponds to a left hand side non-terminal symbol, called as LHS symbol hereinafter. All com­
binations of left and right subordinate structures are kept in the sub-list of the LHS symbol. For 
instance, an application of a rule a -* py will add (/?, y) to the sub-list of a.

In addition to the sub-list, a LHS symbol is associated with two variables - MaxP and SumP. These 
two variables keep the maximum and the total probabilities of the LHS symbol of all possible right

j
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hand side combinations. MaxP and SumP can be computed in the process of bottom-up chart 
parsing. When a rule a -* fly is applied, MaxP  and SumP are computed as:

MaxP (cl) =  H ie !  X(Prob(a - *  0y) x MaxP{$) x MaxP(y)) 
y

SumP(a) =  y^(Prob{a -* (3y) x SumP(p) x SumP(y))
y

This procedure is similar to that of Viterbi algorithm[4] and maintains the maximum probability 
and the total probability in M axP  and SumP  respectively. M axP/SumP  gives the maximum relative 
probability of the most-likely parse.

3. Experiments
To demonstrate the capability of the modeling method, a few trials were made to disambiguate 
corpora of highly ambiguous phrases. Two of these experiments will be briefly described below. 
Details can be found elsewhere.

3.1 Disambiguation o f  English Sentence Parsing
As the basis of this experiment, the grammar developed by Prof. S. Kuno in the 1960's for the 
machine translation project at Harvard University [13,14,18] was used with some modification. 
The set of grammar specifications in the Kuno grammar, which are in Greibach Normal form, were 
translated into a form which is more favorable to our method. The 2118 original rules were refor­
mulated into 7550 rules in Chomsky normal form [l].
T r a i n i n g sentences were chosen from two corpora. One corpus is composed of articles from 
Datamation and Reader's Digest (average sentence length in words 10.85, average number of am ­
biguities per sentence 48.5) and the other from business correspondence (average sentence length 
in words 12.65, average number of ambiguities per sentence 13.5). A typical sentence from the latter 
corpus is shown below:

It was advised that there are limited opportunities at this time.

The 3582 sentences from the first corpus, and 624 sentences from the second corpus that were 
successfully parsed were used to train the 7550 grammar rules besides some lexical rules in each 
corpus.

Once the probabilities for rules are thus obtained, they can be used to disambiguate sentences by 
the procedure described in section 2.3.

SEN TEN C E 
PRONOUN ( we )
PRED ICA TE 

A U X ILIA R Y  ( do )
IN FIN ITE VERB PHRASE 

A DVERB TYPE1 ( not )
(A) 0.356 IN FIN ITE VERB PH RASE

VERB TY PE IT 1 ( utilize )
OBJECT 

: NOUN ( outside )
A DJ C LA U SE 

NOUN ( a r t )
PRED. WITH NO OBJECT 

VERB TY PE VT1 ( services )
(B) 0.003 IN FIN ITE VERB PH RASE

: VERB TY PE IT 1( uukze )
: O BJECT

PREPOSITION ( outside )
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N O U N  OBJECT 
: N O U N  ( a r t )

OBJ ECT 
: N O U N  ( services )

(C)0.641 I N F I N I T E  VERB P H R A S E  
VERB T Y P E  IT1( utilize )
OBJ ECT 

: N O U N  ( outside )
OBJ ECT MA ST ER 

N O U N  ( art )
OBJ ECT MA ST ER 

: N O U N  ( services )
PE R I O D  

AD VE RB TYPE1 ( directly )
PRD ( . )

Fig. 2 Parse Tree for “We do not utilize

Figure 2 shows the parsing result for the sentence ‘Ve do not utilize outside art services directly. . 
which turned out to have three ambiguities.
As shown in the figure, ambiguities come from the three distinct substructures, (A), (B) and (C), 
for the phrase “utilize outside art services.". The derivation (C) corresponds to the most common 
interpretation while in (A) "art” and "outside” are regarded respectively as subject and object of 
the verb "services”. In (B), "art service” is regarded as an object of the verb "utilize” and "outside” 
is inserted as a preposition. The numbers 0.356, 0.003 and 0.641 signify the relative probabilities 
of the three interpretations. As shown in this case, the correct parse (the third one) gets the highest 
relative probability, as was expected.
Some of the resultant probabilities obtained through the iteration process for each of the gram m ar 
rules and the lexical rules are shown below.

Rules for “ 1IT6” 1 Rules for “S E ” 3
(0.11054) IT6 -  BELIEVE - ( a ) (0.21602) SE -  A A A  4X V X  P D  — (c)
(0.10685) IT6 -  K N O W -( b ) (0.15296) SE -* P R N  VX P D  — (d)
(0.08562) IT6 -  F IN D (0.15229) SE -  N N N  V X  PD
(0.07628) IT6 -  T H IN K (0.11965) SE -  A V I S E
(0.03525) IT6 -  CALL (0.04730) SE -  PRE N Q  SE
(0.03280) IT6 -  R E A L IZ E (0.04457) SE -  N N N  A C  V X  P D

(0.02616) SE -  A V 2 SE
Rules for “ IT 3” 2

(0 .16055) IT3 -  G E T Rules for “ V X ” 4
(0 .12447) IT3 -* M A K E (0.19809) V X  -* VT1 N 2  -
(0.1 1988) IT3 -  H A V E (0.10704) V X  -  PRE N Q  V X
(0.08132) IT3 -  SEE (0.08790) V X -  VII
(0.06477) IT3 -  KE E P (0.07500) V X  -  A U X  BV
(0.06363) IT3 -  BELIEVE (0.05455) V X  -  A V I VX

Fig. 3 Rule probabilities estimated by iteration

Numbers in the parentheses on the left of each rules denote probabilities estimated from the iter­
ation process described in the section 3.3. For example, the probabilities that the words believe, 
and know have the part of speech IT6 are shown as 11. 1\% and 10.7\%  on lines (a) and (b) re­
spectively. Line (c) shows that a sequence AAA (article and other adjective etc.) 4X (subject noun 
phrase), VX(predicate) and PD (period or post sentential modifiers followed by period) forms a 
sentence (SE) with probability 21.6\% . Line (d), on the other hand, shows that a sequence PRN

Infinite form of a mono-transitive verb which takes a noun-clause object
infinite form of a complex-transitive verb which takes an object and an objective compliment
sentence
predicate
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(pronoun), VX and PD forms a sentence (SE) with probability 15.3 %. In such ways, the proba­
bility findin gs convey useful information for language analysis.

Table 1 summarizes the experiments. Test 1 corresponds to the corpus of articles from Datamation 
and Reader's Digest, while Test 2 derived from the business correspondence. In both cases, the 
base Kuno gram m ars were successfully augmented by probabilities.

a. Corpus test l test2
b. Number of sentences used for training 3582 624
c. Number of sentences checked manually 63 21
d. Number of sentences with no correct parse 4 2
e. Number of sentences where highest prob. 

was given to the most natural parse 54 18
f. Number of sentences where highest prob. 

was not given to the right one 5 1

Table 1. Summary of English sentence parsing

3.2 Disambiguation o f  Japanese Noun Compound Word Parsing
Analyzing structures of noun compound words is difficult because noun compound words usually 
do not have enough structural clues for syntactic parsing[17]. Particularly in the Japanese language, 
noun compound words consist only of a few types of components, and pure syntactic analysis will 
result in many ambiguous parses. Some kind of mechanism which can handle inter-word analysis 
of constituent words is needed to disambiguate them.

We applied our probabilistic modeling method for disambiguating parsing of Japanese noun com­
pound words. It was done by associating rule probabilities to basic construction rules of noun 
compound words. In order to make rule probabilities sensitive to inter-word relationship of com­
ponent words, words were grouped into finer categories (jV,, N2, jV3, ... S m). The base rules were 
replicated for each combination of right hand side word categories. Since we assumed that the 
right-most word of the right hand side inherits the category from the left hand side parent, a single 
■V -♦ ;V/V rule was replicated to m  x m  rules. For these m x  m rules, separate probabilities were 
prepared and estimated. The method described in the section 2.2 was used to estimate these 
probabilities from noun compound words actually observed in text.

Once probabilities for rules were estimated, the parsing procedure described in the section 2.3 was 
used to compute relative probability of each parse tree i.e. the likelihood of the parse tree among 
others.

In this experiment, we categorized words by a conventional clustering technique which groups 
words according to neighboring word patterns. For example, 'oil" and 'co a l' belong to the same 
category in our method because they frequently appear in similar word patterns such as “ ~  
burner”, “ ~  consum ption”, “ ~  resources”. 31,900 noun compound words picked from abstracts 
of technical papers [12] were used for this categorization process. Twenty eight categories were 
obtained through this process for 1000 high-frequency 2-character kanji primitive words, 8 catego­
ries for 200 prefix single-character words, and 10 categories for 400 suffix single-character 
words[16]. Base rules deriving from different combination of these 46 word categories resulted in 
5582 separate rules. These base rules are displayed below.

< word > ~* <2 character kanji primitive word >

< word > —► < word > < word >
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< word > —* < prefix single character word > < word>

< word > -* < word > < suffix single character word >

5582 conditional probabilities of these rules were estimated from 28,568 noun compound words.

.After training was successfully done, 153 noun compound words were randomly chosen, parsed b\
the procedure shown in the section 3.3 and the parse trees were examined by hand. The check was
made whether the correct parse is given the highest probabilities. Among the 153 test words, 22
was uniquely parsed and 131 test words were parsed with more than two alternative parse trees.
Among 131, in 92 cases, the right parses were given the highest probabilities.

Show below are parsing results for two noun compound words.

word 1: ^(medium) # l$ | (s c a le )  ( integrated) [o]5& (ci rcui t)

word 2: /J'(small) # if£ (sca le>  \ \ l f j  (o le c tr  ic i ty) (company)

(Word order is the same both in English and in Japanese).

For both of these cases, 5 alternative parse trees were given. Obtained parse trees were computed
with relative probabilities, the likelihood, among other alternative parses. Ln the first sentence, the
5-th parse tree, which is the most natural, got the highest probability 0.43. In the second case, the 
3rd parse tree, which is the most natural, got the highest probability 1.0.

word 1 "medium scale integrated circuit"

structure of parsed tree shown in 
bracket notation

meaning implied from structure prob.

1 medium [ [ scale integrated ] circuit] a medium-size 
"scale-integrated-circuit"

0.17

2 medium [ scale [ integrated circuit] ] a medium-sized integrated 
circuit which is scale (?)

0.04

3 [medium scale ] [ integrated circuit] an integrated-circuit 
of medium-scale

0.19

4 [ medium [ scale integrated ] ] circuit a medium-size circuit which 
is scale-integrated

0.17

5 [ [ medium scale ] integrated ] circuit a circuit which is 
medium-scale integrated

0.43

case 2 'small scale electricity company"

1 small [ [ scale electricity ] company] a small company which 
serves scale-electricity

0.0

2 small [ scale [ electricity company] ] a company which is small, 
serves electricity, and is 
something to do with scale

0.0

3 [ small scale ] [ electricity company] a company which serves electricity 
and which is small scale

1.0

4 [ small [ scale electricity ] ] company a company which services 
small scale-electricity

0.0
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5 [ [ small scale ] electricity ] company a company which services 0.0
small scale electricity
(micro electronics?)

4. Concluding Remarks
N-gram modeling technique [20] has been proven to be a powerful and effective method for lan­
guage modeling. It has successfully been used in several applications such as speech recognition, 
text segmentations, character recognition and others.[11,6,7,19,21] At the same time, however, it 
has proved to be difficult to approximate language phenomena precisely enough when context de­
pendencies expand over a long distance. A direct means to remedy the situation is (a) to increase 
.V of N-gram or (b) to increase the length of basic units from a character to a word or to a phrase. 
If the vocabulary size is M, however, the statistics needed for m a i n t a i n i n g the equivalent precision 
in the N-gram model increase in proportion to M N. The situation is s i mi la r  m (b). Increasing the 
length of the basic unit causes an exponential increase in vocabulary size. Hence an exponential 
increase of the required statistics volume follows in (b) as well. This shows that the N-gram model 
faces a serious data gathering problem when a task has a long-context dependency. Obviously, the 
parsing of sentences creates this sort of problem.

On the other hand, the method introduced here aims to remedy this problem by c o m b in in g a 
probabilistic modeling procedure with linguistic expertise. In this hybrid approach [7,8], linguistic 
expertise provides the framework of a grammar, and the probabilistic modeling method augments 
the grammar quantitatively.

Since the probabilistic augmentation process is completely automatic, it is not necessary to rely on 
human endeavor which tends to be expensive, inconsistent, and subjective. Also the probabilistic 
augmentation of a grammar is adaptable for any set of sentences.

These two important features make the method useful for various problems of natural language 
processing. Besides its use for sentence disambiguation demonstrated in the section 3.4, the method 
can be used to customize a given grammar to a particular sub-language corpus. Namely, when a 
grammar designed for a general-corpus is applied to this method, the rules and the lexical entries 
which are used less frequently in the corpus will automatically be given low or zero probabilities. 
Alternately, the rules and the lexical entries which require more refinement will be given high 
probabilities, thus the method helps us to tune a grammar in a top-down manner. The method is 
also useful for improving performance of top-down parsing when used for obtaining hints for re­
ordering rules according to the rule probabilities.

In this way, although all possible uses have not been explored the method proposed in this paper 
has enormous potential application, and the author hopes that a new natural language processing 
paradigm may emerge from it.

Use of probability in natural language analysis may seem strange, but it is in effect a only simple 
generalization of common practice: Namely, the usual top-down parsing strategy forces a true or 
false (1 or 0) decision, i.e. to choose one alternatives from others on every non-deterministic choice 
point.

And most importantly, by use of the proposed method a grammar can be probabilistically aug­
mented objectively and automatically from a set of sentences picked from an arbitrary corpus. On 
the other hand, the representation of semantic and pragmatic constraints in the form of usual se­
mantic networks, frame theory, etc., requires a huge amount of subjective human effort.
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