JORGEN PIND

Computers, Typesetting, and
Lexicography

Abstract

As part of the general strategy of computerizing the lexicographic
work process at the Institute of Lexicography, we have adopted Donald
E. Knuths typesetting program TEX as our typesetting engine. The main
characteristics of the program will be briefly described, followed by a dis-
cussion of its advantages for lexicographic work.

TEX has already been used for the typesetting of a 1300 page etymo-
logical dictionary of Icelandic. A number of other projects are under way.

Special notice will be paid to the problem of coding as it relates to
the making of dictionaries. The advantages of a generic, or logical, coding
over typographic coding will be emphasized. However, doubts will be raised
about the possibility of providing a set of tags which are completely neutral
with respect to typographic considerations.

1 Introduction

In this paper I want to discuss one particular aspect of computational lexicogra-
phy, namely the typesetting of dictionaries. This is perhaps not an issue which is
central to computational lexicography, yet it is a subject which deserves study,
especially now when the arts of typesetting have been moving onto the desktop.
I will show you the approach we have adopted at the Institute of Lexicography,
and remark on how it fits into our overall strategy for computational lexicogra-
phy.

Let me begin, in all modesty, by quoting myself. In 1986 I was invited to
give a talk at the NordData Conference in Stockholm. At that time we were just
embarking on widespread use of computers at the Institute, and I attempted to
draw up a schematic diagram of a ‘Lexicographers’ workbench’ (see figure 1),
commenting that a number of features had not been implemented. “This holds es-
pecially for the ‘manuscript writer’. Our work has not yet reached the stage where
this is in great demand, but we envisage the possibility of using the database to
turn out manuscripts for a typesetting program like TEX.” (Pind 1986:87).

Well, this was written before we even had a version of TEX running at the
Institute! As a matter of fact, though we expected that typesetting would be

308

Proceedi ngs of NODALI DA 1989, pages 308-325

Jorgen Pind: Typesetting and Lezicography 309

Text Vocabulary Citation Editorial
archive database collection descriptors
i T
L
Excerpting Editorial
program, database
viewer program
Manuscript
writer
A 4

User interface

Figure 1: The lexicographer’s workbench, 1986 vintage.

something that we would deal with much later, a lot of work over the past
couple of years has been devoted to the typesetting side of lexicography.

There are two major reasons for this. The first is that the editor wants to
be able to print proofs which are as closely related to the final form of the
dictionary as possible. Thus a ‘manuscript writer’ has in fact been implemented
as a feature of the ‘workbench’ we are currently working on. The relationship
of this ‘manuscript writer’ to the work on the verbal dictionary has already
been touched on in the paper by Bjérn Pér Svavarsson and Jorgen Pind in this
volume.

The second reason is the fact that we have been engaged in producing Ice-
landic dictionaries from manuscripts, rather than from a database. Foremost
among these is an Icelandic etymological dictionary by the late Asgeir Bléndal
Magnisson, former editor at the Institute, which will appear later this year.}!
We have also embarked upon a series of reprints of older Icelandic lexicographic
works. These works have been coded in the TEX typesetting language.

2 Named Categories and Visual Formatting
In recent years a revolution has been taking place in the typesetting industry

where numerous ‘desktop publishing’ programs have gradually been replacing
the traditional tools of the printer. How far has this revolution affected the

1 As a matter of fact, it was published on the 2nd of November 1989 as planned.

Pr oceedi ngs of NODALI DA 1989 309

310 Computational Linguistics — Reykjavik 1989

dictionary publisher and maker? I want to argue that such systems are not
suited for the making of dictionaries.

Traditionally, dictionaries have been produced from collections of slips which
have been used to ease the task of keeping the dictionary entries in alphabetical
order and to allow them to expand as needed, without unduly affecting entries
which follow alphabetically. The slips have then often been used, with minimal
markup, as the manuscript for the printer. In the past few years attempts have,
however, been made to use database systems to ease the arduous task of handling
the collections of slips, with some success (cf. the paper by Bjérn Pér Svavarsson
and Jorgen Pind in this volume). If we consider for a moment the nature of
the database system, it is obvious that one of its major strengths is the fact
that it allows the user to assign names or tags to the individual fields in the
database. Thus we can easily imagine a database system for lexicographic work
which knows about categories such as headword, pronunciation, grammatical
code, semantic field, usage notes, and so on.

One of the typographical requirements for a dictionary is that some of these
categories should be reflected in the typesetting itself. This shows for example in
the use of different fonts in dictionaries, typically used to distinguish some of the
categories. Note that only some of the categories will be thus reflected, since a
typical dictionary contains many more categories than would be distinguished by
typographic means. Some distinctions will thus be lost in the printed dictionary
which are kept in the database systems.

Ideally, the lexicographer would like to use the database to automatically
generate ‘scripts’ for typesetting, simply by instructing the database to print
relevant typographic codes around some of the fields and not others. An even
better approach would be to tag all the categories in the typesetting script
and then instruct the typesetting system as to which ones should affect the
typesetting process and which ones should not be reflected typographically. This
latter approach is easy enough to accomplish if the typesetting system allows
‘generic’ or abstract coding of the input.

The desktop publishing systems mentioned at the beginning of this section
do not allow such abstract coding (indeed very few of them are able to deal
with traditional typesetting codes), since they are almost universally based on
the idea of ‘direct manipulation’ or ‘visual formatting’. The user manipulates
a pointing device, such as a mouse, to mark parts of the text for, say, a font
change. The notion of abstract coding plays no part at all in the formatting,
and thus it is impossible in such a system to form a link between the categories
of the database system and the typesetting. However, this is, of course, of the
utmost importance for the lexicographer. A priori, I would have thought that
this limitation of the desktop publishing systems would rule them out as being
suitable for lexicographic work, and I was thus rather surprised when I came
across the following description of the approach taken at the dictionary of Old
English in Toronto.

The typographical complexity of the dictionary entries—with a
number of special characters, several languages, and many subsec-

Pr oceedi ngs of NODALI DA 1989 310

Jorgen Pind: Typesetting and Lezicography 311

tions and cross-references which are distinguished by type—empha-
sizes the importance of interactive formatting. Because the working
copy of the entry on the screen depicts the final appearance of a page,
we hope to improve consistency. . .

... For example to put a keyword in bold in a citation, an editor
can activate the area to be formatted by ranging over it with the

mouse, and then use the mouse to select and apply the property
bold from the Character Looks Menu (Healy 1985:248).

The system being described is a Xerox workstation, running publishing soft-
ware similar to programs running on the Macintosh computer.

As mentioned earlier, this approach is severely handicapped by the fact that
there is no easy way in a visual formatting system to form links to the categories
of the database system being used. I would therefore like to argue that the
requirements which need to be made of a typesetting system for lexicographic
work are twofold.

e The typography should be of the highest order.
e The system must be able to work with generic or logical markup.

These requirements are met by a number of systems. We have chosen to
work with TEX. In the following pages I will describe the way we have used TEX.
While some of you are undoubtedly familiar with TEX, I will presume that not
everyone is, and ask those knowledgeable to bear with me while I give a short
tutorial introduction to TEX.

3 What is TEX? A Tutorial Introduction

TEX is a typesetting system ‘intented for the creation of beautiful books’ to
quote TEX's author, Professor Donald E. Knuth of Stanford University. Those
who have read his TgXbook will also know that the previous quote continues
with ‘and especially books that contain a lot of mathematics’.

TEX is indeed the premier system for typesetting mathematics available in
the world today, so it is perhaps somewhat surprising to find it used for the
making of dictionaries, indeed dictionaries which contain no mathematics at all!
I will attempt to describe why we have found TEX to be eminently suitable for
the typesetting of our dictionaries.

3.1 The Beginnings of TEX

It is perhaps rather surprising that we should be able to use TgX at all consid-
ering that it was created for one express purpose, viz. to allow Don Knuth to
typeset his own magisterial treatise on the Art of Programming in what he felt
would be an acceptable manner. These books started out being typeset in lead in
the time-honoured manner of many generations of printers. When subsequently
revisions of the original volumes were being prepared, the computer had made
inroads into the field of typesetting and, to quote Knuth,

Pr oceedi ngs of NODALI DA 1989 311

312 Computational Linguistics — Reykjavik 1989

... when I received galley proofs they looked awful—because printing
technology had changed drastically since the first edition had been
published. The books where now done with phototypesetting instead
of hot lead Monotype machines; and (alas!) they were being done
with the help of computers instead of by hand (Knuth 1986£:96).

This was in 1977. This lead Knuth to temporarily abandon the project of
writing the Art of Computer Programming while he would make up his own
system for the typesetting, a task which he estimated would take about one year.
In fact it took nine years of concentrated work to finish TEX and it’s companion
program METAFONT, which is a system for generations of letterforms.

The source code for the TEX system has graciously been put in the public
domain by Knuth. The programs are written in WEB which is a special system
for ‘literate programming’ (Knuth 1984b). A WEB program is processed by two
programs. TANGLE makes a Pascal program from the WEB source which can then
be compiled by a Pascal compiler, while WEAVE makes a TEX script from the same
source, containing the source code with comments and detailed indices. Running
this script through TEX produces a typeset version of the program. Knuth has
thoroughly documented the TEX and METAFONT programs in his five volume
work Computers and Typesetting (Knuth 1986a-e).

3.2 The Nature of TEX

TEX can be described as a document compiler or a typesetting language. Both
terms require some clarification.

In the history of computer science, many computer languages have evolved.
Some of these have been general purpose languages like Pascal or C, others
have been specifically crafted for some particular task. TEX is an example of a
special purpose language, and so is METAFONT. TEX as a language has primitive
constructs which relate to the traditional art of printing.

The objects which TEX handles are ‘boxes’ and ‘glue’, to use Knuth’s ter-
minology (see figure 2). The smallest boxes which TEX manipulates are those
surrounding the individual letters. Larger boxes can be built out of the unde-
composable boxes surrounding the letters. Thus a line of type is also considered
a box from TEX's point of view. Glue is the stuff which gets put between words
and other boxes (though not between the boxes making up individual words).
Leading, the distance between consecutive lines of type, is implemented in TgX
through interline glue. This ‘boxes and glue’ model turns out to be surprisingly
powerful and enables TEX to perform extraordinary feats of typesetting for ex-
ample in the typesetting of mathematics.

Some of TEX's algorithms are quite well known. This is especially true for the
paragraph setting algorithm (Plass and Knuth 1982), as well as the hyphenation
algorithm devised by Frank Liang (Liang 1983).

The algorithm for setting paragraphs minimizes the ‘demerits’ associated
with the setting of a particular paragraph. These demerits reflect, among other
things, the ‘badness’ of individual lines of the paragraph which are calculated

Pr oceedi ngs of NODALI DA 1989 312

Jorgen Pind: Typesetting and Lezicography 313

Topline glue

K\Intenrvord glue

- '\\ l §
S

and glue mode

Interline glue Line-final glue

Figure 2: TEX's boxes-and-glue model

by noting the extent to which the inter-word glue has to stretch or shrink. TEX
sets the paragraph by minimizing these demerits. The interesting thing to note
is that this means that the paragraph as a whole is typeset in one go and a word
coming late in a paragraph can influence the setting of lines coming earlier in
the paragraph.

Liang’s algorithm for word hyphenation is pattern-based, but departs from
older versions by using both variable length patterns and patterns which both
allow and inhibit hyphenation points. I will not discuss this any further here,
but simply note that his method gives excellent results in a number of languages
besides English. In particular the Icelandic hyphenation table does a very cred-
itable job of hyphenating.

TEX has numerous primitives (around 300) for dealing with typesetting and
also a very powerful macro programming language. It is this latter which gives
TEX its status as a programming language.

Here are a few examples of the primitive operations which TEX operates with.
Note that primitives and TEX macros are expressed with ‘control sequences’.
These usually start with a special ‘escape character’ which is typically \, the
backslash.

e \kern. This command is followed by a dimension specification (e.g. in
printers’ points) and moves the placement of two boxes relatively to each
other. Note that boxes come in horizontal and vertical versions and \kern
can be used to position boxes both vertically and horizontally, depending
on the ‘mode’ TEX is in. Usually kern is used to bring boxes closer together

Pr oceedi ngs of NODALI DA 1989 313

314 Computational Linguistics — Reykjavik 1989

(e.g., letter pairs like ‘V’ and ‘A’ which, because of kerning, are printed as
‘VA’ rather than ‘VA’.

e \looseness. Changes to looseness mean that TEX will attempt to set a
particular paragraph in more or fewer lines than the optimal setting calls
for. By setting \looseness=1 an attempt is made to open the paragraph
and set it one line longer than would be the case if no \looseness is
specified.

e \fontdimen. This command enables one to query the ‘current font’ for
font parameters like the z-height, normal spacing, etc.

¢ \penalty. Controls the desirability of breaking at a particular point. Penal-
ties can be both positive (making a break less likely) and negative (indicat-
ing desirable break points). Infinite penalties (having a value greater than
10000) either force (\penalty=-10000) or prohibit (\penalty=10000) a
break at a particular point.

¢ \sfcode. The ‘space factor code’ is used to control the stretching of spaces
after individual characters. Using the \sfcode makes it possible to, say,
stretch spaces after periods more than after ordinary characters.

e \hyphenchar. Very few things are hard-wired into TEX. Even the hyphen#
ation character can be changed. By setting \hyphenchar\tenrm="\#, TEX
will use the hash-mark as the hyphenation character for the 10 pt Roman
font (witness the first line of this paragraph).

3.3 TgX as a Programnming Language

TEX has a very powerful macro language which can be used to write macros
at almost any level of abstraction. The execution of these macros takes place
through a process of macro expansion, where the macros are gradually reduced
to primitives of the TEX language. Since macros can call other macros, it is
possible to structure the code in a systematic way by gradually moving from
primitive constructs to more abstract ones.

TEX observes a block structure, like most other programming languages. The
block structure is achieved by using the symbols for ‘open’ and ‘close group’
which are usually the curly braces { and }. Using grouping, it is a simple matter
to structure code, such that the likelihood of naming conflicts are lessened.

The TEX macro language, like most other macro languages, uses registers
for the different ‘data types’ which are available. These registers come in five
varieties:

Count registers are used for keeping integer values (32 bit). TEX has primitive
operations for integer arithmetic only, but this is usually not a problem. The
following piece of TEX code declares a count register named \figno which is
initialized to O:

\newcount\figno
\figno=0

Pr oceedi ngs of NODALI DA 1989 314

Jorgen Pind: Typesetting and Lezicography 315

The code for the figure macro would then take care of placing the figure and
assigning a number to it which would be incremented for each figure. This last
operation is achieved by:

\advance\figno by 1

Dimension registers are used for printers’ dimensions, points, picas, millime-
ters, etc. The following piece of code declares a dimension register and then
initializes it.

\newdimen\pagewidth
\pagewidth=170mm

Next come the glue registers or ‘skip’ registers. These contain glue specifica-
tions. The following example illustrates the definition of the \smallskip macro
which makes use of the smallskipamount glue register:

\newskip\smallskipamount
\smallskipamount=3pt plus 1pt minus 1pt
\def\smallskip{\vskip\smallskipamount}

The \smallskipamount register is set to 3pt plus 1pt minus 1pt. The macro
\smallskip is defined as a vertical skip (\vskip) of \smallskipamount.

Finally, we come to the box registers which are used for holding the boxes
gradually acccumulated for each page. Boxes have three dimensions, as men-
tioned before. These can be queried or set, using the primitives \wd, \ht, and
\dp for the width, height, and depth, respectively.

3.4 Defining Macros

We have already seen one example of how macros are defined. This is done with
the \def primitive. Macros can take arguments, it is even possible to have macros
which check for optional arguments, a higly useful feature. A typical macro with
arguments is the following simple macro for setting headwords in bold face. (The
percent sign % is usually a comment character in TEX. Anything coming after
the 7% on a line is ignored by TEX.)

\def\hvord#1{% macro for the headword
{\bf#1\mark{#1}}}

This sets the headword in boldface (\bf) and defines a ‘mark’. This mark can, for
instance, be used to establish the range of entries on a particular page of a dic-
tionary. The parameters are denoted by # and they are numbered consecutively,
starting with #1.

Like any good programming language, TEX offers the user a conditional test-
ing mechanism. One application of this is to print different types of proofs. For
instance, it is possible to redefine the \hword macro in such a manner that TgX
will write the headwords to a special file when the dictionary is being proofed. It

Pr oceedi ngs of NODALI DA 1989 315

316 Computational Linguistics — Reykjavik 1989

is then a straightforward matter to check whether the list of headwords thus gen-
erated is in correct alphabetical order. This can be accomplished in the following
manner:

\newwrite\hwordfile % first a file is defined
\newif\ifproofmode 7 A conditional is declared
\proofmodetrue % Are we printing proofs? Yes we are.
\ifproofmode \message{****x Printing proofs **uxx*}
\immediate\openout\outfile=\jobname.hwrd

\def\hword#1{% macro for the headword
{\bf#1\mark{#1}}
\immediate\write\outfile{#1}}

\else \message{**** Final run #k*x}

\def\hword#1{% macro for the headword
{\bf#1\mark{#1}}}

\fi

The conditional construction
\if
\else
\fi. -

thus makes it easy to print different versions of the same manuscript according
to need.

This has only been the briefest of introductions to TEX as a programming
language, but it should, I hope, reveal to the reader something of the flavour of

the TEX language.

3.5 TgX in Iceland

The Institute has been responsible for introducing TEX into Iceland. I have
earlier described the steps undertaken to make TEX work with Icelandic (Jorgen
Pind 1988). In particular:

e It was necessary to make a set of patterns for TEX to achieve correct (or
nearly correct) hyphenation. The patterns were generated by Frank Liang's
program PATGEN, using as input a 210.000 word dictionary made by the
Institute for IBM in Iceland to use in IBM spelling checkers.?

2] am very grateful to Mr. Gunnar M. Hansson, general manager of IBM Iceland, for allowing
us to use this material for this purpose.

Pr oceedi ngs of NODALI DA 1989 316

Jorgen Pind: Typesetting and Lezicography 317

e The Computer Modern Fonts had to be adapted to Icelandic by adding a
few characters (e.g., ‘0’ (eth) and ‘p’ (thorn)).

¢ Changes had to be made to the standard macro collections to allow for
new fonts and some differences in character definitions.

With these changes, TEX has been found to work admirably for Icelandic and
has already been used to typeset a number of books. I guess Iceland must be
unique in having brought out a number of TEXed books and yet no mathematics
book has been typeset with the Icelandic version of TEX as yet!

4 Typography and Dictionaries

4.1 Some General Observations

The typesetting of dictionaries usually presents few problems. Dictionaries are
usually set in two or three columns which are rather narrow. This can often lead
to difficulties with line-breaking, since the narrow columns leave relatively little
latitude for the paragraph-breaking algorithm. For this reason, it is advantageous
to choose a font with a narrow set width, and, secondly, it is necessary to allow
the typesetting program more flexibility in stretching and compressing interword
spaces than is normal in books which are set to the full width of the page. In
TEX this flexibility is controlled with the primitive \tolerance.

When the columns are set in register, as is usually the case, widow lines are
bound to occur because the leading (interline glue in TEX) is not allowed to vary.
These can be got rid of by stretching or shrinking the paragraph (or paragraphs
on the previous page or pages). In TEX this is controlled by the \looseness
primitive. If one is prepared to accept full widow lines (as we occasionally did
in the etymological dictionary), it is possible to achieve this in TEX by setting
the glue register \parfillskip equal to 0 pt, thus drawing the last line of a
paragraph out to the full width of the column.

If the columns are not set in register (as is, for example, the case in the
Oxford English Dictionary where the quotations are set in smaller type, thus
forcing variable leading), it is much easier to control for widow lines since the
space between paragraphs can easily be varied (this is done in TEX with the
\parskip primitive).

It is custumary in dictionaries to print words at the top of the page, showing
the range of the entries on that page. This process can very easily be automat-
ed in TgX, using the \mark. By \marking all headword entries and defining
suitable macros for the outputting of the headlines, this process becomes com-
pletely automatic. Note that though I mention here the necessity of \marking
the headwords, it is in fact not necessary to mark them individually. By a suit-
able definiton of the \hword macro this can be programmed (see the previous
definitions of the \hword macros).

Pr oceedi ngs of NODALI DA 1989 317

318 Computational Linguistics — Reykjavik 1989

5 Work Finished and in Progress

The major performance test of TEX for lexicographic work was the typesetting
of the etymological dictionary by Asgeir Bléndal Magnisson. This book runs to
1231 two-column pages with forty pages of introductory material. TEX took care
of the typesetting of all the pages except for two pages which contain illustrations
demonstrating the use of the dictionary. These two pages were designed with a
drawing program.

Originally, it was never intended that the etymological dictionary would be
typeset with TEX. When keyboarding of the manuscript began in 1985, we did
not have TEX, and the coding of the manuscript was such that it would be easy
to transfer it to a printer for typesetting with traditional printers’ typesetting
codes. However, in January 1989, when we were ready to turn the manuscript
over to the printer, it turned out that they did not have all the characters needed
for the typesetting, and would also have difficulties with all the diverse floating
accents which the book contains. At that point I decided to make some trial runs
with TEX, using PostScript fonts (Adobe Times Roman). It turned out that no
problems where encountered which could not rather easily be solved. Even the
fact that PostScript has a fairly limited character repertoire could be remedied
by drawing the missing characters with Fontographer, a font generating program
running on the Macintosh (Altsys Corporation 1989).

Figure 3 shows a sample page from the dictionary.

Our major project in the future will, of course, be the dictionary of verbs
outlined in the paper by Jén Hilmar J6nsson in this volume. The editing will
take place in a database system, and the output of that system, a TEX script,
will be generically coded.

Additionally, we have just embarked on a project to reprint some older Ice-
landic lexicographic works. Work is now in progress on four older dictionaries.
These are all coded in the TEX language, and the intention is to bring these
out in new editions. These are dealt with as textual objects, though the generic
coding would, of course, considerably ease the task of putting them online, if
that should be decided at a later stage (cf. Alshawi et al. 1989).

6 Issues of Coding

In recent years, more and more attempts have been made to use database systems
for the creation of dictionaries. When a database is used for a dictionary, it
becomes possible to name the fields which are being entered. The database
programmer has quite a lot of freedom in the choice of these names and therefore
in the choice of categories which are dealt with in the dictionary. I shall assume
here that the final aim of the project is to produce a printed dictionary, though,
of course, if it is made up using a database system it becomes possible to ‘publish’
it in computerized form, say, on a CD-ROM disk.

Pr oceedi ngs of NODALI DA 1989 318

Jorgen Pind: Typesetting and Lezicography

319

ddess

aldankalur

hreyfingu { leSju eBa for, sbr. /6na af Ién. Sjd so.
6dla.

ddess, Oddeis h. (18. 6ld) ‘6hreinindi; 6happ;
4drepa’; af fs. 4 og dess af so. dessa (< *det(1)sa
< *dantison), sbr. ad dessa nidur 4 e-m ‘pagga nidur
i e-m’ og dessast ‘saurgast, versna’. Eiginl. ‘bad sem
dettur 4 e-n eda skellur 4 e-m’. Sj4 dess.

a0ili k. ‘hlutabeigandi’; adild kv. ‘hlutdeild’, sbr.
sakaradild, réuaradild o.s.frv. Ord pessi lutu { 6nd-
verBu a8 skyldu og rétti 2ttingja (eBa tengdamanna)
i malaferlum, sk. adal (1) og adall.

ABbill k. fnomr. karlmannsnafn, sbr. adall og adili.

AUils k. karimannsnafn; sbr. s2. Adils, s. ninar.
Apisl < *Adgfsl, fe. Eadgils. ForliBurinn ad- 4 skylt
vib adal- (2) og 6dal, sbr. fs. pn. Adi; um vidlibinn
sja gisl (1).

adiu, adjo uh. (18. 81d) ‘kvedjuord’. To. ur d. adjo
< fr. adieu < a Dieu, eiginl. ‘gud veri med pér’.

admirdll, abmirall k. (nisl.) *sj6lidsforingi’. To.
ur d. admiral < ffr. a(d)miral (s.m.) < arab. amir
*hofBingi'. Sj4 emir.

Ad6If k. karlmannsnafn; tékunafn, lfkl. 2ttad Gr
p., sbr. nhp. Adolf, [hp. Athalwolf, Athulf, gotn. Ath-
aulfs; likl. < *apa-wulfaz. Sja adall og dlfur.

adressa kv. (19. 61d) ‘heimilisfang’; adressera s.
‘skrifa heimilisfang, ...". To. Or d. adresse, adressere
2utud ur fr. adresser, sbr. lat. ad ‘til’ og directum
(1.h.) *beint".

a0sjall 1. ‘niskur, naumur { Gtldtum’ < *at-séall;
e.t.v. leitt af gamalli forskeyttri so., sbr. gotn. atsaih-
wan ‘gaumg®fa’ og isl. sjd ad sér.

-abur, T-a0r k. vidsk. no. eins og munadur, unad-
ur. Skiptist 4 vi® -udur (s.p.) og er komid af germ.
*-g-pu-. Petta vidsk. er runnid af verknabarvidsk.
*-pu- < ie. *-tu- sem skeytt var vid stofn &-sagna.
Vixl -a3- og -ud- eru upphafiega had sérhljédi eftir-
farandi endingar, t.d. nf. et. *-apur > -udr, en ef. et.
*-apar > -adar, og gegndu pessar tver myndir vidsk.
{ upphafi sama hlutverki, en sfdar hefur -ad- verid a8
mestu sérhaft [verknadarmerkingu, en -ud- ab mestu
[gerandmerkingu. Sjd -udur, -nadur og -nudur.

alventa kv. ‘j6lafasta’. To., komid \r lat. adventus
‘koma’, 9: koma eda f28ing Krists [heiminn.

aOventistar k.ft. kristinn tniflokkur; nafngiftin
Iytur ad tni peirra 4 endurkomu Krists.

abvifandi lh.nt.: koma a. ‘koma aB eins og af til-
viljun'. Sjé *vifa (2).

1 af fs. (20.) ‘fr4, bunt’; sbr. f2r., nno. og s. av,
d. af, gotn. af, fe. af, of, fhp. ab(a), lat. ab (< *ap),
gr. dpolapd; sk. afar, afr (2). aftur, at (4), efja, eftir,
efsa, ofund, ofugur og er.v. afiann. Sja af- (2).

2 af- forskeyti; sbr. fer., nno. og s&. av, d. af-,
gotn. af-, fe. of-, fhp. ab-, aba-, abo-, lat. ab-, gr.
apo-, fi. apa-. Sj4 fs. af. Ymist gamalt forskeyti eins

og t.d. [afbragd, afldt, afrdd, afrek o.s.frv. eda sib-
ar forskeytt fs. eda ao., sbr. t.d. afdrditur, afhyda.
afrekja o.fl. Forskeyti8 heldur oft eiginlegni (stabar-
legri) merkingu sinni, sbr. t.d. afbjarga, affjalla, af-
hiis, afhvarf, en stundum ver8ur tikngildi pess nibr-
andi eda herBandi, t.d. afgelja, afgera, afdt ‘ofér’.
afgamall, afkostir, afstopi ‘ofstopi’, eda meira eda
minna 6éeiginlegt, t.d. i afrdd, afrek.

éfa kv., merking ekki fulllj6s, en likl. ‘fjandskap-
ur, mein', sbr. fisl. ipll ok ¢fu I/ ferik dsa sonum
(Lokas.). Sumir telja ab dfa sé { ®tt vid lo. afur
og dfa kv., en stofnsérhlj6did, germ. *é, er annars
6pekkt { peirri orbsift. Adrir ®tla ad ¢fu (i Lokas.)
sé eiginl. s.0. og dfd og pé < *dfo < *4f¢. Enn aBrir
tengja ordid vid vofa kv.; litt sennilegt; dfa er stakord
og rithdttur ekki 6ruggur, e.t.v. stendur ¢fu fyrir dfu
og ordid pé s.0. og dfa og tengt lo. @fur. Allt Gvist.

af4 kv. (18. 6ld) ‘4hrif, 1.d. af vinanda', sk.
dfengur 1. ‘sem hrifur 4’; dfengi h. ‘vinandi’ og
dfang h. E.t.v. < *anfa(n)ho dregid af forskeyttri so.
*anfa(n)han, sbr. fhb. anafdhan ‘byrja’ (eiginl. ‘gripa
4’), eBa myndad af so. fd (1) eda 6llu heldur samb.
fd é.

éfang h. t ‘4tak, hnjask, ofbeldi’; e.t.v. leitt af
forskeyttri so. *anfa(n)han ‘gripa i, byrja’, sbr. fhp.
andfang ‘4ak, hrifs, byrjun’; sk. dfd og dfengur. Sja
fd (1).

éfangi, téfangr k. Sja divangr.

afar ao. ‘mjog’, einnig forskeyti afar-, sbr. afar-
kostir; liklega sama ord og gotn. afar ‘4 eftir, sidar’,
thb. avar, abur ‘aftur’, sbr. nisl. afur- (< *afr-) sem
notad er sem forskeyti f Ifkri merk. og afar- (afurxrdi,
afurnagandi) og af- (2) sem stundum er haft i herd-
andi merkingu, t.d. afkostir s.s. afarkostir, afgamall
‘mjbg gamall’; afar synist vera einsk. midstig af fs.
eba ao. af, sbr. fi. dpara- ‘aftari, sidari’. Adrir telja
ab afar sé sk. gotn. abrs ‘sterkur’. Sja afr (2).

ai-baka s. (16. 6ld) ‘aflaga, skekkja’; sbr. nno.
avbakleg ‘6fugsniinn, 6hzgur, erfidur, afskekktur’,
avbekt ‘pver, ofugur’, s&. mill. dhdklig ‘luralegur,
Slogulegur’, fer. avbekladur ‘illa troBinn, aflagad-
ur (um ské6)'. Myndun ordsins er 6ljés, pétt pad
sé¢ synilega tengt no. bak. F.J. (1914) ztlar a8 pad
merki [6ndverBu ‘ab bakfietta trjivid, hoggva édvala
af trjdm’ og stydst par m.a. vi umsogn B.H., en
pad samrazmist litt merkingu og formi nno. og s&.
ordmyndanna. Sjd bak og bekill; ath. beekill. -baldi
k. (nisl.) ‘ofsafenginn madur’, sk. baldinn |. og of-
beldi h. -brag8 h. ‘e-d frabznt’; sbr. nno. avbragd
og far. avbragd- { avbragdsstyrki ‘mikid afl". Leint
af so. *ab-bregdan eba bregda af, sbr. afbrugdinn
‘frabrugdinn, 6likur’ og afbridig(u)r. -bradig(ur 1.,
af-bry0i (+af-brygdi) kv. Sjé dbridig(u)r. -danka s.
(nisl.) ‘svipia metorBum eBa stbdu’; -dankaBur .

Figure 3: A sample page from the etymological dictionary

Pr oceedi ngs of NODALI DA 1989

319

320 Computational Linguistics — Reykjavik 1989

The traditional way of making a dictionary has been to proceed in a some-
what different manner, writing the dictionary entries on slips of paper.?

While the comparison between slips of paper, a file cabinet, and a database
system is often made, this comparison is somewhat misleading since categories on
the written sheets or slips are usually not named. In the case of dictionaries this
is most clearly the case. An example will show this. Figure 4 shows a slip from
the collection which was used in the making of the first standard dictionary of

letur (-urs, pl. ds.) [le:de@, le:to@) n. V. a. Shrifi, Typer: gotnesk:,
latneskt l.; fzra e-8 i letur, optegne n-1, fere i Pennen; sert /., en Slags
Halvfraktur, n®rmende sig til Schwabacheriypen. — *b. leturs fand, Papir
(BéluHj. 255); letra rolla (egl. Typefaar) (BSluHj. 21?) = prentsmilja. —
2. Indskrift: /. i steini. =band [-r-banii] n. Forkorlelse, Abbrevialur.
-breyting [-brei:dink, -brei:t-] f. Udhazvelse. -gerB, -gjor8 [-gerd,
-gdr-8) f. 1. Dogslavskrift, Typernes Karakier: leturgerdin er alt &nn-
ur, Typerne er af en helt anden Karakier. — 2. Skrivning: hvorugur
beirra haf®i numid svo miki® i leturgjor®, ad beir mazitu rita ndfn sin
(JThMk. 382). — 3. a. (samning rits) Oplegnelse, Alfattelse af et Shrifi.

o pl4
YZ[W[’/”/%”’]/
Aedeer,

LA il

Figure 4: A sample entry from the dictionary by Sigfiis Blondal and one of the dictionary
slips on which it is based

modern Icelandic, Sigfis Blondal’s Icelandic-Danish dictionary (Blondal 1923).
It is quite obvious that no categories as such are marked on the slip. They can,
however, be inferred from the slip by the use of markings which indicate different
fonts. The slip implicitly marks categories by the use of underlining and other
typographical marks.

3 Actually, using dictionary slips was quite a breakthrough in the making of dictionaries.
This can be seen if one has a look at the 18th century monumental Icelandic dictionary by
Jén Olafsson from Grunnavfk (which was never finished). This was written out as a single
manuscript, at first having reasonable space between the entries, but gradually deteriorating
into complete chaos as entries were added to the manuscript.

Pr oceedi ngs of NODALI DA 1989

320

Jorgen Pind: Typesetting and Lexicography 321

This approach is quite natural, considering that dictionary editors, such as
Sigfis Blondal, were working with the sole aim of producing a printed dictionary.
They thought of their work as that of producing a tezt, and their approach was
quite plainly a ‘typographical’ one where the only things they needed to keep
distinct in the manuscripts were changes which would show up on the printed
page, like font changes.

This approach has no doubt been almost universally followed, at least un-
til quite recently. Some published dictionaries have been made available to re-
searchers. These are generally typographically coded and bringing them online
has often proved to be a formidable task (Alshawi et al. 1989).

This discrepancy between the database representation of a dictionary and
the printed, typographical, representation is quite unfortunate and various steps
have been taken to close the gap. This is currently not too difficult a task and I
want to discuss here briefly how one could achieve this aim with TEX.

A programming language such as TEX makes it possible to code the manu-
script at any level of abstraction which one finds most convenient. The primitives
which TEX deals with are for the most part typographical ones, as already dis-
cussed. However, it is by no means necessary to use these primitives directly.
Let me illustrate this by taking the entry from the Icelandic-Danish dictionary
shown in figure 4 as an example. This can be typographically coded as follows
in TEX (the phonetic transcription has been left out):

\bold{letur (-urs,} pl. ds.) [...] n. 1. a. Skrift, Typer:
\ital{gotneskt, latneskt 1.; fazra e-d i letur}, optegne n-t,
fgre i Pennen; \ital{sett 1.}, en slags Halvfraktur,
nzrmende sig til Schwabachertypen. --- \bold{*b.}
\ital{leturs land}, Papir (B6luHj. 255);

\ital{letra rolla} (egl. Typefaar) (B&6luHj. 217)

= \ital{prentsmidja}.

This example should be mostly self-explanatory. The instructions \bold and
\ital change respectively to the bold and italic fonts. This representation is
fairly close to the one given on the slips themselves, as depicted in figure 4. Note
incidentally the somewhat strange use of fonts in the first line where parentheses
do not balance correctly with respects to fonts. This use is probably quite natu-
ral for the printer (who has, after all, been taught that a delimiter character, for
example, should belong to the same font as the preceding text). To someone ac-
customed to the notions of ‘blocking’ and ‘environments’ from computer science
this manner of font change does seem illogical.

If we care to analyze the example from a functional perspective, we can easily
see that it contains a number of different categories. There is the headword,
which is printed in bold type, and so is the grammatical ending signifying the
genitive. Here we have an example, ever so common in dictionaries, of one font
being used for disparate categories. Additionally, there are examples of use and
phrases shown in italic type, of sectioning (using numbers and letters of the
alphabet), and of source references (‘B6luHj.” being the Icelandic 19th century
poet Hjdlmar Jénsson).

Pr oceedi ngs of NODALI DA 1989 321

322 Computational Linguistics — Reykjavik 1989

A different way of coding would be to code the categories directly without
any reference whatsoever to their typographical implementation. This approach,
which has quite a short history, has been variously named ‘logical’ or ‘generic’
coding, and can thus be distinguished from the visual coding shown above.
Generic coding has recently received increased attention through the standard-
ization of the SGML (Standard Generalized Markup Language) (ISO 1986, Bar-
ron 1989, Bryan 1989). Similar concepts have been expressed in other languages
and formatters, though SGML carries it to its logical conclusion: SGML is simply
a manner of coding a manuscript, and has really nothing do do with typesetting,
or database manipulation. It does, however, embody a manner of representing
the structures which are to be found in a particular document.

In particular, as regards TEX, Leslie Lamport’s macro package IATgX is very
much geared towards logical coding (Lamport 1986; see also Lamport 1988).
IATEX is a macro package used for general document processing. It uses the con-
cept of separate ‘style files’ to capture the different formatting needs of reports,
articles, books, etc. Furthermore, it defines categories such as ‘titles’, ‘sections’,
‘chapters’, ‘footnotes’, and so forth to express the different logical categories of
documents.

The TEX macro language is such that one can easily implement macros to any
degree af abstraction required. Using such an approach, it would be easy enough
to code the above example from Sigfis Blondal’s dictionary in the following
manner (I have formatted it here for easier readability):

\hword{letur} (\decl{-urs}, \xx{pl. ds.}) \phon{[...]}
\pos{n.}
\sense{1.}

\subsense{a.} \trans{Skrift, Typer}:\V
\exampl{\ic{gotneskt, latneskt 1.; fazra e-d letur},
\da{optegne n-t, fgre i Pennen}};

\exampl{\ic{sett 1.},
\da{en slags Halvfraktur, narmende sig til
Schwabachertypen}}. ---
\subsense{*b.}
\exampl{\ic{leturs land}, \da{Papir} \source{B6luHj. 255};
\exampl{\ic{letra rolla} \da{(egl. Typefaar)}
\source{B61uHj. 217)}
= \xrf{prentsmidja}.
\sense{2.}

This, I hasten to add, is just a demonstration of the manner by which it
would be possible to proceed. In particular, in no way is this coding based upon
a study of the entries in this dictionary, a study which it would be necessary to
undertake if it were desired to code the dictionary in this manner.

The categories mentioned above should be easy enough to understand since
they have been given names which are fairly self-explanatory (the categories \ic
and \da stand respectively for ‘Icelandic’ and ‘Danish’) and it will thus not be

Pr oceedi ngs of NODALI DA 1989 322

Jorgen Pind: Typesetting and Lexicography 323

necessary to give detailed explanations for each of them. It is, of course, imme-
diately apparent that the manuscript gets considerably more complicated when
such a system of coding is employed. After all, a lot of categories are delimited
which will not find any particular realization in the printed text. By working
from such a manuscript it is much easier to set up a one-to-one relationship with
a database representation which of course is considerably more difficult when
dealing only with a visually coded manuscript.

The astute reader will probably object to the choice of terms for the entries
labelled \sense and \subsense in the above extract, since these only refer to
numbers and letters and cannot strictly be said to denote the sense. This is, of
course, true. In this case it would have been better to label the whole passage
belonging to the particular sense, leaving out the numbers and letters and letting
TEX assign these automatically. The point here is simply that it is possible to
approach the task of coding in different ways, and it is difficult to specify once
and for all a finite set of categories that will take care of all the entities one could
conceivably want to code.4

One example will illustrate this. The etymogical dictionary, like all of its
kind, contains n different accents which have to be coded for. In TEX, accents
are expressed with special macros which make use of an \accent primitive. Thus
one would write \=a to get ‘d’, where the \= signifies a floating bar accent, or
\’a to get 4 etc. But this command will not always give the correct result. Thus
if one attempts to put an acute accent on top of a ‘k’ by writing \’{k} the
result is k. The correct version should look like ‘K’. This reflects a limitation
of the \accent primitive in TEX which can be circumvented by writing special
purpose macros for letters like ‘K’.

To obtain this effect it is necessary to write a special purpose macro in TEX.
However, in that case, it is of course necessary to know about the fonts being
used for typesetting. One of the major premises of generic markup is that such
knowledge is not necessary, indeed it is not necessary to know how the text will
eventually be used, say, whether it will be printed or put into a database.

6.1 Visual Coding and Direct Manipulation

The approach to coding which has been described here, is language-based and
thus contrasts very much with the ‘direct manipulation’ approach which has in
recent years been popularized especially on the Macintosh computer. As regards
typography, the direct manipulation approach entails that the user points to or
‘clicks’ on words or letters on the screen and then typically chooses the rele-
vant font from a menu. This was the pattern of usage which was embodied in
MacWrite, the archetypical Macintosh word-processing program. The effects of
the font changes could be immediately seen on the screen, in a WYSIWYG ‘What
you see is what you get’ representation. The user interface was immediately
hailed as a breakthrough, which of course it was, and yet, as time has shown, it
has its problems. This can be seen in the evolution of word-processing programs

41 guess The DANLEX Group (1987) would want to argue differently, since they have
attempted to provide a taxonomy of all the different categories which can occur in a dictionary.

Pr oceedi ngs of NODALI DA 1989 323

324 Computational Linguistics — Reykjavik 1989

for the Macintosh which tend to move them closer to a language-based repre-
sentation. Thus the notion of ‘style sheets’, an idea borrowed from Brian Reid’s
program Scribe, has now been carried over into almost every word-processing
program for the Macintosh (Reid and Walker 1980). Using style sheets, it be-
comes possible to mark sections in a semi-generic or logical manner. Unfortu-
nately the notion of style sheets only applies to paragraphs, and is thus useless
for the making of dictionaries where one is mainly interested in categories at a
much finer granularity (i.e. sub-paragraph categories).

As demonstrated in this paper, a language-based formatter like TEX can
easily be accommodated to a manuscript generated from a database and thus
it can deal with categories at any level. I can state without hesitation that our
experience using TEX has shown that it is eminently suited for lexicographic
work.

References

Alshawi, Hiyan, Bran Boguraev, and David Carter. 1989. Placing the Dictionary On-
Line. Bran Boguraev and Ted Briscoe [Eds.|. Computational Lezicography for
Natural Language Processing:41-63. Longman, London.

Altsys Corporation. 1989. Fontographer, Users’s Guide. Plano, Texas.
Barron, David. 1989. Why use SGML? Electronic Publishing, 2(1):3-24.
Blondal, Sigfiis. 1923. fslensk-donsk ordabék. Reykjavik.

Bryan, Martin. 1988. SGML: An Author’s Guide to the Standard Generalized Markup
Language. Wokingham, Addison-Wesley.

The DANLEX Group. 1987. Descriptive Tools for the Electronic Processing of Dictio-
nary Data. Lexicographica, Series Major, 20. Max Niemeyer Verlag, Tiibingen.

Healy, A. diPaolo. 1985. The Dictionary of Old English and the Final Design of its
Computer System. Computers and the Humanities, 19:245-249.

ISO. 1986. International Standard 8879: Standard Generalized Markup Language
(SGML). s.l.

Knuth, Donald E. 1984a. Literate Programming. Computer Journal, 27(2):97-111.
Knuth, Donald E. 1984b. The TgXbook. Addison-Wesley, Reading, Massachusetts.

Knuth, Donald E. 1986a. TgX: The Program. Computers and Typesetting, vol B.
Addison-Wesley, Reading, Massachusetts.

Knuth, Donald E. 1986b. The METAFONTbook. Computers and Typesetting, vol C.
Addison-Wesley, Reading, Massachusetts.

Knuth, Donald E. 1986c. METAFONT: The Program. Computers and Typesetting, vol
D. Addison-Wesley, Reading, Massachusetts.

Knuth, Donald E. 1986d. Computer Modern Typefaces. Computers and Typesetting,
vol E. Addison-Wesley, Reading, Massachusetts.

Knuth, Donald E. 1986e. Remarks to Celebrate the Publication of Computers and
Typesetting, TUGboat 7:95-98.

Lamport, Leslie. 1986. B'TpX. A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts.

Pr oceedi ngs of NODALI DA 1989 324

Jorgen Pind: Typesetting and Lezicography 325

Lamport, Leslie. 1988. Document Production: Visual or Logical. TUGboat 9:8-10.

Liang, Franklin M. 1983. Word Hy-phe-na-tion by Computer. Report STAN-CS-83-977.
Stanford University, Department of Computer Science.

Pind, Jorgen. 1986. The Computer Meets the Historical Dictionary. Nordisk DA TAnyit
16(10):41-43.

Pind, Jorgen. 1988. Umbrotsforritid TEX. slenskun pess og gildi vid ordabdkargerd.
Ord og tunga, 1:175-219.

Plass, Michael, and Donald E. Knuth. 1982. Choosing Better Line Breaks. Jurg Niever-
gelt, Giovanni Coray, Jean-Daniel Nicoud, and Alan C. Shaw [Eds.]. Document
Preparation Systems: A Collection of Survey Articles:221-242. North-Holland,
Amsterdam.

Reid, Brian K., and Janet H. Walker. 1980. Scribe: Introductory Users’s Manual. [3.
ed.] Unilogic, Pittsburgh.

Institute of Lexicography
University of Iceland

101 Reykjavik

Iceland
jorgen@lexis.hi.is

Pr oceedi ngs of NODALI DA 1989 325

