
The Computational Implementation of
Principle-Based Parsers1

Sandiway Fong
Robert C. Berwick

Artificial Intelligence Laboratory,
Massachusetts Institute of Technology

Abstract
T h is paper addresses the issue of how to organize linguistic principles

for efficient processing. B ased on the general ch aracterization of princi­
ples in term s o f purely com putation al properties, the effects of principle-
ordering on parser perform ance are investigated . A novel parser that ex­
ploits the possible variation in principle-ordering to dynam ically re-order
principles is described. H euristics for m inim izing the am ount of unneces­
sary work perform ed during the parsing process are also d iscussed.

1 In troduction
Recently, there has been some interest in the implementation of grammatical
theories based on the principles and parameters approach (Correa [3], Dorr [4],
Johnson [5], Kolb & Thiersch [6], and Stabler [10]). In this framework, a fixed set
of universal principles parameterized according to particular languages interact
deductively to account for diverse linguistic phenomena. Much of the work to
date has focused on the not inconsiderable task of formalizing such theories. The
primary goal of this paper is to explore the computationally-relevant properties
of this framework. In particular, we address the hitherto largely unexplored issue
of how to organize linguistic principles for efficient processing. More specifically,
this paper examines if, and how, a parser can re-order principles to avoid doing
unnecessary work. Many important questions exist: for example, (1) W hat
effect, if any, does principle-ordering have on the amount of work needed to
parse a given sentence? (2) If the effect of principle-ordering is significant, then
are some orderings much better than others? (3) If so, is it possible to predict
(and explain) which ones these are?

By characterizing principles in terms of the purely computational notions of
“filters” and “generators” , we show how how principle-ordering can be utilized
to minimize the amount of work performed in the course of parsing. Basically,
some principles, like Move-a (a principle relating ‘gaps’ and ‘fillers’) and Free
Indexing (a principle relating referential items) are “generators” in the sense
that they build more hypothesized output structures than their inputs. Other
principles, like the 0-Criterion which places restrictions on the assignment of
thematic relations, the Case Filter which requires certain noun phrases to be

! The work of the first author is supported by an IBM Graduate Fellowship. R .C. Berwick
is supported by NSF Grant DCR-85552543 under a Presidential Young Investigator's Award.

-75- Intemational Parsing Workshop '89

marked with abstract Case, and Binding Theory constraints, act as filters and
weed-out ill-formed structures.

A novel, logic-based parser, the Principle-Ordering Parser (p o - p a r s e r),
was built to investigate and demonstrate the effects of principle-ordering. The
p o - p a r s e r was deliberately constructed in a highly-modular fashion to allow
for maximum flexibility in exploring alternative orderings of principles. For in­
stance, each principle is represented separately as an atomic parser operation.
A structure is deemed to be well-formed only if it passes all parser operations.
The scheduling of parser operations is controlled by a dynamic ordering mech­
anism that attem pts to eliminate unnecessary work by eliminating ill-formed
structures as quickly as possible. (For comparison purposes, the p o - p a r s e r
also allows the user to turn off the dynamic ordering mechanism and to parse
with a user-specified (fixed) sequence of operations.)

Although we are primarily interested in exploiting the (abstract) computa­
tional properties of principles to build more efficient parsers, the PO-PARSER is
also designed to be capable of handling a reasonably wide variety of linguistic
phenomena. The system faithfully implements most of the principles contained
in Lasnik k. Uriagereka’s [7] textbook. That is, the parser makes the same gram-
maticality judgements and reports the same violations for ill-formed structures
as the reference text. Some additional theory is also drawn from Chomsky [1]
and [2]. Parser operations implement principles from Theta Theory, Case The­
ory, Binding Theory, Subjacency, the Empty Category Principle, movement at
the level of Logical Form as well in overt syntax, and some Control Theory. This
enables it to handle diverse phenomena including parasitic gaps constructions,
strong crossover violations, passive, raising, and super-raising examples.

2 T h e Princip le Ordering P rob lem
This section addresses the issue of how to organize linguistic principles in the
PO -PAR SER framework for efficient processing. iMore precisely, we discuss the
problem of how to order the application of principles to minimize the amount
o f ‘work’ that the parser has to perform. We will explain why certain orderings
may be better in this sense than others. We will also describe heuristics that
the PO -PA R SER employs in order to optimize the the ordering of its operations.

But first, is there a significant performance difference between various order­
ings? Alternatively, how important an issue is the principle ordering problem
in parsing? An informal experiment was conducted using the p o - p a r s e r de­
scribed in the previous section to provide some indication on the magnitude of
the problem. Although we were unable to examine all the possible orderings, it
turns out that order-of-magnitude variations in parsing times could be achieved
merely by picking a few sample orderings.2

2T he PO-PARSER has about twelve to sixteen parser operations. G iven a set of one dozen
operations, there are about 500 m illion different ways to order these operations. Fortunately,
only about h*Jf a m illion of these are actually valid, due to logical dependencies betw een the
various operations. However, this is still far too m any to test exhaustively. Instead, only a few
well-chosen orderings were tested on a number of sentences from the reference. T he procedure

-76- Intemational Parsing Workshop '89

2 . 1 E x p la in in g th e V a r ia tio n in P r in c ip le O rd er in g

The variation in parsing times for various principle orderings that we observed
can be explained by assuming that overgeneration is the main problem, or bot­
tleneck, for parsers such as the PO-PARSER. That is, in the course of parsing
a single sentence, a parser will hypothesize many different structures. Most of
these structures, the ill-formed ones in particular, will be accounted for by one
or more linguistic filters. A sentence will be deemed acceptable if there exists
one or more structures that satisfy every applicable filter. Note that even when
parsing grammatical sentences, overgeneration will produce ill-formed structures
that need to be ruled out. Given that our goal is to minimize the amount of
work performed during the parsing process, we would expect a parse using an
ordering that requires the parser to perform extra work compared with another
ordering to be slower.

Overgeneration implies that we should order the linguistic filters to elimi­
nate ill-formed structures as quickly as possible. For these structures, applying
any parser operation other them one that rules it out may be considered as
doing extra, or unnecessary, work (modulo any logical dependencies between
principles).3 However, in the case of a well-formed structure, principle ordering
cannot improve parser performance. By definition, a well-formed structure is
one that passes all relevant parser operations: Unlike the case of an ill-formed
structure, applying one operation cannot possibly preclude having to apply an­
other.

2 .2 O p tim a l O rd er in g s

Since some orderings perform better than others, a natural question to ask is:
Does there exist a ‘globally’ optimal ordering? The existence of such an ordering
would have important implications for the design of the control structure of any
principle-based parser. The PO-PARSER has a novel ‘dynamic’ control structure
in the sense that it tries to determine an ordering-efficient strategy for every
structure generated. If such a globally optimal ordering could be found, then
we can do away with the run-time overhead and parser machinery associated
with calculating individual orderings. That is, we can build an ordering-efficient
parser simply by ‘hardwiring’ the optimal ordering into its control structure.
Unfortunately, no such ordering can exist.

The impossibility of the globally optimal ordering follows directly from the
“eliminate unnecessary work” ethic. Computationally speaking, an optimal
ordering is one that rules out ill-formed structures at the earliest possible op­
portunity. A globally optimal ordering would be one that always ruled out every

involved choosing a default sequence of operation* and ‘scram bling’ the sequence by m oving
operations as far as possible from their original positions (m odulo any logical dependencies
betw een operations).

3In the PO-PARSER for exam ple, the Case Filter operation which require* that all overt
noun phrases have abstract Case assigned, is dependent on both the inherent and structural
Case assignm ent operations. T hat is, in any valid ordering the filter m ust be preceded by
both operations.

-77- Intemational Parsing Workshop '89

possible ill-formed structure without doing any unnecessary work. Consider the
following three structures (taken from Lasnik's book):

(1) a. *Johni is crucial [c p [i p <1 to see this]]
b. *[,vpJohni’s mother][vp likes himselfi]
c. *Johni seems that hei likes t\

Example (1) violates the Empty Category Principle (ECP). Hence the op­
timal ordering must invoke the ECP operation before any other operation that
it is not dependent on. On the other hand, example (lb) violates a Binding
Theory principle, ‘Condition A’. Hence, the optimal ordering must also invoke
Condition A as early as possible. In particular, given that the two operations
are independent, the. optimal ordering must order Condition A before the ECP
and vice-versa. Similarly, example (lc) demands that the kCase Condition on
Traces’ operation must precede the other two operations. Hence a globally
optimal ordering is impossible.

2 .3 H e u r is t ic s for P r in c ip le O rd er in g

The principle-ordering problem can be viewed as a limited instance of the well-
known conjunct ordering problem (Smith & Genesereth [9]). Given a set of
conjuncts, we are interested in finding all solutions that satisfy all the conjuncts
simultaneously. The parsing problem is then to find well-formed structures
(i.e. solutions) that satisfy all the parser operations (i.e. conjuncts) simultane­
ously. Moreover, we are particularly interested in minimizing the cost of finding
these structures by re-ordering the set of parser operations.

This section outlines some of the heuristics used by the PO-PARSER to deter­
mine the minimum co6t ordering for a given structure. The p o - p a r s e r contains
a dynamic ordering mechanism that attempts to compute a minimum cost or­
dering for every phrase -ucture generated during the parsing process.4 The
mechanism can be subdi led into two distinct phases. First, we will describe
how the dynamic ordering mechanism decides which principle is the most likely
candidate for eliminating a given structure. Then, we will explain how it makes
use of this information to re-order parser operation sequences to minimize the
total work performed by the parser.

2.3.1 Predicting Failing Filters
Given any structure, the dynamic ordering mechanism attempts to satisfy the
“eliminate unnececessary work” ethic by predicting a “failing” filter for that

4 In their paper, Sm ith Sc G enesereth drew a distinction between “static” and “dynamic"
ordering strategies. In static strategies, the conjuncts are first ordered, and then solved in
the order presented. By contrast, in dynam ic strategies the chosen ordering may be revised
betw een solving individual conjuncts. Currently, the PO-PARSER em ploys a dynam ic strategy.
T he ordering m echanism com putes an ordering baaed on certain features of each structure
to be processed. T he ordering m ay be revised after certain operations (e.g. m ovem ent) that
m odify the structure in question.

*78- International Parsing Workshop '89

structure. More precisely, it will try to predict the principle that a given struc­
ture violates on the basis of the simple structure cues. Since the ordering mech­
anism cannot know whether a structure is well-formed or not, it assumes that
all structures are ill-formed and attempts to predict a failing filter for every
structure. In order to minimize the amount of work involved, the types of
cues that the dynamic ordering mechanism can test for are deliberately limited.
Only inexpensive tests such as whether a category contains certain features
(e.g. ianaphoric, iinfinitival, or whether it is a trace or a non-argument) may
be used. Any cues that may require significant computation, such as searching
for an antecedent, are considered to be too expensive. Each structure cue is then
associated with a list of possible failing filters. (Some examples of the mapping
between cues and filters are shown below.) The system then chooses one of the
possible failing filters based on this mapping.5

(2)

S tru c tu re cue P ossib le fsuling filters
trace Em pty C ategory Principle, and

C ase Condition on traces
intransitive C ase Filter
passive T h eta Criterion

C ase F ilter
non-argum ent T h eta Criterion
-(-anaphoric Binding Theory Principle A
+ pronom inal Binding Theory Principle B

The correspondence between each cue and the set of candidate filters may
be systematically derived from the definitions of the relevant principles. For
example, Principle A of the Binding Theory deals with the conditions under
which antecedents for anaphoric items, such as “each other” and “himself’,
must appear. Hence, Principle A can only be a candidate failing filter for struc­
tures that contain an item with the -f-anaphoric feature. Other correspondences
may be somewhat less direct: for example, the Case Filter merely states that
all overt noun phrase must have abstract Case. Now, in the PO-PARSER the
conditions under which a noun phrase may receive abstract Case are defined by
two separate operations, namely, Inherent Case Assignment and Structural Case
Assignment. It turns out that an instance where Structural Case Assignment
will not assign Case is when a verb that normally assigns Case has passive mor­
phology. Hence, the presence of a passive verb in a given structure may cause
an overt noun phrase to fail to receive Case during Structural Case Assignment
— which, in turn may cause the Case Filter to fail.6

5 O bviously, there are many ways to im plem ent such a selection procedure. Currently, the
PO-PARSER uses a voting schem e based on the frequency of cues. The (unproven) underlying
assum ption ia that the probability of a filter being a failing filter increases w ith the number
of occurrences of its associated cues in a given structure. For exam ple, the more traces there
are in a structure, the more Likely it is that one of them will violate some filter applicable to
traces, such as the Em pty Category Principle (E C P).

8 It is possible to autom ate the process of finding structure cues sim ply by inspecting the
closure of the definitions of each filter and all dependent operations. One m ethod of deriving

-79- Intemational Parsing Workshop '89

The failing filter mechanism can been seen as an approximation to the
Cheapest-first heuristic in conjunct ordering problems. It turns out that if the
cheapest conjunct at any given point will reduce the search space rather than
expand it, then it can be shown that the optimal ordering must contain that
conjunct at that point. Obviously, a failing filter is a “cheapest” operation in
the sense that it immediately eliminates one structure from the set of possible
structures under consideration.

Although the dynamic ordering mechanism performs well in many of the test
cases drawn from the reference text, it is by no means foolproof. There are also
many cases where the prediction mechanism triggers an unprofitable re-ordering
of the default order of operations. (We will present one example of this in the
next section.) A more sophisticated prediction scheme, perhaps one based on
more complex cues, could increase the accuracy of the ordering mechanism.
However, we will argue that it is not cost-effective to do so. The basic reason is
that, in general, there is no simple way to determine whether a given structure
will violate a certain principle.7 That is, as far as one can tell, it is difficult to
produce a cheap (relative to the cost of the actual operation itself), but effective
approximation to a filter operation. For example, in Binding Theory, it is diffi­
cult to determine if an anaphor and its antecedent satisfies the complex locality
restrictions imposed by Principle A without actually doing some searching for
a binder. Simplifying the locality restrictions is one way of reducing the co6t
of approximation, but the very absence of search is the main reason why the
overhead of the present ordering mechanism is relatively small.8 Hence, having
more sophisticated cues may provide better approximations, but the tradeoff is
that the prediction methods may be almost as expensive as performing the real
operations themselves.

2.3 .2 Logical D ep en d en c ies and R e-ordering

Given a candidate failing filter, the dynamic ordering mechanism has to schedule
the sequence of parser operations so that the failing filter is performed as early

cue* i> to collect the negation of all condition* involving category features. For exam ple, if an
operation contain* the condition “n o t (I t « « ha*-f«atu r* i n t r a n s i t i v *) ” , then we can take
the presence of an intransitive item a* a possible reason for failure of that operation. However,
this approach ha* the potentia l problem of generating too m any cues. A lthough, it m ay be
relatively inexpen*ive to test each individual cue, a large number of cues will significantly
increase the overhead o f the ordering m echanism . Furthermore, it turns out that not all cues
are equally useful in predicting failure filter*. One solution m ay be to use “weight*" to rank
the predictive u tility of each cue w ith respect to each filter. T hen an adaptive algorithm could
be used to “learn" the weighting value*, in a manner rem iniscent of Sam uels [8]. The failure
filter prediction process could then autom atically elim inate testing for relatively unim portant
cue*. Thi* approach is currently being investigated.

7If *uch a schem e can be found, then it can effectively replace the definition of the principle
itself.

8 W e ignore the additional co*t of re-ordering the sequence of operation* once a failing filter
ha* been predicted. T he actual re-ordering can be made relatively inexpensive using various
trick*. For exam ple, it ia po*«ible to “cache” or com pute (off-line) com m on ca*es of re-ordering
a default sequence w ith respect to various failing filters, thu* reducing the cost of re-ordering
to that o f a sim ple look-up.

-80- International Parsing Workshop '89

as possible. Simply moving the failing filter to the front of the operations queue
is not a workable approach for two reasons.

Firstly, simply fronting the failing filter may violate logical dependencies be­
tween various parser operations. For example, suppose the Case Filter was cho­
sen to be the failing filter. To create the conditions under which the Case Filter
can apply, both Case assignment operations, namely, Inherent Case Assignment
and Structural Case Assignment, must be applied first. Hence, fronting the Case
Filter will also be accompanied by the subsequent fronting of both assignment
operations unless, of course, they have already been applied to the structure
in question.

Secondly, the failing filter approach does not take into account the behaviour
of generator operations. A generator may be defined as any parser operation
that always produces one output, and possibly more than one output, for each
input. For example, the operations corresponding to X rules, Move-a, Free
Indexing and LF Movement are the generators in the p o - p a r s e r . (Similarly, the
operations that we have previously referred to as “filters” may be characterized
as parser operations that, when given N structures as input, pass N and possibly
fewer than N structures.) Due to logical dependencies, it may be necessary in
some situations to invoke a generator operation before a failure filter can be
applied. For example, the filter Principle A of the Binding Theory is logically
dependent on the generator Free Indexing to generate the possible antecedents
for the anaphors in a structure. Consider the possible binders for the anaphor
"himself” in “John thought that Bill saw himself” as shown below:

(3) a. *John, thought that Bill,- saw himself,
b. John, thought that Billy saw himself;
c.*John, thought that Billy saw himself*

Only in example (3b), is the antecedent close enough to satisfy the locality
restrictions imposed by Principle A. Note that Principle A had to be applied
a total of three times in the above example in order to show that there is only
one possible antecedent for “himself”. This situation arises because of the gen­
eral tendency of generators to overgenerate. But this characteristic behaviour
of generators can greatly magnify the extra work that the parser does when
the dynamic ordering mechanism picks the wrong failing filter. Consider the
ill-formed structure u*John seems that he likes t” (a violation of the princi­
ple that traces of noun phrase cannot receive Case.) If however, Principle B
of the Binding Theory is predicted to be the failure filter (on the basis of the
structure cue “he”), then Principle B will be applied repeatedly to the index­
ings generated by the Free Indexing operation. On the other hand, if the Case
Condition on Traces operation was correctly predicted to be the failing filter,
then Free Indexing need not be applied at ail. The dynamic ordering mech­
anism of the PO-PAR SER is designed to be sensitive to the potential problems
caused by selecting a candidate failing filter that is logically dependent on many
generators.9

9Obviously, there are m any different ways to accom plish this. One m ethod is to com pute

-81- Intemational Parsing Workshop '89

2 .4 L in g u is t ic F ilte r s and D e te r m in ism
In this section we describe how the characterization of parser operations in
terms of filters and generators may be exploited further to improve the perfor­
mance of the p o - p a r s e r for some operations. More precisely, we make use of
certain computational properties of linguistic filters to improve the backtrack­
ing behaviour of the p o - p a r s e r . The behaviour of this optimization will turn
out to complement that of the ordering selection procedure quite nicely. That
is, the optimization is most effective in exactly those cases where the selection
procedure is least effective.

We hypothesize that linguistic filters, such as the Case Filter, Binding Con­
ditions, ECP, and so on, may be characterized as follows:

(4) H ypothesis: Linguistic filters are side-effect free conditions on
configurations

In terms of parser operations, this means that filters should never cause
structure to be built or attempt to fill in feature slots.10 Moreover, computa­
tionally speaking, the parser operations corresponding to linguistic filters should
be deterministic. That is, any given structure should either fail a filter or just
pass. A filter operation should never need to-succeed more than once, simply
because it is side-effect free.11 By contrast, operations that we have character­
ized as generators, such as Move-a and Free Indexing, are not deterministic in
this sense. That is, given a structure as input, they may produce one or more
structures as output.

the “distance” of potential failure filters from the current state of the parser in terms of the
number of generators yet to be applied. Then the failing filter will be chosen on the basis of
som e com bination of structure cues and generator distance. Currently, the PO-PARSER uses
a slightly different and cheaper schem e. The failure filter is chosen solely on the basis of
structure cues. However, the fronting m echanism is restricted so that the chosen filter can
only m ove a lim ited number of positions ahead .A' its original position. The original operation
sequence is designed such that the distance of the filter from the front of the sequence is
roughly proportional to the number of (outstanding) operations that the filter is dependent
on.

10 So far, we have not encountered any linguistic filters that require either structure building
or feature assignm ent. O perations such as 5-role and Case assignm ent are not considered
filters in the sense of the definition given in the previous section. In the PO-PARSER, these
operations will never fail. However, definitions that involve some elem ent of ‘m odality ’ are
potentially problem atic. For exam ple, C hom sky’s definition of an access ible S U B J E C T , a
definition relevant to the principles of Binding Theory, contains the following phrase
a s s ig n me n t t o or o f t h e i n d e x o f (3 w ou ld not v io la t e the (i -w i t hi n- i) f i l ter • (7 , . . .S, ...] . A
transparent im plem entation of such a definition would seem to require some m anipulation of
indices. However, Lasnik (p .58) points out that there exists an empirically indistinguishable
version o f acces s ib l e S U B J E C T w ithout the elem ent of m odality present in C hom sky’s version.

11 It turns out that there are situations where a filter operation (although side-effect free)
could succeed more than once. For exam ple, the linguistic filter known as the “Em pty Cate­
gory Principle" (E C P) im plies that all traces must be “properly governed” . A trace may satisfy
proper governm ent by being either “lexically governed” or “antecedent governed” . Now con­
sider the structxire [c p VVhati d id y o u [v p re ad ti]]. T he trace ti is both lexically governed
(by the verb read) and antecedent governed (by its antecedent what). In the PO-PARSER the
ECP operation can succeed twice for cases such as t\ above.

-82- Intemational Parsing Workshop '89

Given the above hypothesis, we can cut down on the amount of work done by
the p o - p a r s e r by modifying its behaviour for filter operations. Currently, the
parser employs a backtracking model of computation. If a particular parser op­
eration fails, then the default behaviour is to attempt to re-satisfy the operation
that was called immediately before the failing operation. In this situation, the
p o - p a r s e r will only attempt to re-satisfy the preceding operation if it happens
to be a generator. When the preceding operation is a filter, then the parser will
skip the filter and, instead, attempt to resatisfy the next most recent operation
and so on.12 For example, consider the following calling sequence:

Suppose that a structure generated by generator G2 passes filters and F2,
but fails on filter F3 . None of the three filters could have been the cause of the
failure by the side-effect free hypothesis. Hence, we can skip trying to resatisfy
any of them and backtrack straight to G2.

Note that this optimization is just a limited form of dependency-directed
backtracking. Failures are traced directly to the last generator invoked, thereby
skipping over any intervening filters as possible causes of failure. However, the
backtracking behaviour is limited in the sense that the most recent generator
may not be the cause of a failure. Consider the above example again. The
failure of F3 need not have been caused by G2. Instead, it could have been
caused by structure-building in another generator further back in the calling
sequence, say Gx. But the parser will still try out all the other possibilities in
G2 first.

Consider a situation in which the principle selection procedure performs
poorly. That is, for a particular ill-formed structure, the selection procedure
will fail to immediately identify a filter that will rule out the structure. The
advantages of the modified mechanism over the default backtrack scheme will
be more pronounced in such situations — especially if the parser has to try
several filters before finding a “failing” filter. By contrast, the behaviour of
the modified mechanism will resemble that of the strict chronological scheme
in situations where the selection procedure performs relatively well (i.e. when a
true failing filter is fronted). In such cases, the advantages, if significant, will be
small. (In an informal comparison between the two schemes using about eighty
sentences from the reference text, only about half the test cases exhibited a
noticeable decrease in parsing time.)

13T his behaviour can be easily sim ulated using the ‘c u t’ predicate in Prolog. We can route
all calls to filter operations through a predicate that calls the filter and then cuts off all internal
choice points. (For independent reasons, the PO-PARSER does not actually use this approach.)

-83- Intemational Parsing Workshop '89

3 Conclusions: The Utility of Principle-Ordering

From our informal experiments with the PO-PARSER, we have found that dy­
namic principle-ordering can provide a significant improvement over any fixed
ordering. We have found that speed-ups varying from three- or four-fold to
order-of-magnitude improvements are possible in many cases.13

The control structure of the PO-PARSER forces linguistic principles to be ap­
plied one at a time. Many other machine architectures are certainly possible.
For example, we could take advantage of the independence of many principles
and apply principles in parallel whenever possible. However, any improvement in
parsing performance would come at the expense of violating the minimum (un­
necessary) work ethic. Lazy evaluation of principles is yet another alternative.
However, principle-ordering would still be an important consideration for effi­
cient processing in this case. Finally, we should also consider principle-ordering
from the viewpoint of scalability. The experience from building prototypes of
the p o - p a r s e r suggests that as the level of sophistication of the parser increases
(both in terms of the number and complexity of individual principles), the effect
of principle-ordering also becomes more pronounced.

R eferences
[1] Chom sky, N .A ., L ec tu res on G o vern m en t and B ind ing: T h e Pisa. Lectures. 1981.

Foris P u blication s.

[2] Chom sky, N .A ., K now ledge o f L an gu age : I ts N a tu re , O rigin, and Use." 1986.
P rager.

[3] C orrea, N ., “Sy n tactic A nalysis of English with respect to G overnm ent-Binding
G ram m a r,” P h .D D issertation , 1988. Syracu se University.

[4] Dorr, B .J . , “ U N IT R A N : A P rin ciple-B ase A pproach to M achine T ran sla tio n ,”
M .I.T . A .I. Technical R eport No. 1000 . 1987.

[5] John son , M ., “ K now ledge aa L an gu age ,” m s. M .I.T . Brain and C ognitive Sciences.

[6] K olb , H .P ., k C. T h iersch , “ Levels and Em pty C ategories in a Principles and
P aram eters A pproach to P arsin g ,” m s. 1988. T ilb u rg University.

[7] Laanik, H. k J . U riagereka, A C ourse in G B S y n ta x : L ec tu res on B in d in g and
E m p ty C ategories. 1988. M .I.T . P ress.

[8] Sam u els, A .L ., “Som e S tu d ie s in M achine Learning Using the G am e of C heckers.
II — R ecent P rogress,” IBM Journal. Novem ber 1967.

[9] Smith, D.E., k M.R. G enesereth , “ O rdering C on jun ctive Q ueries,” A rtific ia l In­
telligence 26 (1985) 171-215.

[10] S tab le r , E .P ., J r . “T h e Logical A pproach to S y n tax : Foundations, Specification s
and Im plem en tation s of T h eories of Governm ent and B in ding.” m s. 1989. Uni­
versity o f W estern O ntario .

13O bviously, the speed-up obtained will depend on the number of principles present in the
system and the degree of ‘fine-tuning’ of the failure filter selection criteria.

-84- Intemational Parsing Workshop '89

