
A Uniform Formal Framework for Parsing

B e rn a rd Lang

IXRIA

B.P. 105, 78153 Le Chesnav , F ran ce

langQ in r ia . in r ia .f r

1 Introduction

Many of the formalisms used to define the syntax of natural (and programming) languages may
be located in a continuum tha t ranges from propositional Horn logic to full first order Horn logic,
possibly with non-Herbrand in terpreta tions. This s truc tu ra l parenthood has been previously re­
marked: it lead to the development of Prolog [Col-78, Coh-88] and is analyzed in some detail
in [PerW-80]. A notable outcome is the parsing technique known as Earley deduction [Per\V-83].

These formalisms play (at least) three roles:

d e s c r i p t i v e : they give a finite and organized description of the syntactic s truc tu re of the
language,

a n a ly t i c : they can be used to analyze sentences so as to retrieve a syntactic s truc tu re (i.e.
a representation) from which the meaning can be extracted,

g e n e r a t i v e : they can also be used as the specification of the concrete representation of
sentences from a more struc tu red abstract syntactic representation (e.g. a parse tree).

The choice of a formalism is essential with respect to the descriptive role, since it controls the
perspicuity with which linguistic phenom ena may be understood and expressed in actual language
descriptions, and hence the tractabili ty of these descriptions for the hum an mind.

Plowever, com puta tional trac tab ili ty is required by the o ther two roles if we intend to use these
descriptions for mechanical processing of languages.

The aim of our work, which is partially reported here, is to obtain a uniform unders tanding of
the com puta tiona l aspects of syntactic phenom ena within the continuum of Horn-like formalisms
considered above, and devise general purpose algorithmic techniques to deal with these formalisms
in practical applications.

To a tta in this goal, we follow a three-sided strategy:

• Systematic s tudy of the lower end of the continuum , represented by context-free (C F) g ram ­
mars (simpler formalisms, such as propositional Horn logic do not seem relevant for our

. purpose).

-28- International Parsing Workshop '89

• Systematic s tudy of the higher end of the continuum, i.e. first order Horn clauses,

• Analysis of the relations between intermediate formalisms and Horn clauses, so as to reuse
for in term ediate formalisms the understanding and algorithmic solutions developed for the
more powerful Horn clauses.

This s tra tegy is motivated by two facts:

• the com puta tional properties of both CF grammars and Horn clauses may be expressed with
the same com puta tional model: the non-deterministic pushdown autom aton ,

• the two formalisms have a compatible concept of syntactic structure: the parse-tree in the
CF case, and the proof-tree in the Horn clause case.

The greater simplicity of the CF formalism helps us in understanding more easily most of the
com puta tional phenomena. We then generalize this knowledge to the more powerful Horn clauses,
and finally we specialize it from Horn clauses to the possibly less powerful but linguistically more
perspicuous in term ediate formalisms.

In the rest of this paper we present two aspects of our work:

1 . a new unders tanding of shared parse forests and their relation to CF gram m ars, and

2. a generalization to full Horn clauses, also called Definite Clause (DC) programs, of the push­
down stack com puta tional model developed for CF parsers.

2 C ontext-F ree Parsing

T hough much research has been devoted to this subject in the past, most of the practically usable
work has concentra ted on deterministic push-down parsing which is clearly inadequate for natural
language applications and does not generalize to more complex formalisms. On the o ther hand
there has been little formal investigation of general CF parsing, though many practical systems
have been im plem ented based on some variant of Earley’s algorithm.

Our con tr ibu tion has been t o ‘develop a formal model which can describe these variants in
a uniform way, and encompasses the construction of parse-trees, and more generally of parse-
forests. This model is based on the compilation paradigm common in program ming languages and
deterministic parsing: we use the non-determ inistic 1 Pushdown A u tom aton (P D A) as a virtual
parsing machine which we can sim ulate with an Earley-like construction; variations on Earley’s
a lgorithm are then expressed as variations in the compilation schema used to produce the PD A code
from the original CF gram m ar. This uniform framework has been used to compare experimentally
parsing schem ata w.r.t. parser size, parsing speed and size of shared forest, and in reusing the
wealth of P D A construction techniques to be found in the literature.

This work has been reported elsewhere [Lan-74, BilL-88, Lan-88a]. An essential outcome,
which is the object of this section, is a new understanding of the relation between CF gram m ars,
parse-trees and parse-forests, and the parsing process itself. The presentation is informal since our

1 In this paper, the abbreviation P D A alw ays im pnes the possibility of non-determ inism

-29- Intemational Parsing Workshop '89

(1) S : : = NP VP

(2) S : : = S PP

(3) NP : : = n

(4) NP : : = d e t n

(5) NP : : = NP PP

(6) PP : : = p r e p NP

(7) VP : : = V NP

Figure 1 : A Context-Free G ram m ar Figure 2: G raph of the G ram m ar

purpose is to give an intuitive understanding of the concepts, which is our in terpre ta tion of the
earlier theoretical results.

Essentiadly, we shall first show that both CF gram m ars and shared parsed forest may be repre­
sented by AND-OR graphs, with specific interpretations. We shall then argue th a t this represen­
tational similarity is not accidental, and tha t there is no difference between a shared forest and a
gram m ar.

2 . 1 C o n te x t -fr e e G r a m m a rs

Our running example for a CF gram m ar is the pico-grammar of English, taken from [Tom-87],
which is given in figure 1 .

In figure ‘2 we give a graphical representation of this gram m ar as an AN D-OR graph. The
notation for this AND-OR graph is unusual and emphasizes the difference between AND and OR
nodes. OR-nodes are represented by the non-terminal categories of the gram m ar, and AND-nodes
are represented by the rules (numbers) of the gram m ar. There are also leaf-nodes corresponding
to the term inal categories.

The OR-node corresponding to a non-terminal X has exiting arcs leading to each AND-node n
representing a rule th a t defines X. This arc is not explicitly represented in the graphical formalism
chosen. If there is only one such arc, then it is represented by placing n immediately under X. This
is the case for the O R-node representing the non-terminal PP. If there are several such arcs, they
are implicitly represented by enclosing in an ellipse the OR-node X above all its son nodes n, n* , . . .
This is the case for the OR-node representing the non-terminal NP.

The sons of an AND-node (i.e. a rule) are the gram m atical categories found in the right-hand-
side of the rule, in that order. T he arcs leading from an AND-node to its sons are represented
explicitly. T he convention for orienting the arcs is th a t they leave a node from below and reach a
node from above.

-30- International Parsing Workshop '89

This graph accurately represents the gram m ar, and is very similar to the graphs used in some
parsers. For example, LR (0) parsing uses a graph representation of the g ram m ar tha t is very
similar, the main difference being tha t the sons of AND-nodes are linked together from left to
right, ra ther than being a ttached separately to the AND-node [AhoU-72, DeR-71]. More simply,
this graph representation is very close to the d a ta s tructures often used to represent conveniently
a gram m ar in a com puter memory.

A characteristic of the A N D /O R graph representing a gram m ar is th a t all nodes have different
labels. Conversely, any labelled A N D /O R graph such th a t all node labels are different may be read
as — transla ted into — a CF gram m ar such th a t AND-node labels are rule names, OR-node labels
represent non-term inal categories, and leaf-node labels represent terminal categories.

2.2 Parse trees and parse forests

Given a sentence in the language defined by a CF gram m ar, the parsing process consists in building
a tree s truc tu re , the parse tree, th a t shows how this sentence can be constructed according to the
g ram m atica l rules of the language. It is however frequent th a t the CF syntax of a sentence is
ambiguous, i.e. th a t several distinct parse-trees may be constructed for it.

Let us consider the g ram m ar of figure 1 .
If we take as example the sentence “I see a man with a mirror”, which trans la te into the

term inal sequence “n v det n prep det n”, we can build the two parse trees given in figures 3
and 4 . Note th a t we label a parse tree node with its non-terminal category and with the rule used
to decompose it into constituents. Hence such a parse tree could be seen as an AN D -O R tree
similar to the AN D-OR gram m ar graph of figure 2. However, since all OR-nodes are degenerated
(i.e. have a unique son), a parse tree is just an AND-tree.

T he num ber of possible parse trees may become very large when the size of sentences increases:
it may grow exponentially with th a t size, and may even be infinite for cyclic gram m ars (which
seem of little linguistic usefulness [PerW-83, Tom-85]). Since it is often desirable to consider all

-31- Intemational Parsing Workshop '89

Figure 5: Context and Subtree

I see a man with a mirror

Figure 6: A shared parse forest

possible parse trees (e.g. for semantic processing), it is convenient to merge as much as possible
these parse trees into a single s truc tu re tha t allows them to share common parts. This sharing
save on the space needed to represent the trees, and also on the later processing of these trees
since it may allows to share between two trees the processing of some common p a r ts2. The shared
representation of all parse trees is called shared parse forest , or just parse forest.

To analyze how two trees can share a (connected) part, we first notice th a t such a part may be
isolated by cu tt ing the tree along an edge (or arc) as in figure 5. this actually give us two parts: a
subtree and a context (cf. figure 5). E ither of .these two parts may be shared in forests representing
two trees. W hen a subtree is the same for two trees, it may be shared as shown in figure 7. W hen
contexts are equal and may thus be shared, we get the s truc tu re depicted in figure 8.

The sharing of context actually corresponds to ambiguities in the analyzed sentence: the ellipse
in figure 8 contains the head nodes for two distinct parses of the same subsentence u, th a t both
recognize v in the same non-terminal category NT. Each head node is labelled with the (num ber of)
the rule used to decompose v in to constituents in th a t parse, and the common syntactical category
labels the top of the ellipse. Not accidentally, this s truc tu re is precisely the s truc tu re of the 0 R -
nodes we used to represent CF gram m ars. Indeed, an ambiguity is nothing bu t a choice between
two possible parses of the same sentence fragment v as the same syntactic category NT.

Using a com bination of these two forms of sharing, the two parse trees of figures 3 and 4 may
be merged into the shared parse forest3 of figure 6 . Note tha t , for this simple example, the only

2T h e direct production of such shared representation by parsing a lgorithm s also corresponds to sharing in the

parsing com putation [Tom-87, Lan-74, BilL-88].

3T h is graphical representation of shared forests is not original: to our knowledge it was first used by

T o m ita [Tom-87], However, we believe that its com parat ive understanding as context sharing, as A N D -O R tree

-32- Intemational Parsing Workshop '89

Sentence:/\
UVW / \ \

Sentence:
UVW / \

A

Figure 7: Two parses sharing a subtree Figure 8 : Two parses sharing a context

con tex t being shar ed is the e m p ty ou ter contex t of the two possible parse tree, t h a t still s t a t es th a t
a p roper parse t ree m u s t belong to the syn tac t i c ca tegory S.

In this representation we keep our double labelling of parse tree nodes with both the non­
terminal category and the rule used to decompose it into its constituents. As indicated above,
ambiguities are represented with context sharing, i.e. by OR-nodes th a t are the exact equivalent
of those of figure 2. Hence a shared parse forest is an A N D -O R graph*. Note however th a t the
same rule (resp. non-terminal) may now label several AND-nodes (resp. OR-nodes) of the shared
parse forest graph.

If we make the labels distinct, for example by indexing them so as not to lose their original
information, we can then read the shared forest graph of a sentence 3 as a gram m ar T a. The
language of this g ram m ar contains only the sentence s, and it gives s the same syntactic s truc ture(s)
— i.e. the same parse tree(s) and the same ambiguities — as the original gram m ar, up to the above
renaming of labels.

2 .3 P a r se fo r e s ts for in c o m p le te s e n te n c e s

O ur view of parsing may be extended to the parsing of incomplete sentences [Lan-88a].
An example of incomplete sentence is . . see . . . m i r r o r ” . Assuming th a t we know tha t

the first hole stands for a single missing word, and th a t the second one stands for an arb itrary
num ber of words, we can represent this sentence by the sequence “? v * n” . T he convention is
th a t “? ” stands for one unknown word, and for any num ber of them.

Such an incomplete sentence 3 may be understood as defining a sublanguage C3 which contains
all the correct sentences m atching s. Any parse tree for a sentence in th a t sublanguage may then be
considered a possible parse tree for the incomplete sentence s. For example, the sentences “I see
a man with a mirror” and “You see a mirror” are both in the sublanguage of the incomplete
sentence above. Consequently, the two parse trees of figures 3 and 4 are possible parse trees for
this sentence, along with m any others.

or as gram m ar has never been presented. C on text sharing is called local ambiguity packing by T om ita.

4T h is graph may have cycles for infinitely am biguous sentences when the gramm ar of the language is itse lf cyclic.

-33- Intemational Parsing Workshop '89

All parse trees for the sentence s = “? v * ii” may be merged into a shared parse forest that
is represented in figure 9.

The graph of this forest has been divided into two parts by the horizontal grey line a —
The term inal labels underscored with a represent any word in the corresponding term inal

category. This is also true for all the term inal labels in the bo t tom part of the graph.
Tne forest fragment below the horizontal line is a (closed) subgraph of the original gram m ar

of figure 2 (which we have completed in grey to emphasize the fact). It corresponds to parse trees
of constituents th a t are completely undefined, within their syntactical categories, and may thus
be any tree in th a t category tha t the gram m ar can generate. This occurs once in the forest for
non-terminal PP a t arc marked a and twice for NP a t arcs marked p.

This bo ttom part of the graph brings no new information (it is just the part of the original
g ram m ar reachable from nodes PP and NP). Hence the forest could be simplified by eliminating this
bo ttom subgraph , and labelling the end node of the a (resp. (5) arc with PP* (resp. NP*), meaning

-34- International Parsing Workshop '89

an arb itrary PP (resp. NP) constituent.

The complete shared forest of figure 6 may be interpreted as a CF gram m ar Qs. This gram m ar
is precisely a gram m ar of the sublanguage C3 of all sentences that match the incomplete sentence 5 .
Again, up to renaming of nonterminals, this gram m ar Q3 gives the sentences in Ca the same syntactic
s truc tu re as the original g ram m ar of the full language.

If the sentence parsed is the completely unknown sentence u = then the corresponding
sublanguage Cu is the complete language considered, and the parse forest for u is quite naturally
the original gram m ar of the full language: The grammar o f a CF language is the parse-forest o f
the completely unknown sentence, i.e. the syntactic structure o f all sentences in the language, in
a non-trivial sense. In o ther words, all ono can say about a fully unknown sentence assumed to
be correct, is tha t it satisfies the syntax ot the language. This s ta tem ent does take a stronger
signification when shared parse forests are actually built by parsers, and when such a parser does
return the original gram m ar for the fully unknown sentence.

Parsing a sentence according to a CF gram m ar is just extracting a parse tree fitting that
sentence from the CF gram m ar considered as a parse forest.

Looking at these issues from another angle, we have the following consequence of the above
discussion: given a set of parse trees (i.e. appropriately decorated trees), they form the set of
parses of a CF language iff they can be merged into a shared forest tha t is finite.

In [BilL-88, Lan-88a] Billot and the au thor have proposed parsers tha t actually build shared
forests formalized as CF gram m ar. This view of shared forests originally seemed to be an artifact of
the formalization chosen in the design of these algorithms, and appeared possibly more obfuscatory
than illuminating. It has been our purpose here to show th a t it really has a fundam ental character,
independently o f any parsing algorithm.

This close relation between sharing structures and context-freeness actually hints to limitations
of the effectiveness of sharing in parse forests defined by non-CF formalisms.

From an algorithmic point of view, the construction of a shared forest for a (possibly incomplete)
sentence may be seen as a specialization of the original g ram m ar to the sublanguage defined by
th a t sentence. This shows interesting connections with the general theory of partial evaluation
of programs [Fut-88], which deals with the specialization of programs by propagation of known
properties of their input.

In practice, the published parsing algorithms do not always give shared forest with m axim um
sharing. This may result in forests th a t are larger or more complex, bu t does not invalidate our
presentation.

3 H orn Clauses

The PD A based compilation approach proved itself a fruitful theoretical and experim ental support
for the analysis and unders tand ing of general CF parsing a la Earley. In accordance with our
s tra tegy of uniform study of the “Horn con tinuum ” , we extended this approach to general Horn
clauses, i.e. DC programs.

This lead to the definition of the Logical Push-Down A u tom aton (L P D A) which is an operational
engine in tended to play for Horn clauses the same role as the usual PD A for CF languages. Space

-35- Intemational Parsing Workshop '89

limitations prevent giving here a detailed presentation of LPD As, and we only sketch the underlying
ideas. More details may be found in [Lan-88b, Lan-88].

As in the CF case, the evaluation of a DC program may be decomposed into two phases:

• a compilation phase tha t transla te the DC program into a LPDA. Independently of the
later execution strategy, the compilation may be done according to a variety of evaluation
schemata: top-down, bottom -up, predictive bottom -up, ... Specific optimization techniques
may also be developed for each of these compilation schemata.

• an execution phase th a t can in terpret the LPDA according to some execution technique: back­
track (depth-first), breadth-first, dynamic programming, or some combination [TamS-86].

This separation of concerns leads to a be tter understanding of issues, and should allow a more
systematic comparison of the possible alternatives.

In the case of dynamic program ming execution, the LPDA formalism uses to very simple struc­
tures tha t we believe easier to analyze, prove, and optimize than the corresponding direct con­
structions on DC programs [PerW-83, Por-86, TamS-86, Vie-87b], while remaining independent of
the com puta tion schema, unlike the direct constructions. Note tha t predictive bottom -up compi­
lation followed by dynamic programming execution is essentially equivalent to Earley deduction as
presented in [PerW-83, Por-86].

The next sections include a presentation of LPDAs and their dynamic programming in terpre­
tation, a compilation schema for building a LPDA from a DC program, and an example applying
this top-down construction to a very simple DC program.

3 . 1 L o g ica l P D A s an d th e ir d y n a m ic p r o g r a m m in g in te r p r e ta t io n

A LPD A is essentially a PD A th a t stores logical atoms (i.e. predicates applied to argum ents) and
substitu tions on its stack, instead of simple symbols. The symbols of the s tandard CF PD A stack
may be seen as predicates with no argum ents (or more accurately with two argum ent similar to those
used to transla te CF gram m ars into DC in [PerW-80]). A technical point is th a t we consider PDAs
without “finite s ta te ” control: this is possible without loss of generality by having pop transitions
tha t replace the top two atoms by only one (this is s tandard in LR(k) PD A parsers[AhoU-72]).

Formally a LPD A ^4 is a 6-tuple: ^4 = (X , F , A , $, $f, 0)
where X is a set of variables, F is a set of functions and constants symbols, A is a set of stack

0
predicate symbols, $ and $f are respectively the initial and final stack predicates, and 0 is a finite
set of transitions having one of the following three forms:

horizontal transitions: B •—► C — replace B by C on top of stack

push transitions: B >—<► CB — push C on top of former stack top B

pop transitions: BD >—► C — replace BD by C on top of stack

where B, C and D are A -a tom s, i.e. a toms built with A , F and X.

Intuitively (and approxim ately) a pop transition BD '—► C is applicable to a stack configuration
with atom s A and A ' on top, iff there is a substi tu tion s such tha t B.s = As and Ds = A s. T hen A
and A' are removed from the stack and replaced by Cs, i.e. the a tom C to which s has been applied.

-36- IntemationaJ Parsing Workshop '89

Things are similar for other kinds of transitions. Of course a LPDA is usually non-deterministic
w.r.t. the choice of the applicable transition.

In the case of dynamic programming interpretations, all possible com putation paths are ex­
plored, with as much sub-com putation sharing as possible. The algorithm proceeds by building a
collection of items (analogous to those of Earley’s algorithm) which are pairs of atoms. An item
<A A '> represents a stack fragment of two consecutive atoms [Lan-74, Lan-88a]. If another item
< A ' A "> was also created, this means tha t the sequence of atoms A A 'A" is to be found in some
possible stack configuration, and so on (up to the use o f substitutions, not discussed here). The

O 0
com puta tion is initialized with an initial item U = < S H >. New items are produced by applying
the LPDA transitions to existing items, until no new application is possible (an application may
often produce an already existing item). T he com putation terminates under similar conditions as
specialized algorithms [PerW-83, Tam S-86, Vie-87b]. If successful, the com putation produces one

O
or several final items of the form <$f $ > , where the argum ents of $f are an answer substitu tion
of the initial DC program. In a parsing context, one is usually interested in obtaining parse-trees
rather than “answer subs ti tu tions’’. A parse tree is here a proof tree corresponding to the original
DC program. Such proof trees may be obtained by the same techniques tha t are used in the case
of CF parsing [Lan-74, BilL-88, Bil-88], and th a t actually in terpret the items and their relations as
a shared parse forest s tructure .

Substitu tions are applied to items as follows (we give as example the most complex case): a
pop transition BD •—► C is applicable to a pair of items < A A '> and < E E '> , iff there is a unifier
s of < A A '> and <B D > , and a unifier s' of A 's and E. This produces the item < C s s ' E V > .

3 .2 T o p -d o w n c o m p ila t io n o f D C p ro g ra m s in to L P D A s

Given a DC program , m any different compilation schemata may be used to build a corresponding
LPD A [Lan-88]. We give here a very simple and unoptimized top-down construction. T he DC
program to be compiled is composed of a set of clauses 7 Ajt.o A j t , i , . . . ,A k,nk , where each
A£,,• is a logical literal. T he query is assumed to be the head literal Ao.o of the first clause 70.

The construction of the top-down LPD A is based on the in troduction of new predicate sym ­
bols Vjt,,-, corresponding to positions between the body literals of each clause 7^. The predicate
Vjt,o corresponds to the position before the leftmost literal, and so on. Literals in clause bodies
are refuted from left to right. T he presence of an instance of a position literal V ^ ^ t j t) in the
stack indicates th a t the first : subgoals corresponding to the body of some instance of clause 7*
have already been refuted. T he argum ent bindings of tha t position literal are the partial answer
subs ti tu t ion com puted by this partial refutation.

For every clause 7 A^o A*fi , . . . , A k,nk > w« note tjt the vector of variables occurring in
the clause. Recall th a t A*tl- is a literal using some of the variables in 7^, while V^,- is only a
predicate which needs to be given the a rgum ent vector t* to become the literal V ^ t *) .

-37- International Parsing Workshop '89

T h e n we can def ine th e t o p - d o w n L P D A by th e fol lowing t r a n s i t io n s :

1 . $ *—► V0to(to) $

2 . Vfc,;(t fc) — Afc.i+i Vjt.^tfc) — for every clause 7* and

for every position i in its body: 0 < i < n^

3. Afc.o ►— Vjt.o(tjt) — for every clause ~/k

4 . Vfcink(tfc) V fc/it(t fc/) i—• ^ ii+i (t fc0 5 — / o r every pair o f clauses 7* an d 7*/ and

/ o r every position i in the body o f 7 ;-': 0 < t < njt<

The final predicate of the LPDA is the stack predicate V0)no which corresponds to the end of the
body of the first “query clause'’ of the DC program. The rest of the LPDA is defined accordingly.

The following is an informal explanation of the above transitions:

1 . Initialization: We require the refutation of the body of clause 70, i.e. of the query.

2. Selection o f the leftmost remaining subgoal: When the first i literals of clause 7* have been
refuted, as indicated by the position literal V ^ t *) , then select the i + l 3t literal A ^ .+ i to
be now refuted.

3. Selection o f clause 7*: Having to satisfy a subgoal tha t is an instance of A^o, eliminate it
by resolution with the clause 7 The body of 7 ̂ is now considered as a sequence of new
subgoals, as indicated by the position literal V^i0(tjt).

4. Return to calling clause 7*/: Having successfully refuted the head of clause 7* by refuting
successively all literals in its body as indicated by position literal V^ink(t^), we retu rn to the
calling clause 7^ and “increm ent” its position literal from V;-/ t(t^/) to V^/it+1 (t^/), since the
body literal Ak',i+i has been refuted as instance of the head of 7^.

Backtrack in te rp re ta tion of a LPDA thus constructed essentially mimics the Prolog in te rp re ta ­
tion of the original DC program.

3 .3 A v e r y s im p le e x a m p le

The following example has been produced with a prototype im plem entation realized by Eric Ville-
monte de la Clergerie and Alain Zanchetta [VilZ-88].

The definite clause program to be executed is given in figure 11. Note tha t a search for all
solutions in a backtrack evaluator would not term inate.

T he solutions found by the com puter are: X2 3 f (f (a))

X2 = f (a)

X2 * a

5If jfc = Jt(then we rename the variable in t s i n c e the transition corresponds to the use of two distinct variants

of the clause 7 * .

Note also that we need not define such a transition for all triples of integer k k and », but only for those triples

such that the head of 7 * unifies with the literal +

-38- International Parsing Workshop '89

********* PUSH T r a n s i t i o n s B->BC * * * * * * * * * * *

p r e d i c a t e : n a b l a . 2 . 0

n a b l a . 2 . 0 (XI) -> q (f (X I)) n a b l a . 2 . 0 (X1)

p r e d i c a t e : n a b l a . 0 .0

n a b l a . 0 . 0 (X2) -> q(X2) n a b l a . 0 . 0 (X2)

p r e d i c a t e : d o l l a r 0

d o l l a r O O -> n a b l a . 0 . 0 (X2) d o l l a r O O

* * * * * * * * * H o r i z o n ta l T r a n s i t i o n s B->C ******

p r e d i c a t e :q

q (l (l (a))) -> n a b l a . 1 . 0 ()

q(XI) -> n a b l a . 2 . 0 (X1)

p r e d i c a t e : query

query(X2) -> n a b l a . 0 . 0 (X2)

p r e d i c a t e : n a b l a . 0 .1

n a b l a . 0 . 1(X2) -> answer(X2)

********* pop T r a n s i t i o n s BD->C ************

p r e d i c a t e : n a b l a . 2.1

n a b l a . 2 . 1(XI) n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 2 . 1(X4) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

p r e d i c a t e : n a b l a . 1.0

n a b l a . 1 . 0 () n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 1 . 0 () n a b l a . 2 . 0 (Xl) -> n a b l a . 2 . 1(X1)

p r e d i c a t e : n a b l a . 0 .1

n a b l a . 0 . 1(X3) n a b l a . 0 . 0 (X2) -> n a b l a . 0 . 1(X2)

n a b l a . 0 . 1(X2) n a b l a . 2 . 0 (X1) -> n a b l a . 2 . 1(X1)

Figure 10: Transitions of the LPD A.

Clauses: q(1(1(a))):-.
q(Xl):-q(l(XI)).

Query: q(X2)

Figure 1 1 : The Definite Clause pro­

gram.

d o l l a r O O , () ()

nab la . 0 . 0 (XS) , d o l l a r O O

q(X6) , n a b l a . 0 . 0 (X6)

n a b l a . 2 . 0 (X7) , n a b l a . 0 . 0 (X7)

n a b l a . 1 . 0 () , n a b l a . 0 . 0 (1 (1 (a)))

q (l (X 8)) , n a b l a . 2 . 0 (X8)

n ab la . 0 . 1(1 (1 (a))) , d o l l a r O O

n a b l a . 2 . 0 (1 (X9)) , n a b l a . 2 . 0 (X9)'

n a b l a . 1 . 0 () , n a b l a . 2 . 0 (1 (a))

n a b l a . 2 . 1 (1 (a)) , n a b l a . 0 . 0 (1 (a))

n a b l a . 0 . l (l (a)) , d o l l a r O O

q (l (l (X 10))) , n a b l a . 2 . 0 (1 (X10)) *

n a b l a . 2 . l (l (a)) , n a b l a . 2 . 0(a)

n a b l a . 2 . 1(a) , n a b l a . 0 . 0 (a)

n a b l a . 0 . 1 (a) , d o l l a r O O

answer(a) , d o l l a r O O

a n s w e r (l (a)) , d o l l a r O O

a n s w e r (l (l (a))) , d o l l a r O O

* su bsu m ed by: q (f (X 8)) , n a b l a .2 . 0(X8)

Figure 1 2 : Items produced by the dy­

namic program m ing in terp re ta tion .

-39- Intemational Parsing Workshop '89

These solutions were obtained by first compiling the DC program into an LPDA according
to the schema defined in section 3.2, and then interpreting this LPDA with the general dynamic
program ming algorithm defined in section 3.1.

The LPDA transitions produced by the compilation are in figure 10. The collection of items
produced by the dynamic programming com putation is given in the figure 1 ‘2 .

In the transitions prin tout of figure 10, each predicate name n a b l a . i . j s tands for our V,,; .
According to the construction of section 3.2, the final predicate should be n a b l a . 0 . 1 . For

better readability we have added a horizontal transition to a final predicate noted answer.

4 O ther linguistic formalisms

Pereira and W arren have shown in their classical paper [PerW-80] the link between CF grammars
and DC programs. A similar approach may be applied to more complex formalisms than CF
gram m ars, and we have done so for Tree Adjoining G ram m ars (TAG) [Lan-88c].

By encoding TAGs into DC programs, we can specialize to TAGs the above results, and easily
build TAG parsers (using at least the general optimization techniques valid for all DC programs).
Furthermore, control mechanisms akin to the agenda of chart parsers, together with some finer
properties of LPD A in terpre ta tion , allow to control precisely the parsing process and produce
Earley-like left-to-right parsers, with a complexity 0 (n 6).

We expect th a t this approach can be extended to a variety of other linguistic formalisms, with
or without unification of feature s tructures, such as head gram m ars, linear indexed gram m ars,
com binatory categorial gram m ars. This is indeed suggested by the results of of Joshi, Vijay-
Shanker and Weir th a t relate these formalisms and propose CKY or Earley parsers for some of
them [VijWJ-87, VijW-89].

The parse forests built in the CF case correspond to proof forests in the Horn case. Such proof
forests may be obtained by the same techniques tha t we used for CF parsing [BilL-88]. However
it is not yet fully clear how parse trees or derivation trees may be extracted from the proof forest
when DC programs are used to encode non-CF syntactic formalisms.

5 C onclusion

Our unders tand ing of syntactic s tructures and parsing may be considerably enhanced by comparing
the various approaches in similar formal terms. Hence we a t te m p t to formally unify the problems
in two ways:

— by considering all formalisms as special cases of Horn clauses
— by expressing all parsing strategies with a unique operational device: the pushdown a u to m a ­

ton.
System atic formalization of problems often considered to be pragm atic issues (e.g. parse forests)

has considerably improved our unders tanding and has been an im portan t success factor.
T he links established with problems in o ther areas of com puter science (e.g. partia l evaluation,

da tabase recursive queries) could be the source of interesting new approaches.

-40- Intemational Parsing Workshop '89

References

[AhoU - 1 2] Aho, A.V., and L liman, J .D. 19(2 The Theory o f Parsing, Translation and Compil­
ing. Prentice-Hall, Englewood Cliffs, New Jersey.

[Bil-88] Billot, S. 1988 Analyseurs Syntaxiques et Non-Determinisme. These de Doctorat.
Universite d ’Orleans la Source Orleans (France).

[BilL-88] Billot, S.; and Lang, B. 1989 The struc tu re of Shared Forests in Ambiguous Parsing.
Proc. o f the 271*1 Annua l Meeting o f the Association for Computational Linguistics ,
Vancouver (British Columbia), 143-151. Also INRIA Research Report 1038.

[Coh-88] Cohen, J. 1988 A View of the Origins and Development of Prolog. Communications
o f the A C M 31(1) :26-36.

[Col-/8] Colmerauer, A. 1978 M etamorphosis Gramm ars, in Natural Language C om m unica­
tion with Com puters , L. Bole ed., Springer LNCS 63. First appeared as Les Gram-
maires de M etamorphose , Groupe d'Intelligence Artificielle, Universite de Marseille
II, 1975.

[DeR-71] DeRemer, F.L. 1971 Simple LR(k) Gram m ars. Communications A C M 14(7): 453-
460.

[Fut-88] Fu tam ura , Y. (ed.) 1988 Proceedings of the Workshop on Par tia l Evaluation and
Mixed C om putation . New Generation Computing 6(2,3).

[Lan-74] Lang, B. 1974 Deterministic Techniques for Efficient Non-deterministic Parsers.
Proc. o f the 2nc* Colloquium on A u tom a ta , Languages and Programming , J . Loeckx
(ed.), Saarbriicken, Springer Lecture Notes in C om puter Science 14: 255-269.
Also: R apport de Recherche 72, IRIA-Laboria, Rocquencourt (France).

[Lan-88a] Lang, B. 1988 Parsing Incomplete Sentences. Proc. o f the 12th Internat. Conf. on
Com putational Linguistics (C O LIN G 88) Vol. 1 :365-371, D. V argha(ed .) , Budapest
(H ungary).

[Lan-88b] Lang, B. 1988 Datalog A utom ata . Proc. o f the 3rd Internat. Conf. on Data and
Knowledge Bases , C. Beeri, J .W . Schm idt, U. D ayal(eds .) , M organ Kaufm ann Pub.,
pp. 389-404, Jerusa lem (Israel).

[Lan-88] Lang, B. 1988 Complete Evaluation o f Horn Clauses: an A u tom ata Theoretic A p ­
proach. IN RIA Research Report 913.

[Lan-88c] Lang, B. 1988 The System atic Construction o f Earley Parsers: Application to the
Production o f 0 (n 6) Earley Parsers for Tree Adjoining Grammars. In preparation.

[PerW-80] Pereira, F.C .N.; and W arren, D.H.D. 1980 Definite Clause G ram m ars for Language
Analysis — A Survey of the Formalism and a Comparison with Augm ented T ransi­
tion Networks. Artificial Intelligence 13: 231-278.

-41- Intemational Parsing Workshop ’89

[PerW-83]

[Por-86]

[TamS-S6]

[Tom-85]

[Tom-87]

[Vie-87b]

[VijWJ-87]

[VijW-89]

[VilZ-88]

Pereira, F.C.N.; and Warren, D.H.D. 1983 Parsing as Deduction. Proceedings of
the '213t Annual Meeting o f the Association for Computational Linguistics: 137-144,
Cambridge (Massachusetts).

Porter, H.H. 3rd 1986 Earley Deduction. Tech. Report C S /E -86-002, Oregon G rad­
uate Center, Beaverton (Oregon).

Tamaki, H.; and Sato, T. 1986 OLD Resolution with Tabulation. Proc. o f 3 rd In-
ternat. Conf. on Logic Programming , London (UK), Springer LNCS 225: 84-98.

Tom ita , M. 19S5 A n Efficient Context-free Parsing Algorithm for Natural Languages
and Its Applications. Ph.D. thesis, Carnegie-Mellon University, P ittsburgh , Pennsyl­
vania.

Tom ita , M. 1987 An Efficient Augm ented-Context-Free Parsing Algorithm. Compu­
tational Linguistics 13(1-2): 31-46.

Vieille, L. 1987 Recursive Query Processing: The power o f Logic. Tech. Report TR-
KB-17, European C om puterlndustry Research Center (ECR C), Munich (West G er­
many).

Vijay-Shankar, K.; Weir, D.J.; and Joshi, A.K. 1987 Characterizing S truc tu ra l De­
scriptions Produced by Various Gram m atical Formalisms. Proceedings o f the 25rd
A nnual Meeting o f the Association for Computational Linguistics: 104-111, Stanford
(California).

Vijay-Shankar, K.; and Weir, D.J. 1989 Recognition of Com binatory Categorial
G ram m ars and Linear Indexed Gram m ars. These proceedings.

Villemonte de la Clergerie, E.; and Zanchetta, A. 1988 Evaluateur de Clauses de
Horn. R apport de Stage d 'O ption , Ecole Polytechnique, Palaiseau (France).

-42- International Parsing Workshop '89

